Research Article
BibTex RIS Cite

Investigation of the Effects of Sinapic Acid Against LeadInduced Spleen Toxicity

Year 2024, Volume: 4 Issue: 2, 72 - 77, 19.09.2024
https://doi.org/10.62425/jlasp.1418923

Abstract

This study aimed to examine the effects of sinapic acid (SA), a natural herbal compound containing phenolic acid, against lead (Pb)-induced spleen toxicity in male rats. Spleen toxicity was assessed following oral treatment of rats with Pb alone or in combination with SA for 7 days. Tissue malondialdehyde (MDA) levels, glutathione (GSH) levels, and the activities of glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) were determined biochemically. While the MDA levels increased in the Pbadministered group in the spleen tissue, GSH levels and the activities of GPx, SOD and CAT decreased. It was observed that co-administration of SA and Pb decreased MDA levels and increased GSH levels as well as GPx, SOD, and CAT activities. It also showed that Pb significantly increased the levels of NF-κB, TNF-α, IL-1β, COX-2, Beclin-1 and caspase3. Compared to the control and Pb groups, SA treatment was determined to significantly
reduce the levels of NF-κB, TNF-α, IL-1β, COX-2, Beclin-1 and caspase-3. As a result, in this study, it was determined that SA has protective properties against Pb-induced spleen damage.

References

  • Aebi, H. (1984). [13] Catalase in vitro (ss. 121-126). https://doi.org/10.1016/S0076-6879(84)05016-3
  • Akaras, N., Kandemir, F. M., Şimşek, H., Gür, C., & Aygörmez, S. (2023). Antioxidant, Antiinflammatory, and Antiapoptotic Effects of Rutin in Spleen Toxicity Induced by Sodium Valproate in Rats. Türk Doğa ve Fen Dergisi, 12(2), 138-144. https://doi.org/10.46810/tdfd.1299663
  • Akaras, N., Kucukler, S., Gur, C., Ileriturk, M., & Kandemir, F. M. (2024). Sinapic acid protects against lead acetate‐induced lung toxicity by reducing oxidative stress, apoptosis, inflammation, and endoplasmic reticulum stress damage. Environmental Toxicology. https://doi.org/10.1002/tox.24255
  • Akarsu, S. A., Gür, C., İleritürk, M., Akaras, N., Küçükler, S., & Kandemir, F. M. (2023). Effect of syringic acid on oxidative stress, autophagy, apoptosis, inflammation pathways against testicular damage induced by lead acetate. Journal of Trace Elements in Medicine and Biology, 80. https://doi.org/10.1016/j.jtemb.2023.127315
  • Aldahmash, B. A., & El-Nagar, D. M. (2016). Antioxidant effects of captopril against lead acetate-induced hepatic and splenic tissue toxicity in Swiss albino mice. Saudi Journal of Biological Sciences, 23(6), 667-673. https://doi.org/10.1016/j.sjbs.2016.05.005
  • Caglayan, C., Taslimi, P., Türk, C., Gulcin, İ., Kandemir, F. M., Demir, Y., & Beydemir, Ş. (2020). Inhibition effects of some pesticides and heavy metals on carbonic anhydrase enzyme activity purified from horse mackerel (Trachurus trachurus) gill tissues. Environmental Science and Pollution Research, 27(10), 10607-10616. https://doi.org/10.1007/s11356-020-07611-z
  • Caylak, E. (2010). Lead Toxication and Oxidative Stress in Children and Antioxidant Effects of Thiol Compounds. Tuberculin Skin Test in Children, 10(1), 13-23. https://doi.org/10.5222/j.child.2010.013
  • Corsetti, G., Romano, C., Stacchiotti, A., Pasini, E., & Dioguardi, F. S. (2017). Endoplasmic Reticulum Stress and Apoptosis Triggered by Sub-Chronic Lead Exposure in Mice Spleen: a Histopathological Study. Biological Trace Element Research, 178(1), 86-97. https://doi.org/10.1007/s12011-016-0912-z
  • Çelik, H., Kandemir, F. M., Caglayan, C., Özdemir, S., Çomaklı, S., Kucukler, S., & Yardım, A. (2020). Neuroprotective effect of rutin against colistin-induced oxidative stress, inflammation and apoptosis in rat brain associated with the CREB/BDNF expressions. Molecular Biology Reports, 47(3), 2023-2034. https://doi.org/10.1007/s11033-020-05302-z
  • Han, Y., Li, C., Su, M., Wang, Z., Jiang, N., & Sun, D. (2017). Antagonistic effects of selenium on lead-induced autophagy by influencing mitochondrial dynamics in the spleen of chickens. www.impactjournals.com/oncotarget
  • Kasten-Jolly, J., & Lawrence, D. A. (2014). Lead Modulation of Macrophages Causes Multiorgan Detrimental Health Effects. Journal of Biochemical and Molecular Toxicology, 28(8), 355-372. https://doi.org/10.1002/jbt.21572
  • Kuang, P., Cui, H., & Yu, L. (2022). Sodium fluoride suppresses spleen development through MAPK/ERK signaling pathway in mice. Ecotoxicology and Environmental Safety, 241, 113764. https://doi.org/10.1016/j.ecoenv.2022.113764
  • Kucukler, S., Benzer, F., Yildirim, S., Gur, C., Kandemir, F. M., Bengu, A. S., Ayna, A., Caglayan, C., & Dortbudak, M. B. (2021). Protective Effects of Chrysin Against Oxidative Stress and Inflammation Induced by Lead Acetate in Rat Kidneys: a Biochemical and Histopathological Approach. Biological Trace Element Research, 199(4), 1501-1514. https://doi.org/10.1007/s12011-020-02268-8
  • Li, N., Zhao, Y., Shen, Y., Cheng, Y., Qiao, M., Song, L., & Huang, X. (2021). Protective effects of folic acid on oxidative damage of rat spleen induced by lead acetate. Ecotoxicology and Environmental Safety, 211, 111917. https://doi.org/10.1016/j.ecoenv.2021.111917
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Proteın Measurement Wıth The Folın Phenol Reagent. Journal of Biological Chemistry, 193(1), 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
  • Marques, C. C., Nunes, A. C., Pinheiro, T., Lopes, P. A., Santos, M. C., Viegas-Crespo, A. M., Ramalhinho, M. G., & Mathias, M. L. (2006). An Assessment of Time-Dependent Effects of Lead Exposure in Algerian Mice (Mus spretus) Using Different Methodological Approaches. Biological Trace Element Research, 109(1), 075-090. https://doi.org/10.1385/BTER:109:1:075
  • Matkovics, B. (1988). Determination of enzyme activity in lipid peroxidation and glutathione pathways. Laboratoriumi Diagnosztika , 15, 248-250.
  • Nićiforović, N., & Abramovič, H. (2014). Sinapic Acid and Its Derivatives: Natural Sources and Bioactivity. Comprehensive Reviews in Food Science and Food Safety, 13(1), 34-51. https://doi.org/10.1111/1541-4337.12041
  • Placer, Z. A., Cushman, L. L., & Johnson, B. C. (1966). Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical Biochemistry, 16(2), 359-364. https://doi.org/10.1016/0003-2697(66)90167-9
  • Sedlak, J., & Lindsay, R. H. (1968). Estimation of Total, Protein-Bound, and Nonprotein Sulfhydryl Groups in Tissue with Ellman’s Reagent. Içinde Analytıcal Bıochemıstry (C. 25).
  • Soleimani, E., Goudarzi, I., Abrari, K., & Lashkarbolouki, T. (2016). The combined effects of developmental lead and ethanol exposure on hippocampus dependent spatial learning and memory in rats: Role of oxidative stress. Food and Chemical Toxicology, 96, 263-272. https://doi.org/10.1016/j.fct.2016.07.009
  • Sun, Y., Oberley, L. W., & Li, Y. (1988). A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34(3), 497-500. https://doi.org/10.1093/clinchem/34.3.497
  • Şimşek, H., Akaras, N., Gür, C., Küçükler, S., & Kandemir, F. M. (2023a). Beneficial effects of Chrysin on Cadmium‐induced nephrotoxicity in rats: Modulating the levels of Nrf2/HO‐1, RAGE/NLRP3, and Caspase-3/Bax/Bcl-2 signaling pathways. Gene, 875, 147502. https://doi.org/10.1016/j.gene.2023.147502
  • Şimşek, H., Gür, C., Küçükler, S., İleritürk, M., Akaras, N., Öz, M., & Kandemir, F. M. (2023b). Carvacrol Reduces Mercuric Chloride-Induced Testicular Toxicity by Regulating Oxidative Stress, Inflammation, Apoptosis, Autophagy, and Histopathological Changes. Biological Trace Element Research. https://doi.org/10.1007/s12011-023-04022-2
  • Şimşek, H., Küçükler, S., Gür, C., Akaras, N., & Kandemir, F. M. (2023c). Protective effects of sinapic acid against lead acetate-induced nephrotoxicity: a multi-biomarker approach. Environmental Science and Pollution Research, 30(45), 101208-101222. https://doi.org/10.1007/s11356-023-29410-y
  • Tuncer, S. Ç., Akarsu, S. A., Küçükler, S., Gür, C., & Kandemir, F. M. (2023). Effects of sinapic acid on lead acetate‐induced oxidative stress, apoptosis and inflammation in testicular tissue. Environmental Toxicology, 38(11), 2656-2667. https://doi.org/10.1002/tox.23900
  • Yang, B., Wang, Z., Hu, Z., Wang, S., Xu, J., & Li, X. (2023). Identification of the Hub Genes Linked to Lead (IV)-Induced Spleen Toxicity Using the Rat Model. Biological Trace Element Research. https://doi.org/10.1007/s12011-023-04036-w
  • Zhang, W., Luo, S., Zhu, Q., Chen, H., Wang, Q., Bian, Y., Tan, H., Liu, K., Liu, X., & Zhu, G. (2024). Lead exposure induces autophagy via TLR4/EEF2 in neurons. Food and Chemical Toxicology, 189, 114734. https://doi.org/10.1016/j.fct.2024.114734

Kurşun Kaynaklı Oluşan Dalak Toksisitesine Karşı Sinapik Asitin Etkilerinin İncelenmesi

Year 2024, Volume: 4 Issue: 2, 72 - 77, 19.09.2024
https://doi.org/10.62425/jlasp.1418923

Abstract

Bu çalışma, fenolik asit içeren doğal bitkisel bileşik olan sinapik asidin (SA), erkek ratlarda kurşun (Pb) kaynaklı dalak toksisitesine karşı etkilerini incelemeyi amaçladı. Dalak toksisitesi, ratların 7 gün boyunca sadece Pb ya da Pb ile kombinasyon halinde SA’nın oral tedavisini takiben değerlendirildi. Doku malondialdehit (MDA) seviyeleri, glutatyon (GSH) seviyeleri, glutatyon peroksidaz (GPx), süperoksit dismutaz (SOD) ve katalaz (KAT) aktiviteleri biyokimyasal olarak belirlendi. Dalak dokusunda Pb uygulanan grupta MDA düzeyi artarken, GSH seviyeleri ve GPx, SOD, KAT aktiviteleri azaldı. Pb ve SA’nın birlikte uygulanmasının MDA düzeyini azalttığı, GSH seviyeleri ve GPx, SOD, KAT aktivitelerini arttırdığı gözlemlendi. Ayrıca Pb'nin NF-κB, TNF-α, IL-1β, COX-2, Beklin-1 ve kaspaz-3 seviyelerini önemli ölçüde artırdığını gösterdi. Kontrol ve Pb grubuyla karşılaştırıldığında ise, SA tedavisinin NF-κB, TNF-α, IL-1β, COX-2, Beklin-1 ve kaspaz-3 seviyelerini önemli ölçüde azalttığı belirlendi. Sonuç olarak bu çalışmada SA'nın Pb kaynaklı dalak hasarına karşı koruyucu özelliğe sahip olduğu belirlendi.

References

  • Aebi, H. (1984). [13] Catalase in vitro (ss. 121-126). https://doi.org/10.1016/S0076-6879(84)05016-3
  • Akaras, N., Kandemir, F. M., Şimşek, H., Gür, C., & Aygörmez, S. (2023). Antioxidant, Antiinflammatory, and Antiapoptotic Effects of Rutin in Spleen Toxicity Induced by Sodium Valproate in Rats. Türk Doğa ve Fen Dergisi, 12(2), 138-144. https://doi.org/10.46810/tdfd.1299663
  • Akaras, N., Kucukler, S., Gur, C., Ileriturk, M., & Kandemir, F. M. (2024). Sinapic acid protects against lead acetate‐induced lung toxicity by reducing oxidative stress, apoptosis, inflammation, and endoplasmic reticulum stress damage. Environmental Toxicology. https://doi.org/10.1002/tox.24255
  • Akarsu, S. A., Gür, C., İleritürk, M., Akaras, N., Küçükler, S., & Kandemir, F. M. (2023). Effect of syringic acid on oxidative stress, autophagy, apoptosis, inflammation pathways against testicular damage induced by lead acetate. Journal of Trace Elements in Medicine and Biology, 80. https://doi.org/10.1016/j.jtemb.2023.127315
  • Aldahmash, B. A., & El-Nagar, D. M. (2016). Antioxidant effects of captopril against lead acetate-induced hepatic and splenic tissue toxicity in Swiss albino mice. Saudi Journal of Biological Sciences, 23(6), 667-673. https://doi.org/10.1016/j.sjbs.2016.05.005
  • Caglayan, C., Taslimi, P., Türk, C., Gulcin, İ., Kandemir, F. M., Demir, Y., & Beydemir, Ş. (2020). Inhibition effects of some pesticides and heavy metals on carbonic anhydrase enzyme activity purified from horse mackerel (Trachurus trachurus) gill tissues. Environmental Science and Pollution Research, 27(10), 10607-10616. https://doi.org/10.1007/s11356-020-07611-z
  • Caylak, E. (2010). Lead Toxication and Oxidative Stress in Children and Antioxidant Effects of Thiol Compounds. Tuberculin Skin Test in Children, 10(1), 13-23. https://doi.org/10.5222/j.child.2010.013
  • Corsetti, G., Romano, C., Stacchiotti, A., Pasini, E., & Dioguardi, F. S. (2017). Endoplasmic Reticulum Stress and Apoptosis Triggered by Sub-Chronic Lead Exposure in Mice Spleen: a Histopathological Study. Biological Trace Element Research, 178(1), 86-97. https://doi.org/10.1007/s12011-016-0912-z
  • Çelik, H., Kandemir, F. M., Caglayan, C., Özdemir, S., Çomaklı, S., Kucukler, S., & Yardım, A. (2020). Neuroprotective effect of rutin against colistin-induced oxidative stress, inflammation and apoptosis in rat brain associated with the CREB/BDNF expressions. Molecular Biology Reports, 47(3), 2023-2034. https://doi.org/10.1007/s11033-020-05302-z
  • Han, Y., Li, C., Su, M., Wang, Z., Jiang, N., & Sun, D. (2017). Antagonistic effects of selenium on lead-induced autophagy by influencing mitochondrial dynamics in the spleen of chickens. www.impactjournals.com/oncotarget
  • Kasten-Jolly, J., & Lawrence, D. A. (2014). Lead Modulation of Macrophages Causes Multiorgan Detrimental Health Effects. Journal of Biochemical and Molecular Toxicology, 28(8), 355-372. https://doi.org/10.1002/jbt.21572
  • Kuang, P., Cui, H., & Yu, L. (2022). Sodium fluoride suppresses spleen development through MAPK/ERK signaling pathway in mice. Ecotoxicology and Environmental Safety, 241, 113764. https://doi.org/10.1016/j.ecoenv.2022.113764
  • Kucukler, S., Benzer, F., Yildirim, S., Gur, C., Kandemir, F. M., Bengu, A. S., Ayna, A., Caglayan, C., & Dortbudak, M. B. (2021). Protective Effects of Chrysin Against Oxidative Stress and Inflammation Induced by Lead Acetate in Rat Kidneys: a Biochemical and Histopathological Approach. Biological Trace Element Research, 199(4), 1501-1514. https://doi.org/10.1007/s12011-020-02268-8
  • Li, N., Zhao, Y., Shen, Y., Cheng, Y., Qiao, M., Song, L., & Huang, X. (2021). Protective effects of folic acid on oxidative damage of rat spleen induced by lead acetate. Ecotoxicology and Environmental Safety, 211, 111917. https://doi.org/10.1016/j.ecoenv.2021.111917
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Proteın Measurement Wıth The Folın Phenol Reagent. Journal of Biological Chemistry, 193(1), 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
  • Marques, C. C., Nunes, A. C., Pinheiro, T., Lopes, P. A., Santos, M. C., Viegas-Crespo, A. M., Ramalhinho, M. G., & Mathias, M. L. (2006). An Assessment of Time-Dependent Effects of Lead Exposure in Algerian Mice (Mus spretus) Using Different Methodological Approaches. Biological Trace Element Research, 109(1), 075-090. https://doi.org/10.1385/BTER:109:1:075
  • Matkovics, B. (1988). Determination of enzyme activity in lipid peroxidation and glutathione pathways. Laboratoriumi Diagnosztika , 15, 248-250.
  • Nićiforović, N., & Abramovič, H. (2014). Sinapic Acid and Its Derivatives: Natural Sources and Bioactivity. Comprehensive Reviews in Food Science and Food Safety, 13(1), 34-51. https://doi.org/10.1111/1541-4337.12041
  • Placer, Z. A., Cushman, L. L., & Johnson, B. C. (1966). Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical Biochemistry, 16(2), 359-364. https://doi.org/10.1016/0003-2697(66)90167-9
  • Sedlak, J., & Lindsay, R. H. (1968). Estimation of Total, Protein-Bound, and Nonprotein Sulfhydryl Groups in Tissue with Ellman’s Reagent. Içinde Analytıcal Bıochemıstry (C. 25).
  • Soleimani, E., Goudarzi, I., Abrari, K., & Lashkarbolouki, T. (2016). The combined effects of developmental lead and ethanol exposure on hippocampus dependent spatial learning and memory in rats: Role of oxidative stress. Food and Chemical Toxicology, 96, 263-272. https://doi.org/10.1016/j.fct.2016.07.009
  • Sun, Y., Oberley, L. W., & Li, Y. (1988). A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34(3), 497-500. https://doi.org/10.1093/clinchem/34.3.497
  • Şimşek, H., Akaras, N., Gür, C., Küçükler, S., & Kandemir, F. M. (2023a). Beneficial effects of Chrysin on Cadmium‐induced nephrotoxicity in rats: Modulating the levels of Nrf2/HO‐1, RAGE/NLRP3, and Caspase-3/Bax/Bcl-2 signaling pathways. Gene, 875, 147502. https://doi.org/10.1016/j.gene.2023.147502
  • Şimşek, H., Gür, C., Küçükler, S., İleritürk, M., Akaras, N., Öz, M., & Kandemir, F. M. (2023b). Carvacrol Reduces Mercuric Chloride-Induced Testicular Toxicity by Regulating Oxidative Stress, Inflammation, Apoptosis, Autophagy, and Histopathological Changes. Biological Trace Element Research. https://doi.org/10.1007/s12011-023-04022-2
  • Şimşek, H., Küçükler, S., Gür, C., Akaras, N., & Kandemir, F. M. (2023c). Protective effects of sinapic acid against lead acetate-induced nephrotoxicity: a multi-biomarker approach. Environmental Science and Pollution Research, 30(45), 101208-101222. https://doi.org/10.1007/s11356-023-29410-y
  • Tuncer, S. Ç., Akarsu, S. A., Küçükler, S., Gür, C., & Kandemir, F. M. (2023). Effects of sinapic acid on lead acetate‐induced oxidative stress, apoptosis and inflammation in testicular tissue. Environmental Toxicology, 38(11), 2656-2667. https://doi.org/10.1002/tox.23900
  • Yang, B., Wang, Z., Hu, Z., Wang, S., Xu, J., & Li, X. (2023). Identification of the Hub Genes Linked to Lead (IV)-Induced Spleen Toxicity Using the Rat Model. Biological Trace Element Research. https://doi.org/10.1007/s12011-023-04036-w
  • Zhang, W., Luo, S., Zhu, Q., Chen, H., Wang, Q., Bian, Y., Tan, H., Liu, K., Liu, X., & Zhu, G. (2024). Lead exposure induces autophagy via TLR4/EEF2 in neurons. Food and Chemical Toxicology, 189, 114734. https://doi.org/10.1016/j.fct.2024.114734
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology, Biochemistry and Cell Biology (Other)
Journal Section Research Articles
Authors

Elif Dalkılınç 0009-0005-1008-111X

Sefa Küçükler 0000-0002-8222-5515

Şeyma Aydın 0009-0009-5640-3363

Publication Date September 19, 2024
Submission Date January 12, 2024
Acceptance Date September 5, 2024
Published in Issue Year 2024 Volume: 4 Issue: 2

Cite

EndNote Dalkılınç E, Küçükler S, Aydın Ş (September 1, 2024) Kurşun Kaynaklı Oluşan Dalak Toksisitesine Karşı Sinapik Asitin Etkilerinin İncelenmesi. Laboratuvar Hayvanları Bilimi ve Uygulamaları Dergisi 4 2 72–77.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29929