Review
BibTex RIS Cite

Örneklemeden Rapor Etmeye Adım Adım Maden Kaynak Tahmini

Year 2013, Volume: 37 Issue: 2, 141 - 158, 15.12.2013

Abstract



Madencilik faaliyetlerinin planlanmasının ve takvime bağlanmasının önemi
anlaşıldıkça, çıkarılacak madenin tenör ve miktarını tahmin etmek için
örnekleme verilerinin kullanımında bir artış olmuştur. Buna paralel olarak
güvenilir kaynak ve rezerv tahmininin önemi de artmıştır. JORC Yönetmeliği
(Avustralya Rapor Etme Yönetmeliği) ile başlayan modern madencilik döneminde,
maden kaynak ve rezervlerinin tahmini ve halka açık rapor edilmesi yönünde
artan bir eğilim görülmektedir. Bu yönetmelikler, maden kaynak/rezervleri
tahmin yöntemlerini ya da sınıflama tekniklerini düzenlemeye kalkmaz, daha
ziyade jeolojik güvenilirlik ve göz önüne alınması gereken teknik/ekonomik
faktörlere göre tenör ve tonaj tahminlerinin yapılabilmesi ve sınıflaması için
bir sistem sağlar. Rapor etme standartları;  borsa ve mali kuruluşlar tarafından, maden
arama sonuçları, maden kaynakları ve rezervlerinin halka açık rapor
edilebilmesi için gerekli asgari standartlar olarak kabul edilir ve bu konuda en
iyi uygulamaları tanımladıkları düşünülür. Bir süredir ulusal rapor etme
yönetmeliklerindeki tanım ve standartların karşılıkları için uluslararası
anlaşmalar yapılmaktadır ve bu durum yaygınlaşarak devam etmektedir. Bu arada
Borsa kabul koşulları, söz konusu yönetmeliğe uymayan üyesine yaptırım uygulamayı
kabul eden yabancı ülke meslek örgütlerinin üyelerini de “tanınan” (ya da
muteber) meslek adamı (Yetkin Kişi eşdeğeri) 
olarak tanımlamaktadır. Bu tanınma ya da kabul görme zincirinin dışında
kalan meslek adamlarının bu konuda iş yapmaları gittikçe zorlaşmakta ve
imkânsız hale gelmektedir. Bu derleme, hem bu noktaya dikkati çekmek, hem de
maden kaynak tahmini ve rapor edilmesi konusundaki en iyi uygulamaları tanıtmak
ve en son gelişmeleri özetlemek için hazırlanmıştır.

References

  • Armstrong, M.,Champigny, N, 1989. A Study on Kriging Small Blocks: CIM Bulletin, Vol 82, No 923, 128-133.
  • Blackwell, G. H., 1998. Relative kriging errors – a basis for mineral resource classification: Exploration and Mining Geology, v. 7, no. 1-2, 99-106.
  • Carr, J.C., Beaton, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R. 2001. Reconstruction and Representation of 3D Objects with Radial Basis Function. In: ACM SIGGRAPH, 12-17 August 2001, Los Angeles.
  • Cowan, E.J., Beatson, R.K., Ross, H.J., Fright, W.R., McLennan, T.J., Evans, T.R., Carr, J.C., Lane, R.G., Bright, D.V., Gillman, A.J., Oshust, P.A.,Titley, M. 2003. Practical Implicit Geological Modelling. In: Dominy, S. (ed.) 5th International Mining Geology Conference, Bendigo, Victoria, November 17-19, 2003, Australian Institute of Mining and Metallurgy, Publication Series No. 8, 89-99.
  • Coombes, J., 2008. The art and science of resource estimation : a practical guide for geologists and engineers: ISBN 9780980490800, 231 p.
  • Cowan, E.J., Spragg, K.J.,Everitt, M.R. 2011. Wireframe-Free Geological Modelling – An Oxymoron or a Value Proposition? In: Eighth International Mining Geology Conference, Queenstown, New Zealand, 22-24 August 2011, 13 p. (2011)
  • David, M., 1988. Handbook of Applied Advanced Geostatistical Ore Reserve Estimation: Elsevier Scientific, Amsterdam, 216 p.
  • Deraisme J.,de Fouquet, C., 1996. A geostatistical approach for reserves: Mining Magazine, May 1996.
  • De-Vitry, Chris, 2003. Resource classification – a case study from the Joffre-hosted iron ore of BHP Billiton’s Mount Whaleback operations: A196 Mining Technology (Trans. Inst. Min. Metall. A), 112.
  • Dominy, S.C., Annels, A.E., Platten , I.M.,Raine, M.D., 2003a. A review of problems and challenges in the resource estimation of high-nugget effect lode-gold deposits. In Proceedings, Fifth International Mining Geology Conference. Australasian Institute of Mining and Metallurgy, 279-298.
  • Dominy, S.C., Noppé, M A., Annels, A.E., 2002. Errors and Uncertainty in Mineral Resource and Ore Reserve Estimation-The Importance of Getting it Right: Explor. Mining Geol., Vol. 11, Nos. 1-4, 77–98.
  • Emery, X., Ortiz, J. M., 2005. Estimation of mineral resources using grade domains: critical analysis and a suggested methodology: The Journal of The South African Institute of Mining and Metallurgy, 105, 247-256.
  • Emery, X., Ortiz, J.M.,Rodriguez, J.J., 2006. Quantifying uncertainty in mineral resources by use of classification schemes and conditional simulations: Mathematical Geology, 38, 4, 445-464.
  • Froidevaux, R., Roscoe, W. E. and Valiant, R. I., 1986. Estimating and classifying gold reserves at Page-Williams C zone- a case study in nonparametric geostatistics: In: Ore reserve estimation: methods, models and reality, Montreal, Canadian Institute of Mining and Metallurgy, p. 280-300.
  • Glacken, I. M., Snowden, D. V., 2001. MineralResource Estimation, in Mineral Resource and Ore Reserve Estimation: The AusIMM Guide to Good Practice (Ed: A C Edwards), 189-198 (The Australasian Institute of Mining and Metallurgy: Melbourne).
  • Guibal, D., 2001. Variography – A Tool for the Resource Geologist. In: Edwards, A.C. (Ed.) Mineral Resource and Ore Reserve Estimation – The AusIMM Guide to Good Practice. The Australian Institute of Mining and Metallurgy: Melbourne.
  • Khakestar, M. S., Hassani, H., Angorani, S., 2011. A Hybrid Strategy to Optimize the Search Ellipsoid Dimensions: Case Study from Anomaly No 12A Iron Deposit in Central Iran: Yerbilimleri, 32 (1), 51–58.
  • Price M., 2013. Strike it rich with maplex: Labeling oriented structure point labels in ArcGIS 10.1
  • Royle, A. G., 1977. How to use geostatistics for ore reserve classification: Eng. Min. Journal, February, 52-55.
Year 2013, Volume: 37 Issue: 2, 141 - 158, 15.12.2013

Abstract

References

  • Armstrong, M.,Champigny, N, 1989. A Study on Kriging Small Blocks: CIM Bulletin, Vol 82, No 923, 128-133.
  • Blackwell, G. H., 1998. Relative kriging errors – a basis for mineral resource classification: Exploration and Mining Geology, v. 7, no. 1-2, 99-106.
  • Carr, J.C., Beaton, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R. 2001. Reconstruction and Representation of 3D Objects with Radial Basis Function. In: ACM SIGGRAPH, 12-17 August 2001, Los Angeles.
  • Cowan, E.J., Beatson, R.K., Ross, H.J., Fright, W.R., McLennan, T.J., Evans, T.R., Carr, J.C., Lane, R.G., Bright, D.V., Gillman, A.J., Oshust, P.A.,Titley, M. 2003. Practical Implicit Geological Modelling. In: Dominy, S. (ed.) 5th International Mining Geology Conference, Bendigo, Victoria, November 17-19, 2003, Australian Institute of Mining and Metallurgy, Publication Series No. 8, 89-99.
  • Coombes, J., 2008. The art and science of resource estimation : a practical guide for geologists and engineers: ISBN 9780980490800, 231 p.
  • Cowan, E.J., Spragg, K.J.,Everitt, M.R. 2011. Wireframe-Free Geological Modelling – An Oxymoron or a Value Proposition? In: Eighth International Mining Geology Conference, Queenstown, New Zealand, 22-24 August 2011, 13 p. (2011)
  • David, M., 1988. Handbook of Applied Advanced Geostatistical Ore Reserve Estimation: Elsevier Scientific, Amsterdam, 216 p.
  • Deraisme J.,de Fouquet, C., 1996. A geostatistical approach for reserves: Mining Magazine, May 1996.
  • De-Vitry, Chris, 2003. Resource classification – a case study from the Joffre-hosted iron ore of BHP Billiton’s Mount Whaleback operations: A196 Mining Technology (Trans. Inst. Min. Metall. A), 112.
  • Dominy, S.C., Annels, A.E., Platten , I.M.,Raine, M.D., 2003a. A review of problems and challenges in the resource estimation of high-nugget effect lode-gold deposits. In Proceedings, Fifth International Mining Geology Conference. Australasian Institute of Mining and Metallurgy, 279-298.
  • Dominy, S.C., Noppé, M A., Annels, A.E., 2002. Errors and Uncertainty in Mineral Resource and Ore Reserve Estimation-The Importance of Getting it Right: Explor. Mining Geol., Vol. 11, Nos. 1-4, 77–98.
  • Emery, X., Ortiz, J. M., 2005. Estimation of mineral resources using grade domains: critical analysis and a suggested methodology: The Journal of The South African Institute of Mining and Metallurgy, 105, 247-256.
  • Emery, X., Ortiz, J.M.,Rodriguez, J.J., 2006. Quantifying uncertainty in mineral resources by use of classification schemes and conditional simulations: Mathematical Geology, 38, 4, 445-464.
  • Froidevaux, R., Roscoe, W. E. and Valiant, R. I., 1986. Estimating and classifying gold reserves at Page-Williams C zone- a case study in nonparametric geostatistics: In: Ore reserve estimation: methods, models and reality, Montreal, Canadian Institute of Mining and Metallurgy, p. 280-300.
  • Glacken, I. M., Snowden, D. V., 2001. MineralResource Estimation, in Mineral Resource and Ore Reserve Estimation: The AusIMM Guide to Good Practice (Ed: A C Edwards), 189-198 (The Australasian Institute of Mining and Metallurgy: Melbourne).
  • Guibal, D., 2001. Variography – A Tool for the Resource Geologist. In: Edwards, A.C. (Ed.) Mineral Resource and Ore Reserve Estimation – The AusIMM Guide to Good Practice. The Australian Institute of Mining and Metallurgy: Melbourne.
  • Khakestar, M. S., Hassani, H., Angorani, S., 2011. A Hybrid Strategy to Optimize the Search Ellipsoid Dimensions: Case Study from Anomaly No 12A Iron Deposit in Central Iran: Yerbilimleri, 32 (1), 51–58.
  • Price M., 2013. Strike it rich with maplex: Labeling oriented structure point labels in ArcGIS 10.1
  • Royle, A. G., 1977. How to use geostatistics for ore reserve classification: Eng. Min. Journal, February, 52-55.
There are 19 citations in total.

Details

Subjects Geological Sciences and Engineering (Other)
Journal Section Makaleler - Articles
Authors

Yusuf Ziya Özkan This is me

Mehmet Ali Akbaba This is me

Publication Date December 15, 2013
Submission Date May 16, 2013
Published in Issue Year 2013 Volume: 37 Issue: 2

Cite

APA Özkan, Y. Z., & Akbaba, M. A. (2013). Örneklemeden Rapor Etmeye Adım Adım Maden Kaynak Tahmini. Jeoloji Mühendisliği Dergisi, 37(2), 141-158.