Research Article
BibTex RIS Cite

Hava Araçlarında Kullanılan Farklı Tipte Takviyelerle Güçlendirilmiş Eğri Kompozit Panellerin Düşük Hızlı Darbe Davranışı

Year 2024, Volume: 5 Issue: 1, 117 - 129, 26.06.2024
https://doi.org/10.55546/jmm.1459415

Abstract

Bu çalışmanın amacı, uçak gövdesi ve kanat yüzeylerinde yaygın olarak kullanılan eğri kompozit plakaların düşük hızlı darbe davranışını sayısal yöntemler kullanarak araştırmaktır. E-Cam Epoksiden imal edilen katmanlı plakalar çeşitli tipte pekiştiriciler ile güçlendirilmiş ve 12 mm çaplı bir çarpma tertibatıyla 2,5 m/s hızında darbeye maruz bırakılmıştır. Darbe sonucu pekleştirilmiş eğri plakalar üzerindeki kuvvet ve yer değiştirmenin zamana bağlı değişimi analiz edilmiştir. Ayrıca, plaka tarafından absorbe edilen enerji miktarındaki zamansal değişim de gözlemlenmiştir. Sonuçlar, I, T ve bıçak tipi pekiştiriciler ile güçlendirilmiş plakaların darbe enerjisinin sırasıyla %35,78, %38,11 ve %37,78'ini absorbe ettiğini göstermektedir. Bunlar arasında, T tipi pekiştiricili plakalar en az darbe sonrası deformasyon sergilemiştir. Bıçak tipi pekiştiriciyle güçlendirilmiş plakanın maruz kaldığı 3,7 mm'lik kalıcı deformasyon özellikle dikkat çekicidir.

References

  • Adali, S., Cagdas, I. U., Failure analysis of curved composite panels based on first-ply and buckling failures. Procedia Engineering, 10, 1591–1596, 2011.
  • Akbulut, M., Sonmez, F. O., Design optimization of laminated composites using a new variant of simulated annealing. Computers and Structures, 89(17–18), 1712–1724, 2011.
  • Altin Karataş, M., Gökkaya, H., A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. In Defence Technology 14( 4), 318–326, 2018.
  • Aytav, E., Işık, A. M., Experimental Investigation of Ballistic Performance of Free Particle Armor Systems. Journal of Materials and Mechatronics: A, 4(2), 518–543, 2023.
  • Barkanov, E., Ozoliņš, O., Eglitis, E., Almeida, F., Bowering, M. C., Watson, G., Optimal design of composite lateral wing upper covers. Part I: Linear buckling analysis. Aerospace Science and Technology, 38, 1–8, 2014.
  • Correas, A. C., Crespo, A. C., Ghasemnejad, H., Roshan, G., Analytical Solutions to Predict Impact Behaviour of Stringer Stiffened Composite Aircraft Panels. Applied Composite Materials, 28(4), 1237–1254, 2021.
  • Dag, T., Yildirim, N., Senturk, G., Durmazoglu, M., Yildirim, S., Uyaner, M., Virtual Investigation on the Response of Glare to Low Velocity Impact. Proceedings of 10th International Conference on Recent Advances in Air and Space Technologies, RAST 2023, 2023.
  • Dağ, T., Yıldırım, N., Kepir, Y., Uyaner, M., E/Cam Epoksi Laminelerin Üzerine Uygulanan Düşük Hızlı Darbe Davranışının Sayısal Simülasyonu. ASREL, 2022.
  • Erdoğan, A., Gök, M. S., Koç, V., Günen, A., Friction and wear behavior of epoxy composite filled with industrial wastes. Journal of Cleaner Production, 237, 2019.
  • Gebhardt, J., Schlamp, M., Ehrlich, I., Hiermaier, S., Low-velocity impact behavior of elliptic curved composite structures. International Journal of Impact Engineering, 180, 2023.
  • Gök, M., Küçük, Y., Pehlivanlı, M., Erdoğan, A., Investigation of Dry Sliding Wear Behavior of CFRP Composite Used in New Generation Aircraft Wings. Journal of Aviation, 7(2), 190–195, 2023.
  • Guvenc, M. A., Bilgic, H. H., Mistikoglu, S., Identification of chatter vibrations and active vibration control by using the sliding mode controller on dry turning of titanium alloy (Ti6Al4V). Facta Universitatis, Series: Mechanical Engineering, 21(2), 307, 2023.
  • Guvenc, M. A., Eren, B., Basar, G., Mistikoglu, S., A new hybrid meta-heuristic optimization method for predicting UTS for FSW of Al/Cu dissimilar materials. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 237(20), 4726–4738, 2023.
  • Hossein Alizadeh, M., Kamali Dolatabadi, M., Shaikhzadeh Najar, S., Eslami-Farsani, R., Energy absorption of the Kevlar®/PP hybrid composite: fabric to composite optimization. Journal of the Textile Institute, 113(6), 1018–1026, 2022.
  • Jain, H. K., Upadhyay, A., Buckling behavior of blade-, angle-, T-, and hat-stiffened FRP panels subjected to in-plane shear. Journal of Reinforced Plastics and Composites, 29(24), 3614–3623, 2010.
  • Khalili, S. M. R., Ardali, A., Low-velocity impact response of doubly curved symmetric cross-ply laminated panel with embedded SMA wires. Composite Structures, 105, 216–226, 2013.
  • Khan, S. H., Khan, A. A., Husain, A., Effect of fibre orientation on damage resistance of composite laminates. International Journal of Crashworthiness, 26(3), 270–282, 2021.
  • Li, D. H., Liu, Y., Zhang, X., Low-velocity impact responses of the stiffened composite laminated plates based on the progressive failure model and the layerwise/solid-elements method. Composite Structures, 110(1), 249–275, 2014.
  • Nyambeni, N., Mabuza, B. R., Considerations of Failure Analysis in a Multi-Layered Composite Structure under Thermomechanical Loading. Proceedings, 2, 447, 2018.
  • Özbek, Ö., Çakır, M. V., Doğan, N. F., Halloysit Nanotüp Katkısının Al-GFRP Tek Bindirmeli Yapıştırma Bağlantısında Kayma Dayanımına Etkisi. Journal of Materials and Mechatronics: A, 3(1), 117–128, 2022.
  • Pan, J., Li, N., Song, Z. J., Xu, M. C., Influence of boundary condition and stiffener type on collapse behaviours of stiffened panels under longitudinal compression. Advances in Mechanical Engineering, 11(10), 2019.
  • Quaresimin, M., Ricotta, M., Martello, L., Mian, S., Energy absorption in composite laminates under impact loading. Composites Part B: Engineering, 44(1), 133–140, 2013.
  • Quinn, D., Murphy, A., McEwan, W., Lemaitre, F., Stiffened panel stability behaviour and performance gains with plate prismatic sub-stiffening. Thin-Walled Structures, 47(12), 1457–1468, 2009.
  • Saghafi, H., Minak, G., Zucchelli, A., Effect of preload on the impact response of curved composite panels. Composites Part B: Engineering, 60, 74–81, 2014.
  • Santiago, R. C., Cantwell, W. J., Jones, N., Alves, M., The modelling of impact loading on thermoplastic fibre-metal laminates. Composite Structures, 189, 228–238, 2018.
  • Sun, W., Guan, Z., Ouyang, T., Tan, R., Zhong, X., Effect of stiffener damage caused by low velocity impact on compressive buckling and failure modes of T-stiffened composite panels. Composite Structures, 184, 198–210 2018.
  • Tan, R., Guan, Z., Sun, W., Liu, Z., Xu, J., Experiment investigation on impact damage and influences on compression behaviors of single T-stiffened composite panels. Composite Structures, 203, 486–497, 2018.
  • Tan, R., Xu, J., Guan, Z., Sun, W., Ouyang, T., Wang, S., Experimental study on effect of impact locations on damage formation and compression behavior of stiffened composite panels with L-shaped stiffener. Thin-Walled Structures, 150, 2020.
  • Uyaner, M., Kara, M., Kepir, Y., Gunoz, A., Virtual Testing of Laminated Composites Subjected to Low-Velocity Impact. Iranian Journal of Science and Technology- Transactions of Mechanical Engineering, 47 (2), 595–610, 2023.
  • Wang, X. M., Cao, W., Deng, C. H., Wang, P. Y., Yue, Z. F., Experimental and numerical analysis for the post-buckling behavior of stiffened composite panels with impact damage. Composite Structures, 133, 840–846, 2015.
  • Zhang, D., Sun, Y., Chen, L., Pan, N., A comparative study on low-velocity impact response of fabric composite laminates. Materials & Design, 50, 750–756, 2013.
  • Zhang, Y., Zhou, Y., Sun, Y., Bird-strike damage analysis of composite panels with different stiffeners. Aircraft Engineering and Aerospace Technology, 94 (6), 933–947, 2022.

Low Velocity Impact Behavior of Curved Composite Panels Reinforced with Different Types of Stiffeners Used in Air Vehicle

Year 2024, Volume: 5 Issue: 1, 117 - 129, 26.06.2024
https://doi.org/10.55546/jmm.1459415

Abstract

This study aims to investigate the low-velocity impact behavior of curved composite plates commonly employed in aviation fuselage and wing surfaces using numerical methods. Layered plates fabricated from E-Glass Epoxy were reinforced with various types of stiffeners and subjected to impacts whit a 12 mm diameter impactor at a velocity of 2.5 m/s. The time-dependent variation of force and displacement on the stiffened curved plates resulting from the impact was analyzed. Furthermore, the temporal variation in the amount of energy absorbed by the plate was observed. The results indicate that plates reinforced with I, T, and blade-type stiffeners absorbed 35.78%, 38.11%, and 37.78% of the impact energy, respectively. Among these, plates with T-type reinforcements exhibited the least post-impact deformation. Particularly noteworthy is the permanent deformation of 3.7 mm experienced by the plate reinforced with blade-type stiffeners.

Thanks

This work was conducted scope of Master of Science Thesis of Tolunay Dağ.

References

  • Adali, S., Cagdas, I. U., Failure analysis of curved composite panels based on first-ply and buckling failures. Procedia Engineering, 10, 1591–1596, 2011.
  • Akbulut, M., Sonmez, F. O., Design optimization of laminated composites using a new variant of simulated annealing. Computers and Structures, 89(17–18), 1712–1724, 2011.
  • Altin Karataş, M., Gökkaya, H., A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. In Defence Technology 14( 4), 318–326, 2018.
  • Aytav, E., Işık, A. M., Experimental Investigation of Ballistic Performance of Free Particle Armor Systems. Journal of Materials and Mechatronics: A, 4(2), 518–543, 2023.
  • Barkanov, E., Ozoliņš, O., Eglitis, E., Almeida, F., Bowering, M. C., Watson, G., Optimal design of composite lateral wing upper covers. Part I: Linear buckling analysis. Aerospace Science and Technology, 38, 1–8, 2014.
  • Correas, A. C., Crespo, A. C., Ghasemnejad, H., Roshan, G., Analytical Solutions to Predict Impact Behaviour of Stringer Stiffened Composite Aircraft Panels. Applied Composite Materials, 28(4), 1237–1254, 2021.
  • Dag, T., Yildirim, N., Senturk, G., Durmazoglu, M., Yildirim, S., Uyaner, M., Virtual Investigation on the Response of Glare to Low Velocity Impact. Proceedings of 10th International Conference on Recent Advances in Air and Space Technologies, RAST 2023, 2023.
  • Dağ, T., Yıldırım, N., Kepir, Y., Uyaner, M., E/Cam Epoksi Laminelerin Üzerine Uygulanan Düşük Hızlı Darbe Davranışının Sayısal Simülasyonu. ASREL, 2022.
  • Erdoğan, A., Gök, M. S., Koç, V., Günen, A., Friction and wear behavior of epoxy composite filled with industrial wastes. Journal of Cleaner Production, 237, 2019.
  • Gebhardt, J., Schlamp, M., Ehrlich, I., Hiermaier, S., Low-velocity impact behavior of elliptic curved composite structures. International Journal of Impact Engineering, 180, 2023.
  • Gök, M., Küçük, Y., Pehlivanlı, M., Erdoğan, A., Investigation of Dry Sliding Wear Behavior of CFRP Composite Used in New Generation Aircraft Wings. Journal of Aviation, 7(2), 190–195, 2023.
  • Guvenc, M. A., Bilgic, H. H., Mistikoglu, S., Identification of chatter vibrations and active vibration control by using the sliding mode controller on dry turning of titanium alloy (Ti6Al4V). Facta Universitatis, Series: Mechanical Engineering, 21(2), 307, 2023.
  • Guvenc, M. A., Eren, B., Basar, G., Mistikoglu, S., A new hybrid meta-heuristic optimization method for predicting UTS for FSW of Al/Cu dissimilar materials. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 237(20), 4726–4738, 2023.
  • Hossein Alizadeh, M., Kamali Dolatabadi, M., Shaikhzadeh Najar, S., Eslami-Farsani, R., Energy absorption of the Kevlar®/PP hybrid composite: fabric to composite optimization. Journal of the Textile Institute, 113(6), 1018–1026, 2022.
  • Jain, H. K., Upadhyay, A., Buckling behavior of blade-, angle-, T-, and hat-stiffened FRP panels subjected to in-plane shear. Journal of Reinforced Plastics and Composites, 29(24), 3614–3623, 2010.
  • Khalili, S. M. R., Ardali, A., Low-velocity impact response of doubly curved symmetric cross-ply laminated panel with embedded SMA wires. Composite Structures, 105, 216–226, 2013.
  • Khan, S. H., Khan, A. A., Husain, A., Effect of fibre orientation on damage resistance of composite laminates. International Journal of Crashworthiness, 26(3), 270–282, 2021.
  • Li, D. H., Liu, Y., Zhang, X., Low-velocity impact responses of the stiffened composite laminated plates based on the progressive failure model and the layerwise/solid-elements method. Composite Structures, 110(1), 249–275, 2014.
  • Nyambeni, N., Mabuza, B. R., Considerations of Failure Analysis in a Multi-Layered Composite Structure under Thermomechanical Loading. Proceedings, 2, 447, 2018.
  • Özbek, Ö., Çakır, M. V., Doğan, N. F., Halloysit Nanotüp Katkısının Al-GFRP Tek Bindirmeli Yapıştırma Bağlantısında Kayma Dayanımına Etkisi. Journal of Materials and Mechatronics: A, 3(1), 117–128, 2022.
  • Pan, J., Li, N., Song, Z. J., Xu, M. C., Influence of boundary condition and stiffener type on collapse behaviours of stiffened panels under longitudinal compression. Advances in Mechanical Engineering, 11(10), 2019.
  • Quaresimin, M., Ricotta, M., Martello, L., Mian, S., Energy absorption in composite laminates under impact loading. Composites Part B: Engineering, 44(1), 133–140, 2013.
  • Quinn, D., Murphy, A., McEwan, W., Lemaitre, F., Stiffened panel stability behaviour and performance gains with plate prismatic sub-stiffening. Thin-Walled Structures, 47(12), 1457–1468, 2009.
  • Saghafi, H., Minak, G., Zucchelli, A., Effect of preload on the impact response of curved composite panels. Composites Part B: Engineering, 60, 74–81, 2014.
  • Santiago, R. C., Cantwell, W. J., Jones, N., Alves, M., The modelling of impact loading on thermoplastic fibre-metal laminates. Composite Structures, 189, 228–238, 2018.
  • Sun, W., Guan, Z., Ouyang, T., Tan, R., Zhong, X., Effect of stiffener damage caused by low velocity impact on compressive buckling and failure modes of T-stiffened composite panels. Composite Structures, 184, 198–210 2018.
  • Tan, R., Guan, Z., Sun, W., Liu, Z., Xu, J., Experiment investigation on impact damage and influences on compression behaviors of single T-stiffened composite panels. Composite Structures, 203, 486–497, 2018.
  • Tan, R., Xu, J., Guan, Z., Sun, W., Ouyang, T., Wang, S., Experimental study on effect of impact locations on damage formation and compression behavior of stiffened composite panels with L-shaped stiffener. Thin-Walled Structures, 150, 2020.
  • Uyaner, M., Kara, M., Kepir, Y., Gunoz, A., Virtual Testing of Laminated Composites Subjected to Low-Velocity Impact. Iranian Journal of Science and Technology- Transactions of Mechanical Engineering, 47 (2), 595–610, 2023.
  • Wang, X. M., Cao, W., Deng, C. H., Wang, P. Y., Yue, Z. F., Experimental and numerical analysis for the post-buckling behavior of stiffened composite panels with impact damage. Composite Structures, 133, 840–846, 2015.
  • Zhang, D., Sun, Y., Chen, L., Pan, N., A comparative study on low-velocity impact response of fabric composite laminates. Materials & Design, 50, 750–756, 2013.
  • Zhang, Y., Zhou, Y., Sun, Y., Bird-strike damage analysis of composite panels with different stiffeners. Aircraft Engineering and Aerospace Technology, 94 (6), 933–947, 2022.
There are 32 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials, Aerospace Materials, Aerospace Structures
Journal Section Research Articles
Authors

Tolunay Dağ 0000-0003-1514-5336

Mehmet Ali Güvenç 0000-0002-4652-3048

Mesut Uyaner 0000-0003-2743-2340

Publication Date June 26, 2024
Submission Date March 27, 2024
Acceptance Date May 13, 2024
Published in Issue Year 2024 Volume: 5 Issue: 1

Cite

APA Dağ, T., Güvenç, M. A., & Uyaner, M. (2024). Low Velocity Impact Behavior of Curved Composite Panels Reinforced with Different Types of Stiffeners Used in Air Vehicle. Journal of Materials and Mechatronics: A, 5(1), 117-129. https://doi.org/10.55546/jmm.1459415
AMA Dağ T, Güvenç MA, Uyaner M. Low Velocity Impact Behavior of Curved Composite Panels Reinforced with Different Types of Stiffeners Used in Air Vehicle. J. Mater. Mechat. A. June 2024;5(1):117-129. doi:10.55546/jmm.1459415
Chicago Dağ, Tolunay, Mehmet Ali Güvenç, and Mesut Uyaner. “Low Velocity Impact Behavior of Curved Composite Panels Reinforced With Different Types of Stiffeners Used in Air Vehicle”. Journal of Materials and Mechatronics: A 5, no. 1 (June 2024): 117-29. https://doi.org/10.55546/jmm.1459415.
EndNote Dağ T, Güvenç MA, Uyaner M (June 1, 2024) Low Velocity Impact Behavior of Curved Composite Panels Reinforced with Different Types of Stiffeners Used in Air Vehicle. Journal of Materials and Mechatronics: A 5 1 117–129.
IEEE T. Dağ, M. A. Güvenç, and M. Uyaner, “Low Velocity Impact Behavior of Curved Composite Panels Reinforced with Different Types of Stiffeners Used in Air Vehicle”, J. Mater. Mechat. A, vol. 5, no. 1, pp. 117–129, 2024, doi: 10.55546/jmm.1459415.
ISNAD Dağ, Tolunay et al. “Low Velocity Impact Behavior of Curved Composite Panels Reinforced With Different Types of Stiffeners Used in Air Vehicle”. Journal of Materials and Mechatronics: A 5/1 (June 2024), 117-129. https://doi.org/10.55546/jmm.1459415.
JAMA Dağ T, Güvenç MA, Uyaner M. Low Velocity Impact Behavior of Curved Composite Panels Reinforced with Different Types of Stiffeners Used in Air Vehicle. J. Mater. Mechat. A. 2024;5:117–129.
MLA Dağ, Tolunay et al. “Low Velocity Impact Behavior of Curved Composite Panels Reinforced With Different Types of Stiffeners Used in Air Vehicle”. Journal of Materials and Mechatronics: A, vol. 5, no. 1, 2024, pp. 117-29, doi:10.55546/jmm.1459415.
Vancouver Dağ T, Güvenç MA, Uyaner M. Low Velocity Impact Behavior of Curved Composite Panels Reinforced with Different Types of Stiffeners Used in Air Vehicle. J. Mater. Mechat. A. 2024;5(1):117-29.