Research Article
BibTex RIS Cite
Year 2024, Volume: 11 Issue: 2, 38 - 44, 30.08.2024
https://doi.org/10.32739/uha.jnbs.11.1539105

Abstract

References

  • Adana, M., ET, O., Sunmonu, O., Bello, A., O.G., O., Imam, A., & Ajao, M. (2022). Protective Potential of Thymoquinone on Cyclophosphamide-Induced Hepatotoxicity in Rats. 2, 44–47. https://doi.org/10.53994/NJBAMS.202221.1
  • Agrawal, S., Dixit, A., Singh, A., Tripathi, P., Singh, D., Patel, D. K., & Singh, M. P. (2015). Cyclosporine A and MnTMPyP Alleviate α-Synuclein Expression and Aggregation in Cypermethrin-Induced Parkinsonism. Molecular Neurobiology, 52(3), 1619–1628. https://doi.org/10.1007/s12035-014-8954-8
  • Ahmad, L., Gul, S. T., Saleemi, M. K., Hussain, R., Naqvi, S. N. H., Du, X., & Khan, A. (2021). The effect of different repeated doses of cypermethrin on the behavioral and histological alterations in the brain of rabbits (Oryctolagus cuniculi).
  • Aloisi, F. (2001). Immune function of microglia. Glia, 36(2), 165–179. https://doi.org/10.1002/glia.1106
  • Alvarez-Diaz, A., Hilario, E., Goñi de Cerio, F., Valls-i-Soler, A., & Alvarez-Diaz, F. J. (2007). Hypoxic-ischemic injury in the immature brain–key vascular and cellular players. Neonatology, 92(4), 227–235.
  • Black, J. A., & Waxman, S. G. (2012). Sodium channels and microglial function. Experimental Neurology, 234(2), 302–315. https://doi.org/10.1016/j.expneurol.2011.09.030
  • Cao, D., Chen, N., Zhu, C., Zhao, Y., Liu, L., Yang, J., & An, L. (2015). β -cypermethrin-induced acute neurotoxicity in the cerebral cortex of mice. Drug and Chemical Toxicology, 38(1), 44–49. https://doi.org/10.3109/01480545.2014.900072
  • Casida, J. E., & Quistad, G. B. (1998). Golden Age of Insecticide Research: Past, Present, or Future? Annual Review of Entomology, 43(1), 1–16. https://doi.org/10.1146/annurev.ento.43.1.1
  • Chaieb, K., Kouidhi, B., Jrah, H., Mahdouani, K., & Bakhrouf, A. (2011). Antibacterial activity of Thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complementary and Alternative Medicine, 11(1), 29. https://doi.org/10.1186/1472-6882-11-29
  • Chen, W.-W., Zhang, X., & Huang, W.-J. (2016). Role of neuroinflammation in neurodegenerative diseases (Review). Molecular Medicine Reports, 13(4), 3391–3396. https://doi.org/10.3892/mmr.2016.4948
  • Clark, D. P. Q., Perreau, V. M., Shultz, S. R., Brady, R. D., Lei, E., Dixit, S., Taylor, J. M., Beart, P. M., & Boon, W. C. (2019). Inflammation in Traumatic Brain Injury: Roles for Toxic A1 Astrocytes and Microglial–Astrocytic Crosstalk. Neurochemical Research, 44(6), 1410–1424. https://doi.org/10.1007/s11064-019-02721-8
  • Costa, L., G. (2008). Neurotoxicity of pesticides: A brief review. Frontiers in Bioscience, 13(13), 1240. https://doi.org/10.2741/2758
  • Darakhshan, S., Bidmeshki Pour, A., Hosseinzadeh Colagar, A., & Sisakhtnezhad, S. (2015). Thymoquinone and its therapeutic potentials. Pharmacological Research, 95–96, 138–158. https://doi.org/10.1016/j.phrs.2015.03.011
  • El-Beltagy, A. E.-F. B., Elbakry, K. A., Elghazaly, M. M., Ali, L. S., & El Daqaqq, N. H. (2019). ADVERSE EFFECTS OF DELTAMETHRIN ON THE CEREBELLUM OF MOTHERS RATS AND THEIR OFFSPRING AND THE POSSIBLE AMELIORATIVE ROLE OF MELATONIN. International Journal of Pure and Applied Zoology, 7(4). https://doi.org/10.35841/2320-9585.7.55-74
  • Elsherbiny, N. M., Maysarah, N. M., El-Sherbiny, M., & Al-Gayyar, M. M. (2017). Renal protective effects of thymoquinone against sodium nitrite-induced chronic toxicity in rats: Impact on inflammation and apoptosis. Life Sciences, 180, 1–8. https://doi.org/10.1016/j.lfs.2017.05.005
  • Glasauer, A., & Chandel, N. S. (2014). Targeting antioxidants for cancer therapy. Biochemical Pharmacology, 92(1), 90–101. https://doi.org/10.1016/j.bcp.2014.07.017
  • Gotoh, T., Endo, M., & Oike, Y. (2011). Endoplasmic Reticulum Stress-Related Inflammation and Cardiovascular Diseases. International Journal of Inflammation, 2011, 1–8. https://doi.org/10.4061/2011/259462
  • Gupta, S., & Bansal, S. (2020). Does a rise in BMI cause an increased risk of diabetes?: Evidence from India. PLOS ONE, 15(4), e0229716. https://doi.org/10.1371/journal.pone.0229716
  • Heudorf, U., Angerer, J., & Drexler, H. (2004). Current internal exposure to pesticides in children and adolescents in Germany: Urinary levels of metabolites of pyrethroid and organophosphorus insecticides. International Archives of Occupational and Environmental Health, 77, 67–72.
  • Hornbeck, P. V. (2015). Enzyme‐Linked Immunosorbent Assays. Current Protocols in Immunology, 110(1). https://doi.org/10.1002/0471142735.im0201s110
  • Imam, A., Sulaiman, N. A., Oyewole, A. L., Chengetanai, S., Williams, V., Ajibola, M. I., Folarin, R. O., Muhammad, A. S., Shittu, S.-T. T., & Ajao, M. S. (2018). Chlorpyrifos- and Dichlorvos-Induced Oxidative and Neurogenic Damage Elicits Neuro-Cognitive Deficits and Increases Anxiety-Like Behavior in Wild-Type Rats. Toxics, 6(4), 71. https://doi.org/10.3390/toxics6040071
  • Imam, A., Sulaimon, F. A., Sheu, M., Busari, M., Oyegbola, C., Okesina, A. A., Afodun, A. M., Adana, M. Y., & Ajao, M. S. (2022). Nigella sativa oil ingestion mitigates aluminum chloride induced cerebella oxidative, neurogenic damages and impaired motor functions in rats. Anatomy Journal of Africa, 11(1), 2109–2121.
  • Isaev, N. K., Chetverikov, N. S., Stelmashook, E. V., Genrikhs, E. E., Khaspekov, L. G., & Illarioshkin, S. N. (2020). Thymoquinone as a Potential Neuroprotector in Acute and Chronic Forms of Cerebral Pathology. Biochemistry (Moscow), 85(2), 167–176. https://doi.org/10.1134/S0006297920020042
  • Joshi, A. U., Minhas, P. S., Liddelow, S. A., Haileselassie, B., Andreasson, K. I., Dorn, G. W., & Mochly-Rosen, D. (2019). Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nature Neuroscience, 22(10), 1635–1648. https://doi.org/10.1038/s41593-019-0486-0
  • Kassab, R. B., & El-Hennamy, R. E. (2017). The role of thymoquinone as a potent antioxidant in ameliorating the neurotoxic effect of sodium arsenate in female rat. Egyptian Journal of Basic and Applied Sciences, 4(3), 160–167. https://doi.org/10.1016/j.ejbas.2017.07.002
  • Kempuraj, D., Thangavel, R., Natteru, P. A., Selvakumar, G. P., Saeed, D., Zahoor, H., Zaheer, S., Iyer, S. S., & Zaheer, A. (2016). Neuroinflammation Induces Neurodegeneration. Journal of Neurology, Neurosurgery and Spine, 1(1), 1003.
  • Kouidhi, B., Zmantar, T., Jrah, H., Souiden, Y., Chaieb, K., Mahdouani, K., & Bakhrouf, A. (2011). Antibacterial and resistance-modifying activities of thymoquinone against oral pathogens. Annals of Clinical Microbiology and Antimicrobials, 10(1), 29. https://doi.org/10.1186/1476-0711-10-29
  • Landucci, E., Mazzantini, C., Buonvicino, D., Pellegrini-Giampietro, D. E., & Bergonzi, M. C. (2021). Neuroprotective Effects of Thymoquinone by the Modulation of ER Stress and Apoptotic Pathway in In Vitro Model of Excitotoxicity. Molecules, 26(6), 1592. https://doi.org/10.3390/molecules26061592
  • Latuszynska, J., Luty, S., Raszewski, G., Przebirowska, D., & Tokarska-Rodak, M. (2003). Neurotoxic effect of dermally applied chlorpyrifos and cypermethrin. Reversibility of changes. Annals of Agricultural and Environmental Medicine: AAEM, 10(2), 197–201.
  • Lionetto, M. G., Caricato, R., Calisi, A., Giordano, M. E., & Schettino, T. (2013). Acetylcholinesterase as a Biomarker in Environmental and Occupational Medicine: New Insights and Future Perspectives. BioMed Research International, 2013, 1–8. https://doi.org/10.1155/2013/321213
  • Liu, T., Zhang, L., Joo, D., & Sun, S.-C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2(1), 17023. https://doi.org/10.1038/sigtrans.2017.23
  • Lull, M. E., & Block, M. L. (2010). Microglial Activation and Chronic Neurodegeneration. Neurotherapeutics, 7(4), 354–365. https://doi.org/10.1016/j.nurt.2010.05.014
  • Malkiewicz, K., Koteras, M., Folkesson, R., Brzezinski, J., Winblad, B., Szutowski, M., & Benedikz, E. (2006). Cypermethrin alters glial fibrillary acidic protein levels in the rat brain. Environmental Toxicology and Pharmacology, 21(1), 51–55.
  • Miedel, C. J., Patton, J. M., Miedel, A. N., Miedel, E. S., & Levenson, J. M. (2017). Assessment of Spontaneous Alternation, Novel Object Recognition and Limb Clasping in Transgenic Mouse Models of Amyloid-β and Tau Neuropathology. Journal of Visualized Experiments, 123, 55523. https://doi.org/10.3791/55523
  • Mogi, M., Harada, M., Kondo, T., Riederer, P., Inagaki, H., Minami, M., & Nagatsu, T. (1994). Interleukin-1β, interleukin-6, epidermal growth factor and transforming growth factor-α are elevated in the brain from parkinsonian patients. Neuroscience Letters, 180(2), 147–150. https://doi.org/10.1016/0304-3940(94)90508-8
  • Mohammadi, H., Ghassemi-Barghi, N., Malakshah, O., & Ashari, S. (2019). Pyrethroid exposure and neurotoxicity: A mechanistic approach. Archives of Industrial Hygiene and Toxicology, 70(2), 74–89. https://doi.org/10.2478/aiht-2019-70-3263
  • Narahashi, T. (1996). Neuronal Ion Channels as the Target Sites of Insecticides. Pharmacology & Toxicology, 79(1), 1–14. https://doi.org/10.1111/j.1600-0773.1996.tb00234.x
  • Pandey, A., Jauhari, A., Singh, T., Singh, P., Singh, N., Srivastava, A. K., Khan, F., Pant, A. B., Parmar, D., & Yadav, S. (2015). Transactivation of P53 by cypermethrin induced miR-200 and apoptosis in neuronal cells. Toxicology Research, 4(6), 1578–1586. https://doi.org/10.1039/C5TX00200A
  • Pennathur, S. (2004). Mechanisms of oxidative stress in diabetes: Implications for the pathogenesis of vascular disease and antioxidant therapy. Frontiers in Bioscience, 9(1–3), 565. https://doi.org/10.2741/1257
  • Pohanka, M., Sochor, J., Ruttkay-Nedecký, B., Cernei, N., Adam, V., Hubálek, J., Stiborová, M., Eckschlager, T., & Kizek, R. (2012). Automated assay of the potency of natural antioxidants using pipetting robot and spectrophotometry. Journal of Applied Biomedicine, 10(3), 155–167. https://doi.org/10.2478/v10136-012-0006-y
  • Pottoo, F. H., Ibrahim, A. M., Alammar, A., Alsinan, R., Aleid, M., Alshehhi, A., Alshehri, M., Mishra, S., & Alhajri, N. (2022). Thymoquinone: Review of Its Potential in the Treatment of Neurological Diseases. Pharmaceuticals, 15(4), 408. https://doi.org/10.3390/ph15040408
  • Raszewski, G., Lemieszek, M. K., Łukawski, K., Juszczak, M., & Rzeski, W. (2015). Chlorpyrifos and Cypermethrin Induce Apoptosis in Human Neuroblastoma Cell Line SH ‐ SY 5Y. Basic & Clinical Pharmacology & Toxicology, 116(2), 158–167. https://doi.org/10.1111/bcpt.12285
  • Reid, J. K., & Kuipers, H. F. (2021). She Doesn’t Even Go Here: The Role of Inflammatory Astrocytes in CNS Disorders. Frontiers in Cellular Neuroscience, 15, 704884. https://doi.org/10.3389/fncel.2021.704884
  • Sallam, M. A., Ahmad, M., Ahmad, I., Gul, S., Idrees, M., Bashir, M. I., & Zubair, M. (2015). Toxic Effects of Cypermethrin on the Reproductive Functions of Female Rabbits and Their Amelioration with Vitamin E and Selenium. Pakistan Veterinary Journal, 35, 193–196.
  • Sedaghat, R., Roghani, M., & Khalili, M. (2014). Neuroprotective effect of thymoquinone, the nigella sativa bioactive compound, in 6-hydroxydopamine-induced hemi-parkinsonian rat model. Iranian Journal of Pharmaceutical Research: IJPR, 13(1), 227–234.
  • Seibenhener, M. L., & Wooten, M. C. (2015). Use of the Open Field Maze to Measure Locomotor and Anxiety-like Behavior in Mice. Journal of Visualized Experiments, 96, 52434. https://doi.org/10.3791/52434
  • Singh, A., Tripathi, P., Prakash, O., & Singh, M. P. (2016). Ibuprofen abates cypermethrin-induced expression of pro-inflammatory mediators and mitogen-activated protein kinases and averts the nigrostriatal dopaminergic neurodegeneration. Molecular Neurobiology, 53(10), 6849–6858. https://doi.org/10.1007/s12035-015-9577-4
  • Stoll, B. J., Hansen, N., Fanaroff, A. A., Wright, L. L., Carlo, W. A., Ehrenkranz, R. A., Lemons, J. A., Donovan, E. F., Stark, A. R., Tyson, J. E., Oh, W., Bauer, C. R., Korones, S. B., Shankaran, S., Laptook, A. R., Stevenson, D. K., Papile, L.-A., & Poole, W. K. (2002). Changes in Pathogens Causing Early-Onset Sepsis in Very-Low-Birth-Weight Infants. New England Journal of Medicine, 347(4), 240–247. https://doi.org/10.1056/NEJMoa012657
  • Su, X., Federoff, H. J., & Maguire-Zeiss, K. A. (2009). Mutant α-Synuclein Overexpression Mediates Early Proinflammatory Activity. Neurotoxicity Research, 16(3), 238–254. https://doi.org/10.1007/s12640-009-9053-x
  • Tiwari, M. N., Singh, A. K., Ahmad, I., Upadhyay, G., Singh, D., Patel, D. K., Singh, C., Prakash, O., & Singh, M. P. (2010). Effects of cypermethrin on monoamine transporters, xenobiotic metabolizing enzymes and lipid peroxidation in the rat nigrostriatal system. Free Radical Research, 44(12), 1416–1424. https://doi.org/10.3109/10715762.2010.512041
  • Wang, D., Qiao, J., Zhao, X., Chen, T., & Guan, D. (2015). Thymoquinone Inhibits IL-1β-Induced Inflammation in Human Osteoarthritis Chondrocytes by Suppressing NF-κB and MAPKs Signaling Pathway. Inflammation, 38(6), 2235–2241. https://doi.org/10.1007/s10753-015-0206-1

Thymoquinone Ingestions Reversed Inflammation Driven Glia activation and Impaired Cognitive associated behavior in Cypermethrin Exposed Rats

Year 2024, Volume: 11 Issue: 2, 38 - 44, 30.08.2024
https://doi.org/10.32739/uha.jnbs.11.1539105

Abstract

Background: Pyrethroids pose health risks to humans. Therefore, it is imperative to assess the preventive benefits of thymoquinone against neurotoxicity induced by cypermethrin- in the hippocampal dentate gyrus. Methods: Forty male adult Wistar rats with an average weight of 180-200g were randomly allocated to five (5) groups, and each comprising eight rats (n=8 per group). The groups were designated as follows, through oral administrations for 14 days: 0.5ml phosphate- buffered saline (PBS) was given to group one; Group two received 20mg/kg of cypermethrin (CYM); Group three received 10 mg/kg of thymoquinone (THQ); Group four received 20 mg/kg of cypermethrin followed by 10mg/kg of thymoquinone (CYM-10mgTHQ); and Group five received 20mg/kg and 5mg/kg cypermethrin and thymoquinone respectively (CYM-5mgTHQ). Behavioral, histological, immunohistochemical, and biochemical analyses were conducted post-treatment. Results: Cypermethrin administration caused the rise in pro-inflammatory cytokine TNF-α and increased expression of astrocytes, microglia, and pro-apoptotic protein Bax. Additionally, cypermethrin reduced levels of anti-inflammatory cytokine IL-10, acetylcholinesterase (AChE) activity, and nuclear factor erythroid 2-related factor 2 (Nrf2). cytoarchitectural disruption of dentate gyrus and decreased Nrf2 expression were observed. Cognitive deficits were evident. Thymoquinone treatment attenuated TNF-α elevation, reduced astrocyte, microglial, and Bax expression, and increased IL-10, AChE, and Nrf2 levels. Conclusion: Thymoquinone demonstrated anti-inflammatory and anti-apoptotic effects against cypermethrin-induced neurotoxicity, improving cognitive function in rats.

References

  • Adana, M., ET, O., Sunmonu, O., Bello, A., O.G., O., Imam, A., & Ajao, M. (2022). Protective Potential of Thymoquinone on Cyclophosphamide-Induced Hepatotoxicity in Rats. 2, 44–47. https://doi.org/10.53994/NJBAMS.202221.1
  • Agrawal, S., Dixit, A., Singh, A., Tripathi, P., Singh, D., Patel, D. K., & Singh, M. P. (2015). Cyclosporine A and MnTMPyP Alleviate α-Synuclein Expression and Aggregation in Cypermethrin-Induced Parkinsonism. Molecular Neurobiology, 52(3), 1619–1628. https://doi.org/10.1007/s12035-014-8954-8
  • Ahmad, L., Gul, S. T., Saleemi, M. K., Hussain, R., Naqvi, S. N. H., Du, X., & Khan, A. (2021). The effect of different repeated doses of cypermethrin on the behavioral and histological alterations in the brain of rabbits (Oryctolagus cuniculi).
  • Aloisi, F. (2001). Immune function of microglia. Glia, 36(2), 165–179. https://doi.org/10.1002/glia.1106
  • Alvarez-Diaz, A., Hilario, E., Goñi de Cerio, F., Valls-i-Soler, A., & Alvarez-Diaz, F. J. (2007). Hypoxic-ischemic injury in the immature brain–key vascular and cellular players. Neonatology, 92(4), 227–235.
  • Black, J. A., & Waxman, S. G. (2012). Sodium channels and microglial function. Experimental Neurology, 234(2), 302–315. https://doi.org/10.1016/j.expneurol.2011.09.030
  • Cao, D., Chen, N., Zhu, C., Zhao, Y., Liu, L., Yang, J., & An, L. (2015). β -cypermethrin-induced acute neurotoxicity in the cerebral cortex of mice. Drug and Chemical Toxicology, 38(1), 44–49. https://doi.org/10.3109/01480545.2014.900072
  • Casida, J. E., & Quistad, G. B. (1998). Golden Age of Insecticide Research: Past, Present, or Future? Annual Review of Entomology, 43(1), 1–16. https://doi.org/10.1146/annurev.ento.43.1.1
  • Chaieb, K., Kouidhi, B., Jrah, H., Mahdouani, K., & Bakhrouf, A. (2011). Antibacterial activity of Thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complementary and Alternative Medicine, 11(1), 29. https://doi.org/10.1186/1472-6882-11-29
  • Chen, W.-W., Zhang, X., & Huang, W.-J. (2016). Role of neuroinflammation in neurodegenerative diseases (Review). Molecular Medicine Reports, 13(4), 3391–3396. https://doi.org/10.3892/mmr.2016.4948
  • Clark, D. P. Q., Perreau, V. M., Shultz, S. R., Brady, R. D., Lei, E., Dixit, S., Taylor, J. M., Beart, P. M., & Boon, W. C. (2019). Inflammation in Traumatic Brain Injury: Roles for Toxic A1 Astrocytes and Microglial–Astrocytic Crosstalk. Neurochemical Research, 44(6), 1410–1424. https://doi.org/10.1007/s11064-019-02721-8
  • Costa, L., G. (2008). Neurotoxicity of pesticides: A brief review. Frontiers in Bioscience, 13(13), 1240. https://doi.org/10.2741/2758
  • Darakhshan, S., Bidmeshki Pour, A., Hosseinzadeh Colagar, A., & Sisakhtnezhad, S. (2015). Thymoquinone and its therapeutic potentials. Pharmacological Research, 95–96, 138–158. https://doi.org/10.1016/j.phrs.2015.03.011
  • El-Beltagy, A. E.-F. B., Elbakry, K. A., Elghazaly, M. M., Ali, L. S., & El Daqaqq, N. H. (2019). ADVERSE EFFECTS OF DELTAMETHRIN ON THE CEREBELLUM OF MOTHERS RATS AND THEIR OFFSPRING AND THE POSSIBLE AMELIORATIVE ROLE OF MELATONIN. International Journal of Pure and Applied Zoology, 7(4). https://doi.org/10.35841/2320-9585.7.55-74
  • Elsherbiny, N. M., Maysarah, N. M., El-Sherbiny, M., & Al-Gayyar, M. M. (2017). Renal protective effects of thymoquinone against sodium nitrite-induced chronic toxicity in rats: Impact on inflammation and apoptosis. Life Sciences, 180, 1–8. https://doi.org/10.1016/j.lfs.2017.05.005
  • Glasauer, A., & Chandel, N. S. (2014). Targeting antioxidants for cancer therapy. Biochemical Pharmacology, 92(1), 90–101. https://doi.org/10.1016/j.bcp.2014.07.017
  • Gotoh, T., Endo, M., & Oike, Y. (2011). Endoplasmic Reticulum Stress-Related Inflammation and Cardiovascular Diseases. International Journal of Inflammation, 2011, 1–8. https://doi.org/10.4061/2011/259462
  • Gupta, S., & Bansal, S. (2020). Does a rise in BMI cause an increased risk of diabetes?: Evidence from India. PLOS ONE, 15(4), e0229716. https://doi.org/10.1371/journal.pone.0229716
  • Heudorf, U., Angerer, J., & Drexler, H. (2004). Current internal exposure to pesticides in children and adolescents in Germany: Urinary levels of metabolites of pyrethroid and organophosphorus insecticides. International Archives of Occupational and Environmental Health, 77, 67–72.
  • Hornbeck, P. V. (2015). Enzyme‐Linked Immunosorbent Assays. Current Protocols in Immunology, 110(1). https://doi.org/10.1002/0471142735.im0201s110
  • Imam, A., Sulaiman, N. A., Oyewole, A. L., Chengetanai, S., Williams, V., Ajibola, M. I., Folarin, R. O., Muhammad, A. S., Shittu, S.-T. T., & Ajao, M. S. (2018). Chlorpyrifos- and Dichlorvos-Induced Oxidative and Neurogenic Damage Elicits Neuro-Cognitive Deficits and Increases Anxiety-Like Behavior in Wild-Type Rats. Toxics, 6(4), 71. https://doi.org/10.3390/toxics6040071
  • Imam, A., Sulaimon, F. A., Sheu, M., Busari, M., Oyegbola, C., Okesina, A. A., Afodun, A. M., Adana, M. Y., & Ajao, M. S. (2022). Nigella sativa oil ingestion mitigates aluminum chloride induced cerebella oxidative, neurogenic damages and impaired motor functions in rats. Anatomy Journal of Africa, 11(1), 2109–2121.
  • Isaev, N. K., Chetverikov, N. S., Stelmashook, E. V., Genrikhs, E. E., Khaspekov, L. G., & Illarioshkin, S. N. (2020). Thymoquinone as a Potential Neuroprotector in Acute and Chronic Forms of Cerebral Pathology. Biochemistry (Moscow), 85(2), 167–176. https://doi.org/10.1134/S0006297920020042
  • Joshi, A. U., Minhas, P. S., Liddelow, S. A., Haileselassie, B., Andreasson, K. I., Dorn, G. W., & Mochly-Rosen, D. (2019). Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nature Neuroscience, 22(10), 1635–1648. https://doi.org/10.1038/s41593-019-0486-0
  • Kassab, R. B., & El-Hennamy, R. E. (2017). The role of thymoquinone as a potent antioxidant in ameliorating the neurotoxic effect of sodium arsenate in female rat. Egyptian Journal of Basic and Applied Sciences, 4(3), 160–167. https://doi.org/10.1016/j.ejbas.2017.07.002
  • Kempuraj, D., Thangavel, R., Natteru, P. A., Selvakumar, G. P., Saeed, D., Zahoor, H., Zaheer, S., Iyer, S. S., & Zaheer, A. (2016). Neuroinflammation Induces Neurodegeneration. Journal of Neurology, Neurosurgery and Spine, 1(1), 1003.
  • Kouidhi, B., Zmantar, T., Jrah, H., Souiden, Y., Chaieb, K., Mahdouani, K., & Bakhrouf, A. (2011). Antibacterial and resistance-modifying activities of thymoquinone against oral pathogens. Annals of Clinical Microbiology and Antimicrobials, 10(1), 29. https://doi.org/10.1186/1476-0711-10-29
  • Landucci, E., Mazzantini, C., Buonvicino, D., Pellegrini-Giampietro, D. E., & Bergonzi, M. C. (2021). Neuroprotective Effects of Thymoquinone by the Modulation of ER Stress and Apoptotic Pathway in In Vitro Model of Excitotoxicity. Molecules, 26(6), 1592. https://doi.org/10.3390/molecules26061592
  • Latuszynska, J., Luty, S., Raszewski, G., Przebirowska, D., & Tokarska-Rodak, M. (2003). Neurotoxic effect of dermally applied chlorpyrifos and cypermethrin. Reversibility of changes. Annals of Agricultural and Environmental Medicine: AAEM, 10(2), 197–201.
  • Lionetto, M. G., Caricato, R., Calisi, A., Giordano, M. E., & Schettino, T. (2013). Acetylcholinesterase as a Biomarker in Environmental and Occupational Medicine: New Insights and Future Perspectives. BioMed Research International, 2013, 1–8. https://doi.org/10.1155/2013/321213
  • Liu, T., Zhang, L., Joo, D., & Sun, S.-C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2(1), 17023. https://doi.org/10.1038/sigtrans.2017.23
  • Lull, M. E., & Block, M. L. (2010). Microglial Activation and Chronic Neurodegeneration. Neurotherapeutics, 7(4), 354–365. https://doi.org/10.1016/j.nurt.2010.05.014
  • Malkiewicz, K., Koteras, M., Folkesson, R., Brzezinski, J., Winblad, B., Szutowski, M., & Benedikz, E. (2006). Cypermethrin alters glial fibrillary acidic protein levels in the rat brain. Environmental Toxicology and Pharmacology, 21(1), 51–55.
  • Miedel, C. J., Patton, J. M., Miedel, A. N., Miedel, E. S., & Levenson, J. M. (2017). Assessment of Spontaneous Alternation, Novel Object Recognition and Limb Clasping in Transgenic Mouse Models of Amyloid-β and Tau Neuropathology. Journal of Visualized Experiments, 123, 55523. https://doi.org/10.3791/55523
  • Mogi, M., Harada, M., Kondo, T., Riederer, P., Inagaki, H., Minami, M., & Nagatsu, T. (1994). Interleukin-1β, interleukin-6, epidermal growth factor and transforming growth factor-α are elevated in the brain from parkinsonian patients. Neuroscience Letters, 180(2), 147–150. https://doi.org/10.1016/0304-3940(94)90508-8
  • Mohammadi, H., Ghassemi-Barghi, N., Malakshah, O., & Ashari, S. (2019). Pyrethroid exposure and neurotoxicity: A mechanistic approach. Archives of Industrial Hygiene and Toxicology, 70(2), 74–89. https://doi.org/10.2478/aiht-2019-70-3263
  • Narahashi, T. (1996). Neuronal Ion Channels as the Target Sites of Insecticides. Pharmacology & Toxicology, 79(1), 1–14. https://doi.org/10.1111/j.1600-0773.1996.tb00234.x
  • Pandey, A., Jauhari, A., Singh, T., Singh, P., Singh, N., Srivastava, A. K., Khan, F., Pant, A. B., Parmar, D., & Yadav, S. (2015). Transactivation of P53 by cypermethrin induced miR-200 and apoptosis in neuronal cells. Toxicology Research, 4(6), 1578–1586. https://doi.org/10.1039/C5TX00200A
  • Pennathur, S. (2004). Mechanisms of oxidative stress in diabetes: Implications for the pathogenesis of vascular disease and antioxidant therapy. Frontiers in Bioscience, 9(1–3), 565. https://doi.org/10.2741/1257
  • Pohanka, M., Sochor, J., Ruttkay-Nedecký, B., Cernei, N., Adam, V., Hubálek, J., Stiborová, M., Eckschlager, T., & Kizek, R. (2012). Automated assay of the potency of natural antioxidants using pipetting robot and spectrophotometry. Journal of Applied Biomedicine, 10(3), 155–167. https://doi.org/10.2478/v10136-012-0006-y
  • Pottoo, F. H., Ibrahim, A. M., Alammar, A., Alsinan, R., Aleid, M., Alshehhi, A., Alshehri, M., Mishra, S., & Alhajri, N. (2022). Thymoquinone: Review of Its Potential in the Treatment of Neurological Diseases. Pharmaceuticals, 15(4), 408. https://doi.org/10.3390/ph15040408
  • Raszewski, G., Lemieszek, M. K., Łukawski, K., Juszczak, M., & Rzeski, W. (2015). Chlorpyrifos and Cypermethrin Induce Apoptosis in Human Neuroblastoma Cell Line SH ‐ SY 5Y. Basic & Clinical Pharmacology & Toxicology, 116(2), 158–167. https://doi.org/10.1111/bcpt.12285
  • Reid, J. K., & Kuipers, H. F. (2021). She Doesn’t Even Go Here: The Role of Inflammatory Astrocytes in CNS Disorders. Frontiers in Cellular Neuroscience, 15, 704884. https://doi.org/10.3389/fncel.2021.704884
  • Sallam, M. A., Ahmad, M., Ahmad, I., Gul, S., Idrees, M., Bashir, M. I., & Zubair, M. (2015). Toxic Effects of Cypermethrin on the Reproductive Functions of Female Rabbits and Their Amelioration with Vitamin E and Selenium. Pakistan Veterinary Journal, 35, 193–196.
  • Sedaghat, R., Roghani, M., & Khalili, M. (2014). Neuroprotective effect of thymoquinone, the nigella sativa bioactive compound, in 6-hydroxydopamine-induced hemi-parkinsonian rat model. Iranian Journal of Pharmaceutical Research: IJPR, 13(1), 227–234.
  • Seibenhener, M. L., & Wooten, M. C. (2015). Use of the Open Field Maze to Measure Locomotor and Anxiety-like Behavior in Mice. Journal of Visualized Experiments, 96, 52434. https://doi.org/10.3791/52434
  • Singh, A., Tripathi, P., Prakash, O., & Singh, M. P. (2016). Ibuprofen abates cypermethrin-induced expression of pro-inflammatory mediators and mitogen-activated protein kinases and averts the nigrostriatal dopaminergic neurodegeneration. Molecular Neurobiology, 53(10), 6849–6858. https://doi.org/10.1007/s12035-015-9577-4
  • Stoll, B. J., Hansen, N., Fanaroff, A. A., Wright, L. L., Carlo, W. A., Ehrenkranz, R. A., Lemons, J. A., Donovan, E. F., Stark, A. R., Tyson, J. E., Oh, W., Bauer, C. R., Korones, S. B., Shankaran, S., Laptook, A. R., Stevenson, D. K., Papile, L.-A., & Poole, W. K. (2002). Changes in Pathogens Causing Early-Onset Sepsis in Very-Low-Birth-Weight Infants. New England Journal of Medicine, 347(4), 240–247. https://doi.org/10.1056/NEJMoa012657
  • Su, X., Federoff, H. J., & Maguire-Zeiss, K. A. (2009). Mutant α-Synuclein Overexpression Mediates Early Proinflammatory Activity. Neurotoxicity Research, 16(3), 238–254. https://doi.org/10.1007/s12640-009-9053-x
  • Tiwari, M. N., Singh, A. K., Ahmad, I., Upadhyay, G., Singh, D., Patel, D. K., Singh, C., Prakash, O., & Singh, M. P. (2010). Effects of cypermethrin on monoamine transporters, xenobiotic metabolizing enzymes and lipid peroxidation in the rat nigrostriatal system. Free Radical Research, 44(12), 1416–1424. https://doi.org/10.3109/10715762.2010.512041
  • Wang, D., Qiao, J., Zhao, X., Chen, T., & Guan, D. (2015). Thymoquinone Inhibits IL-1β-Induced Inflammation in Human Osteoarthritis Chondrocytes by Suppressing NF-κB and MAPKs Signaling Pathway. Inflammation, 38(6), 2235–2241. https://doi.org/10.1007/s10753-015-0206-1
There are 51 citations in total.

Details

Primary Language English
Subjects Neurology and Neuromuscular Diseases
Journal Section Research Article
Authors

Abubakar Lekan Imam 0009-0000-3111-7461

Okesina Akeem Ayodeji This is me 0000-0003-3238-6676

Fatimo Ajoke Sulamon This is me 0000-0002-9594-608X

Aminu Imam 0000-0003-2371-3065

Ruqayyah Ibiyeye 0000-0002-0628-1507

Misturah Yetunde Adana This is me 0000-0001-8538-7838

Omoola Olasheu Oluwatosin This is me 0000-0002-7012-9120

Salihu Moyosore Ajao This is me 0000-0002-9074-1405

Publication Date August 30, 2024
Submission Date April 3, 2024
Acceptance Date July 2, 2024
Published in Issue Year 2024 Volume: 11 Issue: 2

Cite

Vancouver Imam AL, Ayodeji OA, Sulamon FA, Imam A, Ibiyeye R, Adana MY, Oluwatosin OO, Ajao SM. Thymoquinone Ingestions Reversed Inflammation Driven Glia activation and Impaired Cognitive associated behavior in Cypermethrin Exposed Rats. JNBS. 2024;11(2):38-44.