Research Article
BibTex RIS Cite

T-Fuzzy Submodules of RxM

Year 2018, Issue: 22, 92 - 102, 26.03.2018

Abstract

In this paper, we introduce the concept of T-fuzzy submodule of RxM and give new results on this subject. Next we study the concept of the extension of T-fuzzy submodule of RxM and prove some results on these. Also we investigate T-fuzzy submodule of RxM under homomorphisms or R-modules.

References

  • [1] C. Alsina et al, On some logical connectives for fuzzy set theory, J. Math. Anal. Appl, 93 (1983), 15-26.
  • [2] J. M. Anthony and H. Sherwood, Fuzzy groups rede¯ned, Journal of Mathemat- ical Analysis and Application, 69 (1977), 124-130.
  • [3] M. M. Gupta and J. Qi, Theory of T-norms and fuzzy inference methods, Fuzzy Sets and System, 40 (1991), 431-450.
  • [4] U. Hohle, Probabilistic uniformization of fuzzy topologies, Fuzzy Sets and Sys- tems, 1 (1978), 311-332.
  • [5] A. Solairaju and R. Nagarajan, Q-Fuzzy left R-subgroups of near rings with respect to t-norms, Antarctica Journal of Mathematics 5(2008), 59-63.
  • [6] A. Solairaju and R. Nagarajan, A New Structure and Construction of Q-Fuzzy Groups, Advances in fuzzy mathematics 4(2009), 23-29.
  • [7] R. Rasuli, Fuzzy Ideals of Subtraction Semigroups with Respect to A t-norm and A t-conorm, The Journal of Fuzzy Mathematics Los Angeles, 24 (4) (2016), 881-892.
  • [8] R. Rasuli, Fuzzy modules over a t-norm, Int. J. Open Problems Compt. Math., 9 (3) (2016), 12-18.
  • [9] R. Rasuli, Fuzzy Subrings over a t-norm , The Journal of Fuzzy Mathematics Los Angeles, 24 (4) (2016), 995-1000.
  • [10] R. Rasuli, Norms over intuitionistic fuzzy subrings and ideals of a ring, Notes on Intuitionistic Fuzzy Sets, 22 (5) (2016), 72-83.
  • [11] R. Rasuli, Norms over fuzzy Lie algebra, Journal of New Theory, 15(2017), 32-38.
  • [12] R. Rasuli, Fuzzy subgroups on direct product of groups over a t-norm, Journal of Fuzzy Set Valued Analysis, 3(2017), 96-101.
  • [13] R. Rasuli, Characterizations of intuitionistic fuzzy subsemirings of semirings and their homomorphisms by norms, Journal of New Theory, 18(2017), 39-52.
  • [14] R. Rasuli, intuitionistic fuzzy subrings and ideals of a ring under norms, LAP LAMBERT Academic publishing, 2017, ISBN: 978-620-2-06926-7.
  • [15] R. Rasuli, Characterization of Q-Fuzzy subrings (Anti Q-Fuzzy Subrings) with respect to a T-norm (T-Conorms), Journal of Information and Optimization Science, 31(2018), 1-11.
  • [16] Y. Yandong, Triangular norms and TNF-sigma algebras,, Fuzzy Sets and Sys- tem, 16 (1985), 251-264.
  • [17] L. A. Zadeh, Fuzzy sets, inform. and Control, 8(1965), 338-353.
Year 2018, Issue: 22, 92 - 102, 26.03.2018

Abstract

References

  • [1] C. Alsina et al, On some logical connectives for fuzzy set theory, J. Math. Anal. Appl, 93 (1983), 15-26.
  • [2] J. M. Anthony and H. Sherwood, Fuzzy groups rede¯ned, Journal of Mathemat- ical Analysis and Application, 69 (1977), 124-130.
  • [3] M. M. Gupta and J. Qi, Theory of T-norms and fuzzy inference methods, Fuzzy Sets and System, 40 (1991), 431-450.
  • [4] U. Hohle, Probabilistic uniformization of fuzzy topologies, Fuzzy Sets and Sys- tems, 1 (1978), 311-332.
  • [5] A. Solairaju and R. Nagarajan, Q-Fuzzy left R-subgroups of near rings with respect to t-norms, Antarctica Journal of Mathematics 5(2008), 59-63.
  • [6] A. Solairaju and R. Nagarajan, A New Structure and Construction of Q-Fuzzy Groups, Advances in fuzzy mathematics 4(2009), 23-29.
  • [7] R. Rasuli, Fuzzy Ideals of Subtraction Semigroups with Respect to A t-norm and A t-conorm, The Journal of Fuzzy Mathematics Los Angeles, 24 (4) (2016), 881-892.
  • [8] R. Rasuli, Fuzzy modules over a t-norm, Int. J. Open Problems Compt. Math., 9 (3) (2016), 12-18.
  • [9] R. Rasuli, Fuzzy Subrings over a t-norm , The Journal of Fuzzy Mathematics Los Angeles, 24 (4) (2016), 995-1000.
  • [10] R. Rasuli, Norms over intuitionistic fuzzy subrings and ideals of a ring, Notes on Intuitionistic Fuzzy Sets, 22 (5) (2016), 72-83.
  • [11] R. Rasuli, Norms over fuzzy Lie algebra, Journal of New Theory, 15(2017), 32-38.
  • [12] R. Rasuli, Fuzzy subgroups on direct product of groups over a t-norm, Journal of Fuzzy Set Valued Analysis, 3(2017), 96-101.
  • [13] R. Rasuli, Characterizations of intuitionistic fuzzy subsemirings of semirings and their homomorphisms by norms, Journal of New Theory, 18(2017), 39-52.
  • [14] R. Rasuli, intuitionistic fuzzy subrings and ideals of a ring under norms, LAP LAMBERT Academic publishing, 2017, ISBN: 978-620-2-06926-7.
  • [15] R. Rasuli, Characterization of Q-Fuzzy subrings (Anti Q-Fuzzy Subrings) with respect to a T-norm (T-Conorms), Journal of Information and Optimization Science, 31(2018), 1-11.
  • [16] Y. Yandong, Triangular norms and TNF-sigma algebras,, Fuzzy Sets and Sys- tem, 16 (1985), 251-264.
  • [17] L. A. Zadeh, Fuzzy sets, inform. and Control, 8(1965), 338-353.
There are 17 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Rasul Rasuli This is me

Publication Date March 26, 2018
Submission Date January 20, 2018
Published in Issue Year 2018 Issue: 22

Cite

APA Rasuli, R. (2018). T-Fuzzy Submodules of RxM. Journal of New Theory(22), 92-102.
AMA Rasuli R. T-Fuzzy Submodules of RxM. JNT. March 2018;(22):92-102.
Chicago Rasuli, Rasul. “T-Fuzzy Submodules of RxM”. Journal of New Theory, no. 22 (March 2018): 92-102.
EndNote Rasuli R (March 1, 2018) T-Fuzzy Submodules of RxM. Journal of New Theory 22 92–102.
IEEE R. Rasuli, “T-Fuzzy Submodules of RxM”, JNT, no. 22, pp. 92–102, March 2018.
ISNAD Rasuli, Rasul. “T-Fuzzy Submodules of RxM”. Journal of New Theory 22 (March 2018), 92-102.
JAMA Rasuli R. T-Fuzzy Submodules of RxM. JNT. 2018;:92–102.
MLA Rasuli, Rasul. “T-Fuzzy Submodules of RxM”. Journal of New Theory, no. 22, 2018, pp. 92-102.
Vancouver Rasuli R. T-Fuzzy Submodules of RxM. JNT. 2018(22):92-102.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).