Research Article
BibTex RIS Cite

A Generalization of $p$-Adic Factorial

Year 2022, Issue: 39, 94 - 103, 30.06.2022
https://doi.org/10.53570/jnt.1089241

Abstract

In this paper, we establish a new approach of the p-adic analogue of Roman factorial, called p-adic Roman factorial. We define this new concept and demonstrate its properties and some properties of p-adic factorial.

Supporting Institution

Pure and Applied Mathematics Laboratory

Project Number

N C00L03UN180120180006

References

  • S. Roman, The Logarithmic Binomial Formula. The American Mathematical Monthly 99 (7) (1992) 641-648.
  • D. E. Loeb, G. C. Rota, Formal Power Series of Logarithmic Type. Advances in Mathematics 75 (1) (1989) 1-118.
  • D. E. Loeb, A Generalization of the Binomial Coefficients. Discrete Mathematics 105 (1-3) (1992) 143-156.
  • A. M. Robert, A Course in p-Adic Analysis, Springer-Verlag, Graduate Texts in Mathematics 198, 2000.
  • H. Menken, Ö. Çolakoğlu, Some Properties of the p-Adic Beta Function. European Journal of Pure and Applied Mathematics 8 (2) (2015) 214-231.
  • R. R. Aidagulov, M. A. Alekseyev, On p-adic Approximation of Sums of Binomial Coefficients. Journal of Mathematical Sciences 233 (5) (2018) 626-634.
  • D. Knuth, Subspaces, Subsets, and Partitions. Journal of Combinatorial Theory 10 (2) (1971) 178-180.
  • U. Duran, M. Açıkgöz, A study on Novel Extensions for the p-Adic Gamma and p-Adic Beta Functions. Mathematical and Computational Applications 24 (2) (2019) 1-20.
  • U. Duran, M. Açkgöz, On p-Adic Gamma Function Related to q-Daehee Polynomials and Numbers. Proyecciones (Antofagasta), 38 (4) (2019) 799-810.
  • Ö. H. Çolakoğlu, H. Menken, On the p-Adic Gamma Function and Changhee Polynomials. Turkish Journal of Analysis and Number Theory 6 (4) (2018) 120-123.
  • Y. A. Morita, A p-Adic Analogue of the Gamma Function. Journal of the Faculty of Science, The University of Tokyo, Section 1A 22 (2) (1975) 255-266.
Year 2022, Issue: 39, 94 - 103, 30.06.2022
https://doi.org/10.53570/jnt.1089241

Abstract

Project Number

N C00L03UN180120180006

References

  • S. Roman, The Logarithmic Binomial Formula. The American Mathematical Monthly 99 (7) (1992) 641-648.
  • D. E. Loeb, G. C. Rota, Formal Power Series of Logarithmic Type. Advances in Mathematics 75 (1) (1989) 1-118.
  • D. E. Loeb, A Generalization of the Binomial Coefficients. Discrete Mathematics 105 (1-3) (1992) 143-156.
  • A. M. Robert, A Course in p-Adic Analysis, Springer-Verlag, Graduate Texts in Mathematics 198, 2000.
  • H. Menken, Ö. Çolakoğlu, Some Properties of the p-Adic Beta Function. European Journal of Pure and Applied Mathematics 8 (2) (2015) 214-231.
  • R. R. Aidagulov, M. A. Alekseyev, On p-adic Approximation of Sums of Binomial Coefficients. Journal of Mathematical Sciences 233 (5) (2018) 626-634.
  • D. Knuth, Subspaces, Subsets, and Partitions. Journal of Combinatorial Theory 10 (2) (1971) 178-180.
  • U. Duran, M. Açıkgöz, A study on Novel Extensions for the p-Adic Gamma and p-Adic Beta Functions. Mathematical and Computational Applications 24 (2) (2019) 1-20.
  • U. Duran, M. Açkgöz, On p-Adic Gamma Function Related to q-Daehee Polynomials and Numbers. Proyecciones (Antofagasta), 38 (4) (2019) 799-810.
  • Ö. H. Çolakoğlu, H. Menken, On the p-Adic Gamma Function and Changhee Polynomials. Turkish Journal of Analysis and Number Theory 6 (4) (2018) 120-123.
  • Y. A. Morita, A p-Adic Analogue of the Gamma Function. Journal of the Faculty of Science, The University of Tokyo, Section 1A 22 (2) (1975) 255-266.
There are 11 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Article
Authors

Rafik Belhadef 0000-0003-1523-9439

Project Number N C00L03UN180120180006
Publication Date June 30, 2022
Submission Date March 17, 2022
Published in Issue Year 2022 Issue: 39

Cite

APA Belhadef, R. (2022). A Generalization of $p$-Adic Factorial. Journal of New Theory(39), 94-103. https://doi.org/10.53570/jnt.1089241
AMA Belhadef R. A Generalization of $p$-Adic Factorial. JNT. June 2022;(39):94-103. doi:10.53570/jnt.1089241
Chicago Belhadef, Rafik. “A Generalization of $p$-Adic Factorial”. Journal of New Theory, no. 39 (June 2022): 94-103. https://doi.org/10.53570/jnt.1089241.
EndNote Belhadef R (June 1, 2022) A Generalization of $p$-Adic Factorial. Journal of New Theory 39 94–103.
IEEE R. Belhadef, “A Generalization of $p$-Adic Factorial”, JNT, no. 39, pp. 94–103, June 2022, doi: 10.53570/jnt.1089241.
ISNAD Belhadef, Rafik. “A Generalization of $p$-Adic Factorial”. Journal of New Theory 39 (June 2022), 94-103. https://doi.org/10.53570/jnt.1089241.
JAMA Belhadef R. A Generalization of $p$-Adic Factorial. JNT. 2022;:94–103.
MLA Belhadef, Rafik. “A Generalization of $p$-Adic Factorial”. Journal of New Theory, no. 39, 2022, pp. 94-103, doi:10.53570/jnt.1089241.
Vancouver Belhadef R. A Generalization of $p$-Adic Factorial. JNT. 2022(39):94-103.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).