Research Article
BibTex RIS Cite

Rings Whose Pure-Projective Modules Have Maximal or Minimal Projectivity Domain

Year 2024, Issue: 47, 1 - 10, 30.06.2024
https://doi.org/10.53570/jnt.1451662

Abstract

In this study, we investigate the projectivity domain of pure-projective modules. A pure-projective module is called special-pure-projective (s-pure-projective) module if its projectivity domain contains only regular modules. First, we describe all rings whose pure-projective modules are s-pure-projective, and we show that every ring with an s-pure-projective module. Afterward, we research rings whose pure-projective modules are projective or s-pure-projective. Such rings are said to have $*$-property. We determine the right Noetherian rings have $*$-property.

References

  • C. Holston, S. R. Lopez-Permouth, N. O. Ertaş, Rings whose modules have maximal or minimal projectivity domain, Journal of Pure and Applied Algebra 216 (3) (2012) 673-678.
  • C. Holston, S. R. Lopez-Permouth, J. Mastromatteo, J. E. Simental-Rodriguez, An alternative perspective on projectivity of modules, Glasgow Mathematical Journal 57 (1) (2015) 83-99.
  • R. Alizade, D. D. Sipahi, Modules and abelian groups with minimal (pure-) projectivity domains, Journal of Algebra and Its Applications 16 (11) (2017) 1750203 13 pages.
  • R. Alizade, D. Dede Sipahi, Modules and abelian groups with a restricted domain of projectivity, Journal of Algebra and Its Applications (2024) 2550173.
  • N. Er, S. Lopez-Permouth, N. Sökmez, Rings whose modules have maximal or minimal injectivity domains, Journal of Algebra 330 (2011) 404-417.
  • N. O. Ertaş, R. Tribak, Some variations of projectivity, Journal of Algebra and Its Applications 21 (12) (2022) 2250236 19 pages.
  • S. Crivei, R. Pop, Projectivity and subprojectivity domains in exact categories, Journal of Algebra and Its Applications (2023) 2550134.
  • D. Bennis, J. R. Garcia Rozas, H. Ouberka, L. Oyonarte, A new approach to projectivity in the categories of complexes, Annali di Matematica Pura ed Applicata 201 (2022) 2871-2889.
  • H. Amzil, D. Bennis, J. R. Garcia Rozas, H. Ouberka, L. Oyonarte, Subprojectivity in abelian categories, Applied Categorical Structures 29 (5) (2021) 889-913.
  • Y. Alagöz, Y. Durğun, An alternative perspective on pure-projectivity of modules, Sao Paulo Journal of Mathematical Sciences 14 (2) (2020) 631-650.
  • Y. Alagöz, Weakly poor modules, Konuralp Journal of Mathematics 10 (2) (2022) 250-254.
  • Y. Durğun, RD-projective module whose subprojectivity domain is minimal, Hacettepe Journal of Mathematics and Statistics 51 (2) (2022) 373-382.
  • Y. Durğun, The opposite of projectivity by proper classes, Journal of Algebra and Its Application (2023) 2450172.
  • Y. Durğun, Ş. Kalir, A. Y. Shibeshi, On projectivity of finitely generated modules, Communications in Algebra 51 (9) (2023) 3623-3631.
  • Y. Durğun, A. Çobankaya, On subprojectivity domains of g-semiartinian modules, Journal of Algebra and Its Applications 20 (7) (2021) 2150119 15 pages.
  • F. W. Anderson, K. R. Fuller, Rings and categories of modules, Springer, New York, 1992.
  • R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, Reading, 1991.
  • T. Y. Lam, Lectures on modules and rings, Vol. 189 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1999.
  • K. R. Goodearl, Singular torsion and the splitting properties, Vol. 124 of American Mathematical Society, 1972.
Year 2024, Issue: 47, 1 - 10, 30.06.2024
https://doi.org/10.53570/jnt.1451662

Abstract

References

  • C. Holston, S. R. Lopez-Permouth, N. O. Ertaş, Rings whose modules have maximal or minimal projectivity domain, Journal of Pure and Applied Algebra 216 (3) (2012) 673-678.
  • C. Holston, S. R. Lopez-Permouth, J. Mastromatteo, J. E. Simental-Rodriguez, An alternative perspective on projectivity of modules, Glasgow Mathematical Journal 57 (1) (2015) 83-99.
  • R. Alizade, D. D. Sipahi, Modules and abelian groups with minimal (pure-) projectivity domains, Journal of Algebra and Its Applications 16 (11) (2017) 1750203 13 pages.
  • R. Alizade, D. Dede Sipahi, Modules and abelian groups with a restricted domain of projectivity, Journal of Algebra and Its Applications (2024) 2550173.
  • N. Er, S. Lopez-Permouth, N. Sökmez, Rings whose modules have maximal or minimal injectivity domains, Journal of Algebra 330 (2011) 404-417.
  • N. O. Ertaş, R. Tribak, Some variations of projectivity, Journal of Algebra and Its Applications 21 (12) (2022) 2250236 19 pages.
  • S. Crivei, R. Pop, Projectivity and subprojectivity domains in exact categories, Journal of Algebra and Its Applications (2023) 2550134.
  • D. Bennis, J. R. Garcia Rozas, H. Ouberka, L. Oyonarte, A new approach to projectivity in the categories of complexes, Annali di Matematica Pura ed Applicata 201 (2022) 2871-2889.
  • H. Amzil, D. Bennis, J. R. Garcia Rozas, H. Ouberka, L. Oyonarte, Subprojectivity in abelian categories, Applied Categorical Structures 29 (5) (2021) 889-913.
  • Y. Alagöz, Y. Durğun, An alternative perspective on pure-projectivity of modules, Sao Paulo Journal of Mathematical Sciences 14 (2) (2020) 631-650.
  • Y. Alagöz, Weakly poor modules, Konuralp Journal of Mathematics 10 (2) (2022) 250-254.
  • Y. Durğun, RD-projective module whose subprojectivity domain is minimal, Hacettepe Journal of Mathematics and Statistics 51 (2) (2022) 373-382.
  • Y. Durğun, The opposite of projectivity by proper classes, Journal of Algebra and Its Application (2023) 2450172.
  • Y. Durğun, Ş. Kalir, A. Y. Shibeshi, On projectivity of finitely generated modules, Communications in Algebra 51 (9) (2023) 3623-3631.
  • Y. Durğun, A. Çobankaya, On subprojectivity domains of g-semiartinian modules, Journal of Algebra and Its Applications 20 (7) (2021) 2150119 15 pages.
  • F. W. Anderson, K. R. Fuller, Rings and categories of modules, Springer, New York, 1992.
  • R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, Reading, 1991.
  • T. Y. Lam, Lectures on modules and rings, Vol. 189 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1999.
  • K. R. Goodearl, Singular torsion and the splitting properties, Vol. 124 of American Mathematical Society, 1972.
There are 19 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Zübeyir Türkoğlu 0000-0002-7852-8441

Publication Date June 30, 2024
Submission Date March 12, 2024
Acceptance Date May 2, 2024
Published in Issue Year 2024 Issue: 47

Cite

APA Türkoğlu, Z. (2024). Rings Whose Pure-Projective Modules Have Maximal or Minimal Projectivity Domain. Journal of New Theory(47), 1-10. https://doi.org/10.53570/jnt.1451662
AMA Türkoğlu Z. Rings Whose Pure-Projective Modules Have Maximal or Minimal Projectivity Domain. JNT. June 2024;(47):1-10. doi:10.53570/jnt.1451662
Chicago Türkoğlu, Zübeyir. “Rings Whose Pure-Projective Modules Have Maximal or Minimal Projectivity Domain”. Journal of New Theory, no. 47 (June 2024): 1-10. https://doi.org/10.53570/jnt.1451662.
EndNote Türkoğlu Z (June 1, 2024) Rings Whose Pure-Projective Modules Have Maximal or Minimal Projectivity Domain. Journal of New Theory 47 1–10.
IEEE Z. Türkoğlu, “Rings Whose Pure-Projective Modules Have Maximal or Minimal Projectivity Domain”, JNT, no. 47, pp. 1–10, June 2024, doi: 10.53570/jnt.1451662.
ISNAD Türkoğlu, Zübeyir. “Rings Whose Pure-Projective Modules Have Maximal or Minimal Projectivity Domain”. Journal of New Theory 47 (June 2024), 1-10. https://doi.org/10.53570/jnt.1451662.
JAMA Türkoğlu Z. Rings Whose Pure-Projective Modules Have Maximal or Minimal Projectivity Domain. JNT. 2024;:1–10.
MLA Türkoğlu, Zübeyir. “Rings Whose Pure-Projective Modules Have Maximal or Minimal Projectivity Domain”. Journal of New Theory, no. 47, 2024, pp. 1-10, doi:10.53570/jnt.1451662.
Vancouver Türkoğlu Z. Rings Whose Pure-Projective Modules Have Maximal or Minimal Projectivity Domain. JNT. 2024(47):1-10.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).