Research Article
BibTex RIS Cite

Estimation of Turkish Banking Sector Financial Fragility Index and Determination of the Factors Effecting the Index

Year 2025, Volume: 10 Issue: 2, 106 - 113

Abstract

The concept of financial fragility is defined as an early warning indicator in which a financial crisis has not yet occurred but symptoms are observed. Banking sector fragility index was calculated for 15 deposit banks in Turkey and the impact of macroeconomic and bank-specific proportional indicators was examined for 2006Q1:2022Q2. Results based on static panel models inferred that the likelihood of banks to be fragile is significantly determined by ROA, ROE, inflation rate, CDS, fear index and commercial loan interest rate. Including NPL in the index, it was both intended to make an original contribution to the literature and aimed to reveal the factors determining the index. Thus, BSF index is a reliable proxy for banking sector risk status

References

  • Apergis, N. & Payne, J.E. (2014). The Causal Dynamics Between Renewable Energy, Real GDP, Emissions and Oil Prices: Evidence from OECD Countries. Applied Economics, 46(36), 4519-4525.
  • Barth, J. R., Caprio Jr, G., & Levine, R. (2001). Banking Systems Around the Globe: Do Regulation and Ownership affect performance and Stability?. In Prudential Supervision: What Works and What Doesn't (pp.31-96). Chicago: University of Chicago Press.
  • Baum, C. F. (2000). sts15: Tests for Stationarity of a Time Series. Stata Technical Bulletin, 57, 36-39.
  • Bhattacharya, B., & Roy, T. N. S. (2012). Indicators of Banking Fragility in India: An Empirical Test. South Asia Economic Journal, 13(2), 265-290.
  • Breusch, T. S., & Pagan, A. R. (1980). The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics. The Review of Economic Studies, 47(1), 239-253.
  • Claessens, S., Kose, M. A., & Terrones, M. E. (2010). The Global Financial Crisis: How Similar? How Different? How Costly?. Journal of Asian Economics, 21(3), 247-264.
  • Çatalbaş, N. (2021). The Relationship Among İmport, Export, and Real Exchange Rate in Turkey. Journal of Current Researches on Business and Economics, 11(1), 49-72.
  • Demirel, B., Barışık, S., & Karanfil, N. (2016). Türk Bankacılık Sektörü Kırılganlık Endeksini Belirleyen Faktörler. Bankacılar Dergisi, 99, 16-36
  • Diamond, D. W., & Dybvig, P. H. (1983). Bank Runs, Deposit Insurance, and Liquidity. Journal of Political Economy, 91(3), 401-419.
  • Dickey, D. A., & Fuller, W. A. (1981). Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root. Econometrica: Journal of The Econometric Society, 1057-1072.
  • Driscoll, J. C. & Kraay, A. C. (1998). Consistent Covariance Matrix Estimation with Spatially Dependent Panel Data. Review of Economics and Statistics, 80(4), 549-560.
  • Esenyel, N. M. (2017). Türkiye’de Enerji Yakınsama Hipotezinin Sınanması: Yapısal Kırılmalı Birim Kök Analizi. Sosyal Bilimler Araştırma Dergisi, 6(3), 42-52.
  • Gerali, A., Neri, S., Sessa, L., & Signoretti, F. M. (2010). Credit and Banking in a DSGE Model of The Euro Area. Journal of Money, Credit and Banking, 42, 107-141.
  • Güloglu, B., & İspir, M. S. (2011). Doğal İşsizlik Oranı mı? İşsizlik Histerisi mi? Türkiye İçin Sektörel Panel Birim Kök Sınaması Analizi/Is Natural Rate of Unemployment or Hysteresis? Sector-Specific Panel Unit Root Test Analysis for Turkey. Ege Akademik Bakış, 11(2), 205.
  • Kaminsky, G. L., & Reinhart, C. M. (1999). The twin crises: The Causes of Banking and Balance-of-Payments Problems. American Economic Review, 89(3), 473-500.
  • Karanfil, N. (2014). Türk Bankacılık Sektöründe Banka Kırılganlık Endeksini Etkileyen Faktörler. Yüksek Lisans Tezi. Tokat: Gaziosmanpaşa Üniversitesi.
  • Kibritçioglu, A. (2003). Monitoring Banking Sector Fragility. The Arab Bank Review, 5(2), 51-66.
  • Lee, J. & Strazicich, M.C. (2003). Minimum Lagrange Multiplier Unit Root Test with Two Structural Breaks. The Review of Economics and Statistics, Vol. 85(4), 1082- 1089.
  • Mazlan, N. F., Ahmad, N., & Jaafar, N. (2016). Bank Fragility and Its Determinants: Evidence from Malaysian Commercial Banks. In Proceedings of the 1st AAGBS International Conference on Business Management 2014 (AiCoBM 2014) (pp.547- 555). Singapore: Springer.
  • Mensah, I. A., Sun, M., Gao, C., Sun, H., Omari-sasu, A. Y., Ampimah, B. C., & Quarcoo, A. (2019). Estimating The Determinants Of Energy Consumption In Mutlisectoral African Economies: Evidence From Panel Methods Efficient To Heterogeneity And Cross-Sectional Reliance. In Applied Energy Symposium 2019: Low Carbon Cities and Urban Energy Systems.
  • Minsky Ph D, H. P. (1977). A Theory of Systemic Fragility.
  • Minsky, H. P. (1982). Debt Deflation Processes in Today’s Institutional Environment. PSL Quarterly Review, 35(143).
  • Mishkin, F. S. (1991). A Multi-Country Study of The Information in The Shorter Maturity Term Structure About Future Inflation. Journal of International Money and Finance, 10(1), 2-22.
  • Pesaran, M. H. (2007). A Simple Panel Unit Root Test in The Presence of Cross‐Section Dependence. Journal of Applied Econometrics, 22(2), 265-312.
  • Phillips, P. C., & Perron, P. (1988). Testing for a Unit Root in Time Series Regression. Biometrika, 75(2), 335-346.
  • Rejeb, A. B., & Arfaoui, M. (2016). Financial Market Interdependencies: A Quantile Regression Analysis of Volatility Spillover. Research in International Business and Finance, 36, 140-157.
  • Sarno, L., & Taylor, M. P. (1998). Real Exchange Rates Under the Recent Float: Unequivocal Evidence of Mean Reversion. Economics Letters, 60(2), 131-137.
  • Shen, C. H., & Chen, C. F. (2008). Causality Between Banking and Currency Fragilities: A Dynamic Panel Model. Global Finance Journal, 19(2), 85-101.
  • Singh, T. R. (2010). An Ordered Probit Model of An Early Warning System for Predicting Financial Crisis in India. IFC Bulletin, 25, 185.
  • Taylor, M. P., & Sarno, L. (1998). The Behavior of Real Exchange Rates During the Post-Bretton Woods Period. Journal of International Economics, 46, 281-312.
  • Yerdelen Tatoğlu, F. (2017). Panel Zaman Serileri Analizi Stata Uygulamalı. Istanbul: Beta Yayınevi.

Türk Bankacılık Sektörü Finansal Kırılganlık Endeksinin Tahmini ve Endeksi Etkileyen Faktörlerin Belirlenmesi

Year 2025, Volume: 10 Issue: 2, 106 - 113

Abstract

Finansal kırılganlık kavramı, finansal krizin henüz meydana gelmediği ancak belirtilerinin gözlemlendiği evrenin erken uyarı göstergesi olarak tanımlamaktadır. Türkiye’deki 15 mevduat bankasının, yabancı sermayeli bankalar dahil, 2006Q1:2022Q2 dönemini kapsayan çalışmada, her banka için bankacılık sektörü finansal endeksi hesaplanmış, bankalara göre değişmeyen makro ekonomik göstergeler ile bankalara özgü oransal göstergelerin endeks üzerindeki etkisi incelenmiştir. Statik panel modellere dayanan sonuçlar, bankaların kırılgan olma olasılığının aktif karlılık oranı ve özkaynak karlılık oranı, enflasyon oranı, kredi risk pirimi, korku endeksi ve ticari kredi faiz oranı tarafından anlamlı bir şekilde belirlendiğini ortaya koymaktadır. Takipteki krediler değişkeninin endekse dahil edilmesiyle literatüre özgün bir katkı yapılması amaçlanmış, endeksi belirleyen faktörlerin ortaya çıkarılması hedeflenmiş ve böylece endeksin bankacılık sektörü risk durumu için güvenilir bir gösterge olduğu sonucuna varılmıştır.

References

  • Apergis, N. & Payne, J.E. (2014). The Causal Dynamics Between Renewable Energy, Real GDP, Emissions and Oil Prices: Evidence from OECD Countries. Applied Economics, 46(36), 4519-4525.
  • Barth, J. R., Caprio Jr, G., & Levine, R. (2001). Banking Systems Around the Globe: Do Regulation and Ownership affect performance and Stability?. In Prudential Supervision: What Works and What Doesn't (pp.31-96). Chicago: University of Chicago Press.
  • Baum, C. F. (2000). sts15: Tests for Stationarity of a Time Series. Stata Technical Bulletin, 57, 36-39.
  • Bhattacharya, B., & Roy, T. N. S. (2012). Indicators of Banking Fragility in India: An Empirical Test. South Asia Economic Journal, 13(2), 265-290.
  • Breusch, T. S., & Pagan, A. R. (1980). The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics. The Review of Economic Studies, 47(1), 239-253.
  • Claessens, S., Kose, M. A., & Terrones, M. E. (2010). The Global Financial Crisis: How Similar? How Different? How Costly?. Journal of Asian Economics, 21(3), 247-264.
  • Çatalbaş, N. (2021). The Relationship Among İmport, Export, and Real Exchange Rate in Turkey. Journal of Current Researches on Business and Economics, 11(1), 49-72.
  • Demirel, B., Barışık, S., & Karanfil, N. (2016). Türk Bankacılık Sektörü Kırılganlık Endeksini Belirleyen Faktörler. Bankacılar Dergisi, 99, 16-36
  • Diamond, D. W., & Dybvig, P. H. (1983). Bank Runs, Deposit Insurance, and Liquidity. Journal of Political Economy, 91(3), 401-419.
  • Dickey, D. A., & Fuller, W. A. (1981). Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root. Econometrica: Journal of The Econometric Society, 1057-1072.
  • Driscoll, J. C. & Kraay, A. C. (1998). Consistent Covariance Matrix Estimation with Spatially Dependent Panel Data. Review of Economics and Statistics, 80(4), 549-560.
  • Esenyel, N. M. (2017). Türkiye’de Enerji Yakınsama Hipotezinin Sınanması: Yapısal Kırılmalı Birim Kök Analizi. Sosyal Bilimler Araştırma Dergisi, 6(3), 42-52.
  • Gerali, A., Neri, S., Sessa, L., & Signoretti, F. M. (2010). Credit and Banking in a DSGE Model of The Euro Area. Journal of Money, Credit and Banking, 42, 107-141.
  • Güloglu, B., & İspir, M. S. (2011). Doğal İşsizlik Oranı mı? İşsizlik Histerisi mi? Türkiye İçin Sektörel Panel Birim Kök Sınaması Analizi/Is Natural Rate of Unemployment or Hysteresis? Sector-Specific Panel Unit Root Test Analysis for Turkey. Ege Akademik Bakış, 11(2), 205.
  • Kaminsky, G. L., & Reinhart, C. M. (1999). The twin crises: The Causes of Banking and Balance-of-Payments Problems. American Economic Review, 89(3), 473-500.
  • Karanfil, N. (2014). Türk Bankacılık Sektöründe Banka Kırılganlık Endeksini Etkileyen Faktörler. Yüksek Lisans Tezi. Tokat: Gaziosmanpaşa Üniversitesi.
  • Kibritçioglu, A. (2003). Monitoring Banking Sector Fragility. The Arab Bank Review, 5(2), 51-66.
  • Lee, J. & Strazicich, M.C. (2003). Minimum Lagrange Multiplier Unit Root Test with Two Structural Breaks. The Review of Economics and Statistics, Vol. 85(4), 1082- 1089.
  • Mazlan, N. F., Ahmad, N., & Jaafar, N. (2016). Bank Fragility and Its Determinants: Evidence from Malaysian Commercial Banks. In Proceedings of the 1st AAGBS International Conference on Business Management 2014 (AiCoBM 2014) (pp.547- 555). Singapore: Springer.
  • Mensah, I. A., Sun, M., Gao, C., Sun, H., Omari-sasu, A. Y., Ampimah, B. C., & Quarcoo, A. (2019). Estimating The Determinants Of Energy Consumption In Mutlisectoral African Economies: Evidence From Panel Methods Efficient To Heterogeneity And Cross-Sectional Reliance. In Applied Energy Symposium 2019: Low Carbon Cities and Urban Energy Systems.
  • Minsky Ph D, H. P. (1977). A Theory of Systemic Fragility.
  • Minsky, H. P. (1982). Debt Deflation Processes in Today’s Institutional Environment. PSL Quarterly Review, 35(143).
  • Mishkin, F. S. (1991). A Multi-Country Study of The Information in The Shorter Maturity Term Structure About Future Inflation. Journal of International Money and Finance, 10(1), 2-22.
  • Pesaran, M. H. (2007). A Simple Panel Unit Root Test in The Presence of Cross‐Section Dependence. Journal of Applied Econometrics, 22(2), 265-312.
  • Phillips, P. C., & Perron, P. (1988). Testing for a Unit Root in Time Series Regression. Biometrika, 75(2), 335-346.
  • Rejeb, A. B., & Arfaoui, M. (2016). Financial Market Interdependencies: A Quantile Regression Analysis of Volatility Spillover. Research in International Business and Finance, 36, 140-157.
  • Sarno, L., & Taylor, M. P. (1998). Real Exchange Rates Under the Recent Float: Unequivocal Evidence of Mean Reversion. Economics Letters, 60(2), 131-137.
  • Shen, C. H., & Chen, C. F. (2008). Causality Between Banking and Currency Fragilities: A Dynamic Panel Model. Global Finance Journal, 19(2), 85-101.
  • Singh, T. R. (2010). An Ordered Probit Model of An Early Warning System for Predicting Financial Crisis in India. IFC Bulletin, 25, 185.
  • Taylor, M. P., & Sarno, L. (1998). The Behavior of Real Exchange Rates During the Post-Bretton Woods Period. Journal of International Economics, 46, 281-312.
  • Yerdelen Tatoğlu, F. (2017). Panel Zaman Serileri Analizi Stata Uygulamalı. Istanbul: Beta Yayınevi.
There are 31 citations in total.

Details

Primary Language English
Subjects Banking and Insurance (Other)
Journal Section Research Article
Authors

Müge Gürgül 0000-0003-4487-8942

Onur Sunal 0000-0002-3972-4060

Early Pub Date December 2, 2025
Publication Date December 2, 2025
Submission Date September 20, 2024
Acceptance Date September 28, 2025
Published in Issue Year 2025 Volume: 10 Issue: 2

Cite

APA Gürgül, M., & Sunal, O. (2025). Estimation of Turkish Banking Sector Financial Fragility Index and Determination of the Factors Effecting the Index. JOEEP: Journal of Emerging Economies and Policy, 10(2), 106-113.

JOEEP is published as two issues per year June and December and all publication policies and processes are conducted according to the international standards. JOEEP accepts and publishes the research articles in the fields of economics, political economy, fiscal economics, applied economics, business economics, labour economics and econometrics. JOEEP, without depending on any institution or organization, is a non-profit journal that has an International Editorial Board specialist on their fields. All “Publication Process” and “Writing Guidelines” are explained in the related title and it is expected from authors to Show a complete match to the rules. JOEEP is an open Access journal.