Review
BibTex RIS Cite

Non-Coding RNAs in Plant Stress Responses and Their Implications for Agriculture

Year 2023, Volume: 4 Issue: 2, 52 - 63, 31.12.2023

Abstract

Agriculture's global significance encompasses food security, economic growth, preservation of biological diversity, and employment generation. However, the stresses such as abiotic and biotic stresses generate substantial challenges in terms of crop yield and quality. Plants respond to these stressors by means of physiological and genetic mechanisims. Notably, small non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and small interfering RNAs (siRNAs), play essential regulatory roles in adaptation to these stresses. Abiotic stresses include temperature, drought, and salinity and leading to changes in miRNA expression levels. miRNAs like miR167, miR159, and miR171 actively participate in salt, drought, and cold stress responses. Similarly, miR395 responds to sulfate deficiency stress, while miR399 is involved in phosphate homeostasis. Some biotic stresses, like pathogen infections, also affect miRNA modulation and resistance mechanisms siRNAs effectively contribute resistance to biotic stress such as pathogen, bacteria, fungi, virus and abiotic stresses. Virus-derived siRNAs (vsiRNAs) activate plant immunity, and on the other hand, in vitro synthesized siRNAs can be used in controlling pest. Heat stress triggers differential siRNA expression, particularly associated with flowering regulation, while plant species exhibiting drought tolerance display pronounced siRNA regulations in response to water deficiency. In conclusion, understanding plant responses to adverse stress conditions is pivotal for advancing plant resilience, yield, and quality. ncRNAs like miRNAs and siRNAs are key molecular players in these adaptation processes. When combined with gene editing technologies such as CRISPR/Cas9, these approaches offer promising strategies for developing stress-tolerant agricultural products. These strategies hold significant potential in supporting sustainable agriculture and addressing global food security challenges.

References

  • [1] Uzundumlu, A. S. (2012). Tarım Sektörünün Ülke Ekonomisindeki Yeri. Alinteri Journal of Agriculture Science, 34–44.
  • [2] Diao, X., Hazell, P., Resnick, D. and Thurlow, J. (2006). The Role of Agriculture in Development: Implications for Sub-Saharan Africa. AgEcon Search, 11.
  • [3] Büyük, I., Soydam-Aydin, S., ve Aras, S. (2012). Molecular responses of plants to stress conditions. Turk Hijyen ve Deneysel Biyoloji Dergisi, 69(2), 97–110. https://doi.org/10.5505/TurkHijyen.2012.40316
  • [4] Kayıkçı, H. C., Kaba, A., Soylu, İ. ve Mutlu, N. (2022). MicroRNA'ların Domates Bitkisinde Abiyotik Stres Faktörelerine Karşı Tolerantlığa Etkisi. Bahçe, 51(1), 353-357.
  • [5] Guleria, P., Mahajan, M., Bhardwaj, J., and Yadav, S. K. (2011). Plant Small RNAs: Biogenesis, Mode of Action and Their Roles in Abiotic Stresses. Genomics, Proteomics and Bioinformatics, 9(6), 183–199. https://doi.org/10.1016/S1672-0229(11)60022-3
  • [6] Şahin, Ö., Ayaz, G. B., ve Ayaz, U. (2018). Bitki Epigenetiği. Diyalektik ve Toplum, 1(2), 135-144.
  • [7] Liu, N. and Pan, T. (2015). RNA Epigenetics. Transl Res. Author manuscript, 165(1), 28-35. https://doi.org/10.1016/j.trsl.2014.04.003.RNA
  • [8] Chen, H. M., Chen, L. T., Patel, K., Li, Y. H., Baulcombe, D. C., and Wu, S. H. (2010). 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proceedings of the National Academy of Sciences of the United States of America, 107(34), 15269–15274. https://doi.org/10.1073/pnas.1001738107
  • [9] Güzelgül, F., ve Aksoy, K. (2009). Kodlanmayan RNA’ların İşlevi ve Tıpta Kullanım Alanları. Archives Medical Review Journal, 18(3), 141–155.
  • [10] Lv, D. K., Bai, X., Li, Y., Ding, X. D., Ge, Y., Cai, H., Ji, W., Wu, N. and Zhu, Y. M. (2010). Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene, 459(1-2), 39-47.
  • [11] Yirmibeş, B., Aydin, H. N., Ulu, Z. Ö., Ulu, S., ve Özgentürk, N. Ö. (2021). Analysis of some conserved miRNAs in hazelnut (Corylus avellena L. and Corylus colurna L.) by real-time PCR. Sigma Journal of Engineering and Natural Sciences, 39(2), 170–176. https://doi.org/10.14744/sigma.2021.00006
  • [12] Tang, Y., Yan, X., Gu, C. and Yuan, X. (2022). Biogenesis, Traffiicking, and Function of Small RNAs in Plants. Frontiers in Plant Science. 13-825477. doi: 10.3389/fpls.2022.825477
  • [13] Willmann, M. R. and Poethig, R. S. (2007). Conservation and Evolution of miRNA Regulotary Programs in Plant Development. Science Direct, 10, 503-511
  • [14] Floyd, S. K. and Bowman, J. L. (2004). Ancient microRNA Target Sequences in Plant. Nature, 428, 485-486
  • [15] Aras S, Soydam-Aydın S, Fazlıoğlu A, Cansaran-Duman D, Büyük İ. ve Derici K. (2015). Bitkilerde RNA interferans. Turk Hijyen ve Deneysel Biyoloji Dergisi. 72(3), 255-262. Doi ID: 10.5505/TurkHijyen.2015.13285.
  • [16] Baldrich, P., Liu, A., Meyers, B. C., and Fondong, V. N. (2022). An atlas of small RNAs from potato. Plant Direct, 6(12), 1–10. https://doi.org/10.1002/pld3.466
  • [17] Wang, T., Deng, Z., Zhang, X., Wang, H., Wang, Y., Liu, X., Liu, S., Xu, F., Li, T., Fu, D., Zhu, B., Luo, Y. and Zhu, H. (2018). Tomato DCL2b is required for the biosynthesis of 22-nt small RNAs, the resulting secondary siRNAs, and the host defense against ToMV. Horticulture Research, 5(1). https://doi.org/10.1038/s41438-018-0073-7
  • [18] Kryuvrysanaki, N., James, A., Tselika, M., Bardani, E., and Kalantidis, K. (2021). RNA silencing pathways in plant development and defense. International Journal of Developmental Biology, 66(1–3), 163–175. https://doi.org/10.1387/ijdb.210189kk
  • [19] Jones-Rhoades, M. W., & Bartel, D. P. (2004). Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA. Molecular Cell, 14(6), 787–799. https://doi.org/10.1016/j.molcel.2004.05.027
  • [20] Canales, J., Uribe, F., Henríquez-Valencia, C., Lovazzano, C., Medina, J., & Vidal, E. A. (2020). Transcriptomic analysis at organ and time scale reveals gene regulatory networks controlling the sulfate starvation response of Solanum lycopersicum. BMC Plant Biology, 20(1), 1–17. https://doi.org/10.1186/s12870-020-02590-2
  • [21] Chiou, T. J. (2007). The role of microRNAs in sensing nutrient stress. Plant, Cell and Environment, 30(3), 323–332. https://doi.org/10.1111/j.1365-3040.2007.01643.x
  • [22] Ding, D., Zhang, L., Wang, H., Liu, Z., Zhang, Z., and Zheng, Y. (2009). Differential expression of miRNAs in response to salt stress in maize roots. Annals of Botany, 103(1), 29–38. https://doi.org/10.1093/aob/mcn205
  • [23] Tian, Y., Tian, Y., Luo, X., Zhou, T., Huang, Z., Liu, Y., Qiu, Y., Hou, B., Sun, D., Deng, H., Qian, S. and Yao, K. (2014). Identification and characterization of microRNAs related to salt stress in broccoli, using high-throughput sequencing and bioinformatics analysis. BMC Plant Biology, 14(1), 1–13. https://doi.org/10.1186/s12870-014-0226- 2
  • [24] Ekmekçi, E., Apan, M. ve Kara, T. (2005). Tuzluluğun Bitki gelişimine Etkisi. OMU Ziraat Fakültesi Dergisi, 20(3),118-125.
  • [25] Sunkar, R., and Zhu, J. K. (2004). Novel and stress regulated microRNAs and other small RNAs from Arabidopsis w inside box sign. Plant Cell, 16(8), 2001–2019. https://doi.org/10.1105/tpc.104.022830
  • [26] Zhou, L., Liu, Y., Liu, Z., Kong, D., Duan, M., and Luo, L. (2010). Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. Journal of Experimental Botany, 61(15), 4157–4168. https://doi.org/10.1093/jxb/erq237
  • [27] Ekşioğlu, A. “Kuraklık Stresine miRNA Cevaplarının Domateste Araştırılması.”, İstanbul Kültür Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi. 2016.
  • [28] Turan, Ö. ve Ekmekçi, Y. (2008). Soğuk Stresinin Bitkiler üzerindeki Etkileri ve Tolerans Mekanizmaları. Anadolu üniversitesi Bilim ve Teknoloji Dergisi, 9(2), 177-198.
  • [29] Chinnusamy, V., Zhu, J. and Zhu, J. K. (2007). Cold stress regulation of gene expression in plants. Trends in Plant Science, 12(10), 444-451.
  • [30] Ren, W., Yuan, G., Lin, X., Guo, X., & Wang, Z. (2021). Comparison of the immersion chilling and freezing and traditional air freezing on the quality of beef during storage. Food Science and Nutrition, 9(12), 6653–6661. https://doi.org/10.1002/fsn3.2613
  • [31] Liu, H. H., X, T., Li, Y. j., Wu, C.A., & Zheng, C. C. (2008). Microarray-Based Analysis of Stress-Regulated MicroRNAs in Arabidopsis thaliana. RNA, 14, 836-843.
  • [32] Llorente, F., Muskett, P., Sánchez-Vallet, A., López, G., Ramos, B., Sánchez-Rodríguez, C., Jorda, L., Parker, J. and Molina, A. (2008). Repression of the auxin response pathway increases Arabidopsis susceptibility to necrotrophic fungi. Molecular Plant, 1(3), 496–509. https://doi.org/10.1093/mp/ssn025
  • [33] Yang, L., Jue, D., Li, W., Zhang, R., Chen, M., and Yang, Q. (2013). Identification of MiRNA from Eggplant (Solanum melongena L.) by Small RNA Deep Sequencing and Their Response to Verticillium dahliae Infection. PLoS ONE, 8(8). https://doi.org/10.1371/journal.pone.0072840
  • [34] Liu, P., Zhang, X., Zhang, F., Xu, M., Ye, Z., Wang, K., Liu, S., Han, X., Cheng, Y., Zhong, K., Zhang, T., Li, L., Ma, Y., Chen, M., Chen, J. and Yang, J. (2021). A virus-derived siRNA activates plant immunity by interfering with ROS scavenging. Molecular Plant, 14(7), 1088–1103. https://doi.org/10.1016/j.molp.2021.03.022
  • [35] Kaur, R., Choudhury, A., Chauhan, S., Ghosh, A., Tiwari, R., and Rajam, M. V. (2021). RNA interference and crop protection against biotic stresses. Physiology and Molecular Biology of Plants, 27(10), 2357–2377. https://doi.org/10.1007/s12298-021-01064-5
  • [36] McLoughlin, A. G., Wytinck, N., Walker, P. L., Girard, I. J., Rashid, K. Y., De Kievit, T., Fernando, W. G. D., Whyard, S. and Belmonte, M. F. (2018). Identification and application of exogenous dsRNA confers plant protection against Sclerotinia sclerotiorum and Botrytis cinerea. Scientific Reports, 8(1), 1–15. https://doi.org/10.1038/s41598-018-25434-4
  • [37] Koch, A., Biedenkopf, D., Furch, A., Weber, L., Rossbach, O., Abdellatef, E., Linicus, L., Johannsmeier, J. Jelonek, L., Goesmann, A., Cardoza, V., McMillan, J., Mentzel, T. and Kogel, K. H. (2016). An RNAi-Based Control of Fusarium graminearum Infections Through Spraying of Long dsRNAs Involves a Plant Passage and Is Controlled by the Fungal Silencing Machinery. Plos Pathogens, 12(10): e1005901 https://doi.org/10.1371/journal.ppat.1005901
  • [38] Katiyar-Agarwal, S., Morgan, R., Dahlbeck, D., Borsani, O., Villegas, A., Zhu, J. K., Staskawicz, B. J. and Jin, H. (2006). A pathogen-inducible endogenous siRNA in plant immunity. Proceedings of the National Academy of Sciences of the United States of America, 103(47), 18002–18007. https://doi.org/10.1073/pnas.0608258103
  • [39] Baum, J. A., Bogaert, T., Clinton, W., Heck, G. R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T. and Roberts, J. (2007). Control of coleopteran insect pests through RNA interference. Nature biotechnology, 25(11), 1322-1326. https://doi.org/10.1038/nbt1359
  • [40] Ahmed, W., Xia, Y., Li, R., Zhang, H., Siddique, K. H. M., and Guo, P. (2021). Identification and Analysis of Small Interfering RNAs Associated With Heat Stress in Flowering Chinese Cabbage Using High-Throughput Sequencing. Frontiers in Genetics, 12(November), 1–9. https://doi.org/10.3389/fgene.2021.746816
  • [41] Chinnusamy, V., Zhu, J. K. and Sunkar, R. (2010). Gene Regulation During Cold Stress Acclimation in Plants. Methods Mol Biol. 639, 39–55. https://doi.org/10.1007/978-1-60761-702-0_3
  • [42] Jung, I., Ahn, H., Shin, S. J., Kim, J., Kwon, H. Bin, Jung, W., and Kim, S. (2016). Clustering and evolutionary analysis of small RNAs identify regulatory siRNA clusters induced under drought stress in rice. BMC Systems Biology, 10(4), 423-432. https://doi.org/10.1186/s12918-016-0355-3

Bitki Stres Cevaplarında Kodlanmayan RNA’lar ve Tarımdaki Önemi

Year 2023, Volume: 4 Issue: 2, 52 - 63, 31.12.2023

Abstract

Tarımın küresel önemi, gıda güvencesi, ekonomik büyüme, biyolojik çeşitliliğin sürdürülmesi ve istihdam sağlanması gibi çok yönlü katkıları içermektedir. Ancak, biyotik ve abiyotik stres unsurları, ürün verimliliği ve kalitesi açısından ciddi zorluklar sunmaktadır. Bitkiler, bu tür streslere fizyolojik ve genetik mekanizmalarla yanıt verirler. Özellikle mikroRNA'lar (miRNA'lar) ve küçük interferan RNA'lar (siRNA'lar) gibi küçük kodlamayan RNA'lar (ncRNA'lar), bu streslere adaptasyonda önemli düzenleyici roller üstlenirler. Abiyotik stres faktörleri arasında sıcaklık, kuraklık ve tuzluluk gibi faktörler bulunmaktadır ve bu faktörler miRNA ekspresyon düzeylerinde değişikliklere yol açarlar. miR167, miR159 ve miR171 gibi miRNA'lar tuz, kuraklık ve soğuk stres yanıtlarında etkin rol oynarlar. Aynı şekilde, miR395 sülfat eksikliği stresine, miR399 ise fosfat homeostazına yanıt verir. Patojen enfeksiyonları gibi bazı biyotik stresler de miRNA modülasyonunu ve direnç mekanizmalarını etkilemektedir. siRNA'lar, patojenler, bakteriler, mantarlar ve virüsler gibi biyotik streslere karşı direnç sağlamada etkin rol oynarlar. Virüs kaynaklı siRNA'lar (vsiRNA'lar), bitki bağışıklığını harekete geçirirken, in-vitro sentezlenen siRNA'lar zararlı organizmaların kontrolünde kullanılabilir. Isı stresi, özellikle çiçeklenme düzenlemesi ile ilişkilendirilen farklı siRNA ekspresyonunu tetiklerken, kuraklık toleransı gösteren bitki türleri su eksikliği yanıtlarında belirgin siRNA düzenlemeleri sergilerler. Sonuç olarak, bitkilerin olumsuz stres koşullarına verdiği tepkileri anlamak, bitki verimliliği, dayanıklılığı ve kalitesini artırmak açısından hayati önem taşır. miRNA'lar ve siRNA'lar gibi kodlanmayan RNA'lar, bu adaptasyon süreçlerinde kilit rol oynayan moleküler oyunculardır. CRISPR/Cas9 gibi gen düzenleme teknolojileri ile birleştirildiğinde, stres toleransına sahip tarım ürünleri geliştirme konusunda umut verici stratejiler sunar. Bu yaklaşımlar, sürdürülebilir tarımı desteklemek ve küresel gıda güvenliği zorluklarına çözüm sağlamak adına önemli bir potansiyel sunmaktadır.

References

  • [1] Uzundumlu, A. S. (2012). Tarım Sektörünün Ülke Ekonomisindeki Yeri. Alinteri Journal of Agriculture Science, 34–44.
  • [2] Diao, X., Hazell, P., Resnick, D. and Thurlow, J. (2006). The Role of Agriculture in Development: Implications for Sub-Saharan Africa. AgEcon Search, 11.
  • [3] Büyük, I., Soydam-Aydin, S., ve Aras, S. (2012). Molecular responses of plants to stress conditions. Turk Hijyen ve Deneysel Biyoloji Dergisi, 69(2), 97–110. https://doi.org/10.5505/TurkHijyen.2012.40316
  • [4] Kayıkçı, H. C., Kaba, A., Soylu, İ. ve Mutlu, N. (2022). MicroRNA'ların Domates Bitkisinde Abiyotik Stres Faktörelerine Karşı Tolerantlığa Etkisi. Bahçe, 51(1), 353-357.
  • [5] Guleria, P., Mahajan, M., Bhardwaj, J., and Yadav, S. K. (2011). Plant Small RNAs: Biogenesis, Mode of Action and Their Roles in Abiotic Stresses. Genomics, Proteomics and Bioinformatics, 9(6), 183–199. https://doi.org/10.1016/S1672-0229(11)60022-3
  • [6] Şahin, Ö., Ayaz, G. B., ve Ayaz, U. (2018). Bitki Epigenetiği. Diyalektik ve Toplum, 1(2), 135-144.
  • [7] Liu, N. and Pan, T. (2015). RNA Epigenetics. Transl Res. Author manuscript, 165(1), 28-35. https://doi.org/10.1016/j.trsl.2014.04.003.RNA
  • [8] Chen, H. M., Chen, L. T., Patel, K., Li, Y. H., Baulcombe, D. C., and Wu, S. H. (2010). 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proceedings of the National Academy of Sciences of the United States of America, 107(34), 15269–15274. https://doi.org/10.1073/pnas.1001738107
  • [9] Güzelgül, F., ve Aksoy, K. (2009). Kodlanmayan RNA’ların İşlevi ve Tıpta Kullanım Alanları. Archives Medical Review Journal, 18(3), 141–155.
  • [10] Lv, D. K., Bai, X., Li, Y., Ding, X. D., Ge, Y., Cai, H., Ji, W., Wu, N. and Zhu, Y. M. (2010). Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene, 459(1-2), 39-47.
  • [11] Yirmibeş, B., Aydin, H. N., Ulu, Z. Ö., Ulu, S., ve Özgentürk, N. Ö. (2021). Analysis of some conserved miRNAs in hazelnut (Corylus avellena L. and Corylus colurna L.) by real-time PCR. Sigma Journal of Engineering and Natural Sciences, 39(2), 170–176. https://doi.org/10.14744/sigma.2021.00006
  • [12] Tang, Y., Yan, X., Gu, C. and Yuan, X. (2022). Biogenesis, Traffiicking, and Function of Small RNAs in Plants. Frontiers in Plant Science. 13-825477. doi: 10.3389/fpls.2022.825477
  • [13] Willmann, M. R. and Poethig, R. S. (2007). Conservation and Evolution of miRNA Regulotary Programs in Plant Development. Science Direct, 10, 503-511
  • [14] Floyd, S. K. and Bowman, J. L. (2004). Ancient microRNA Target Sequences in Plant. Nature, 428, 485-486
  • [15] Aras S, Soydam-Aydın S, Fazlıoğlu A, Cansaran-Duman D, Büyük İ. ve Derici K. (2015). Bitkilerde RNA interferans. Turk Hijyen ve Deneysel Biyoloji Dergisi. 72(3), 255-262. Doi ID: 10.5505/TurkHijyen.2015.13285.
  • [16] Baldrich, P., Liu, A., Meyers, B. C., and Fondong, V. N. (2022). An atlas of small RNAs from potato. Plant Direct, 6(12), 1–10. https://doi.org/10.1002/pld3.466
  • [17] Wang, T., Deng, Z., Zhang, X., Wang, H., Wang, Y., Liu, X., Liu, S., Xu, F., Li, T., Fu, D., Zhu, B., Luo, Y. and Zhu, H. (2018). Tomato DCL2b is required for the biosynthesis of 22-nt small RNAs, the resulting secondary siRNAs, and the host defense against ToMV. Horticulture Research, 5(1). https://doi.org/10.1038/s41438-018-0073-7
  • [18] Kryuvrysanaki, N., James, A., Tselika, M., Bardani, E., and Kalantidis, K. (2021). RNA silencing pathways in plant development and defense. International Journal of Developmental Biology, 66(1–3), 163–175. https://doi.org/10.1387/ijdb.210189kk
  • [19] Jones-Rhoades, M. W., & Bartel, D. P. (2004). Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA. Molecular Cell, 14(6), 787–799. https://doi.org/10.1016/j.molcel.2004.05.027
  • [20] Canales, J., Uribe, F., Henríquez-Valencia, C., Lovazzano, C., Medina, J., & Vidal, E. A. (2020). Transcriptomic analysis at organ and time scale reveals gene regulatory networks controlling the sulfate starvation response of Solanum lycopersicum. BMC Plant Biology, 20(1), 1–17. https://doi.org/10.1186/s12870-020-02590-2
  • [21] Chiou, T. J. (2007). The role of microRNAs in sensing nutrient stress. Plant, Cell and Environment, 30(3), 323–332. https://doi.org/10.1111/j.1365-3040.2007.01643.x
  • [22] Ding, D., Zhang, L., Wang, H., Liu, Z., Zhang, Z., and Zheng, Y. (2009). Differential expression of miRNAs in response to salt stress in maize roots. Annals of Botany, 103(1), 29–38. https://doi.org/10.1093/aob/mcn205
  • [23] Tian, Y., Tian, Y., Luo, X., Zhou, T., Huang, Z., Liu, Y., Qiu, Y., Hou, B., Sun, D., Deng, H., Qian, S. and Yao, K. (2014). Identification and characterization of microRNAs related to salt stress in broccoli, using high-throughput sequencing and bioinformatics analysis. BMC Plant Biology, 14(1), 1–13. https://doi.org/10.1186/s12870-014-0226- 2
  • [24] Ekmekçi, E., Apan, M. ve Kara, T. (2005). Tuzluluğun Bitki gelişimine Etkisi. OMU Ziraat Fakültesi Dergisi, 20(3),118-125.
  • [25] Sunkar, R., and Zhu, J. K. (2004). Novel and stress regulated microRNAs and other small RNAs from Arabidopsis w inside box sign. Plant Cell, 16(8), 2001–2019. https://doi.org/10.1105/tpc.104.022830
  • [26] Zhou, L., Liu, Y., Liu, Z., Kong, D., Duan, M., and Luo, L. (2010). Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. Journal of Experimental Botany, 61(15), 4157–4168. https://doi.org/10.1093/jxb/erq237
  • [27] Ekşioğlu, A. “Kuraklık Stresine miRNA Cevaplarının Domateste Araştırılması.”, İstanbul Kültür Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi. 2016.
  • [28] Turan, Ö. ve Ekmekçi, Y. (2008). Soğuk Stresinin Bitkiler üzerindeki Etkileri ve Tolerans Mekanizmaları. Anadolu üniversitesi Bilim ve Teknoloji Dergisi, 9(2), 177-198.
  • [29] Chinnusamy, V., Zhu, J. and Zhu, J. K. (2007). Cold stress regulation of gene expression in plants. Trends in Plant Science, 12(10), 444-451.
  • [30] Ren, W., Yuan, G., Lin, X., Guo, X., & Wang, Z. (2021). Comparison of the immersion chilling and freezing and traditional air freezing on the quality of beef during storage. Food Science and Nutrition, 9(12), 6653–6661. https://doi.org/10.1002/fsn3.2613
  • [31] Liu, H. H., X, T., Li, Y. j., Wu, C.A., & Zheng, C. C. (2008). Microarray-Based Analysis of Stress-Regulated MicroRNAs in Arabidopsis thaliana. RNA, 14, 836-843.
  • [32] Llorente, F., Muskett, P., Sánchez-Vallet, A., López, G., Ramos, B., Sánchez-Rodríguez, C., Jorda, L., Parker, J. and Molina, A. (2008). Repression of the auxin response pathway increases Arabidopsis susceptibility to necrotrophic fungi. Molecular Plant, 1(3), 496–509. https://doi.org/10.1093/mp/ssn025
  • [33] Yang, L., Jue, D., Li, W., Zhang, R., Chen, M., and Yang, Q. (2013). Identification of MiRNA from Eggplant (Solanum melongena L.) by Small RNA Deep Sequencing and Their Response to Verticillium dahliae Infection. PLoS ONE, 8(8). https://doi.org/10.1371/journal.pone.0072840
  • [34] Liu, P., Zhang, X., Zhang, F., Xu, M., Ye, Z., Wang, K., Liu, S., Han, X., Cheng, Y., Zhong, K., Zhang, T., Li, L., Ma, Y., Chen, M., Chen, J. and Yang, J. (2021). A virus-derived siRNA activates plant immunity by interfering with ROS scavenging. Molecular Plant, 14(7), 1088–1103. https://doi.org/10.1016/j.molp.2021.03.022
  • [35] Kaur, R., Choudhury, A., Chauhan, S., Ghosh, A., Tiwari, R., and Rajam, M. V. (2021). RNA interference and crop protection against biotic stresses. Physiology and Molecular Biology of Plants, 27(10), 2357–2377. https://doi.org/10.1007/s12298-021-01064-5
  • [36] McLoughlin, A. G., Wytinck, N., Walker, P. L., Girard, I. J., Rashid, K. Y., De Kievit, T., Fernando, W. G. D., Whyard, S. and Belmonte, M. F. (2018). Identification and application of exogenous dsRNA confers plant protection against Sclerotinia sclerotiorum and Botrytis cinerea. Scientific Reports, 8(1), 1–15. https://doi.org/10.1038/s41598-018-25434-4
  • [37] Koch, A., Biedenkopf, D., Furch, A., Weber, L., Rossbach, O., Abdellatef, E., Linicus, L., Johannsmeier, J. Jelonek, L., Goesmann, A., Cardoza, V., McMillan, J., Mentzel, T. and Kogel, K. H. (2016). An RNAi-Based Control of Fusarium graminearum Infections Through Spraying of Long dsRNAs Involves a Plant Passage and Is Controlled by the Fungal Silencing Machinery. Plos Pathogens, 12(10): e1005901 https://doi.org/10.1371/journal.ppat.1005901
  • [38] Katiyar-Agarwal, S., Morgan, R., Dahlbeck, D., Borsani, O., Villegas, A., Zhu, J. K., Staskawicz, B. J. and Jin, H. (2006). A pathogen-inducible endogenous siRNA in plant immunity. Proceedings of the National Academy of Sciences of the United States of America, 103(47), 18002–18007. https://doi.org/10.1073/pnas.0608258103
  • [39] Baum, J. A., Bogaert, T., Clinton, W., Heck, G. R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T. and Roberts, J. (2007). Control of coleopteran insect pests through RNA interference. Nature biotechnology, 25(11), 1322-1326. https://doi.org/10.1038/nbt1359
  • [40] Ahmed, W., Xia, Y., Li, R., Zhang, H., Siddique, K. H. M., and Guo, P. (2021). Identification and Analysis of Small Interfering RNAs Associated With Heat Stress in Flowering Chinese Cabbage Using High-Throughput Sequencing. Frontiers in Genetics, 12(November), 1–9. https://doi.org/10.3389/fgene.2021.746816
  • [41] Chinnusamy, V., Zhu, J. K. and Sunkar, R. (2010). Gene Regulation During Cold Stress Acclimation in Plants. Methods Mol Biol. 639, 39–55. https://doi.org/10.1007/978-1-60761-702-0_3
  • [42] Jung, I., Ahn, H., Shin, S. J., Kim, J., Kwon, H. Bin, Jung, W., and Kim, S. (2016). Clustering and evolutionary analysis of small RNAs identify regulatory siRNA clusters induced under drought stress in rice. BMC Systems Biology, 10(4), 423-432. https://doi.org/10.1186/s12918-016-0355-3
There are 42 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Reviews
Authors

Büşra Yirmibeş 0000-0003-4972-7705

Nur Ülger 0000-0003-3222-8037

Early Pub Date December 28, 2023
Publication Date December 31, 2023
Submission Date August 25, 2023
Published in Issue Year 2023 Volume: 4 Issue: 2

Cite

APA Yirmibeş, B., & Ülger, N. (2023). Non-Coding RNAs in Plant Stress Responses and Their Implications for Agriculture. Journal of Agricultural Biotechnology, 4(2), 52-63.