Background/Aim: In recent years, developing an embryo in in vitro conditions has been one of the most challenging and popular objectives in reproductive biology. In vitro models make observing the relationship between the two possible. Various cell culture and matrix models have been created to overcome embryonic disorganization during culturing. The primary aim of this study was to evaluate and compare the effects of fibrin, Ishikawa cell line, and a combination of both on the 3D multilayer uterine tissue cultures on a rat model, including a control group.
Methods: This study was designed as a prospective controlled cohort study. The standard uterine culture model [CNT] (N: 3) constituted the control group. In addition, fibrin matrix-supported [FIB] (N: 3), Ishikawa cells-supported [ISH] (N: 3), and a combination of both [FIB+ISH] (N: 3) culture models were designated as the exposures. All models were cultured for 14 days. Afterwards, the optimal model was determined regarding glucose consumption, lactate production, endometrial thickness and gland count (primary outcomes) with semi-quantitative and statistical methods. Finally, the optimal model was implanted with blastocytes, and the survival duration was observed (secondary outcome).
Results: There were significant differences between the groups in terms of glucose, lactate, endometrial thickness (millimeter), and the number of endometrial glands (P<0.05). FIB had the least glucose consumption, and the least lactate production was in CNT. The thickest endometrium and most endometrial glands were detected in FIB when all groups were compared, allowing for 14 days of embryo survival.
Conclusion: In embryogenesis research, the fibrin-matrix-supported culture model could be a satisfactory 3D uterine tissue culture model.
Primary Language | English |
---|---|
Subjects | Clinical Sciences, Clinical Sciences (Other), Obstetrics and Gynaecology |
Journal Section | Research article |
Authors | |
Publication Date | March 1, 2022 |
Published in Issue | Year 2022 |