Review
BibTex RIS Cite

Toplum 5.0: Akıllı Malzemeler ile İnşa etmek

Year 2023, Volume: 2 Issue: 1, 25 - 44, 26.12.2023

Abstract

İnsan merkezli, dayanıklı ve sürdürülebilir olgular gelecekteki toplum yapısının kalbinde yer alacaktır. Geleceğin toplumu için “Keyifli altyapının inşası”, “Sağlıklı yaşam süresinin uzatılması”, “Mobilite devriminin gerçekleştirilmesi”, “Yeni nesil tedarik zincirlerinin oluşturulması” ve “FinTech” gibi bazı perspektifler önerilmektedir. Akıllı toplum konsepti, büyük akıllı cihaz ağlarından gerçek zamanlı olarak toplanan muazzam miktarda verinin toplanmasını gerektirir. Bu nedenle, önerilen gelecek toplumunun Yapay Zeka (AI), Nesnelerin İnterneti (IoT), Siber-Fiziksel Sistemler (CPS), Büyük Veri ve Bulut gibi bazı teknolojik altyapılara ihtiyacı vardır. Bu vizyonu ulaşmak için, merkezi olmayan kaynaklarla çevresel uyaranları algılayabilen, işleyebilen ve bunlara yanıt verebilen "akıllı malzemeler" geliştirmeye ihtiyaç vardır. Bu derlemede, planlanan toplumu oluşturmak için kullanılabilecek bir grup akıllı malzemeden kısaca bahsedilmiştir.

References

  • 1 Mourtzis, D., Angelopoulos, J. and Panopoulos, N., 2022. A Literature Review of the Challenges and Opportunities of the Transition from Industry 4.0 to Society 5.0. Energies, 15(17), p.6276.
  • 2 Lu, Y. Industry 4.0: A survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 2017, 6, 1–10.
  • 3 Fukuyama, M., 2018. Society 5.0: Aiming for a new human-centered society. Japan Spotlight, 27(5), pp.47-50.
  • 4 Onday, O. Japan’s Society 5.0: Going Beyond Industry 4.0. Bus. Econ. J. 2019, 10, 1000389
  • 5 United Nations Do you Know All 17 SDGs? Available online: https://sdgs.un.org/goals (accessed on 05 August 2023).
  • 6 Keidanren. Society 5.0—Co-Creating the Future. Available online: https://www.keidanren.or.jp/en/policy/2018/095.html (acccessed on 5 August 2023).
  • 7 Dantas, T.; De-Souza, E.; Destro, I.; Hammes, G.; Rodriguez, C.; Soares, S. How the combination of Circular Economy and Industry 4.0 can contribute towards achieving the Sustainable Development Goals. Sustain. Prod. Consum. 2021, 26, 213–227.
  • 8 Zengin, Y., Naktiyok, S.,., Kavak, O. and Topçuoğlu, E., 2021. An investigation upon industry 4.0 and society 5.0 within the context of sustainable development goals. Sustainability, 13(5), p.2682.
  • 9 Li, Y.; Qian, X.; Zhang, L.; Dong, L. Exploring spatial explicit greenhouse gas inventories: Location-based accounting approach and implications in Japan. J. Clean. Prod. 2017, 167, 702–712.
  • 10 Michna, A.; Kmieciak, R. Open-Mindedness Culture, Knowledge-Sharing, Financial Performance, and Industry 4.0 in SMEs. Sustainable 2020, 12, 9041.
  • 11 Fukuda, K. Science, technology and innovation ecosystem transformation toward society 5.0. Int. J. Prod. Econ. 2020, 220, 107460
  • 12 Taniguchi-Matsuoka, A.; Shimoda, Y.; Sugiyama, M.; Kurokawa, Y.; Matoba, H.; Yamasaki, T.; Morikuni, T.; Yamaguchi, Y. Evaluating Japan’s national greenhouse gas reduction policy using a bottom-up residential end-use energy simulation model. Appl. Energy 2020, 279, 115792.
  • 13 Kroschwitz, J. (ed.) (1992) Encyclopedia of Chemical Technology. New York: John Wiley & Sons.
  • 14 Schwartz, M. ed., 2008. Smart materials. CRC press.
  • 15 R. Bogue, Smart materials: a review of capabilities and applications, Assem. Autom. 34 (2014) 16–22.
  • 16 See Akhras, G., “Smart Structures and their Applications in Civil Engineering”, Civil Engineering Report, CE97-2, RMC, Kingston, Ontario, Canada, 1997.
  • 17 Culshaw, B., Smart Structures and Materials, Artech House Inc, 1996 and Bank, H. T., Smith, R.C. and Wang, Y., Smart Material Structures, Modelling, Estimating and Control, John Wiley and Sons, 1996.
  • 18 Fortuna, L. and Buscarino, A., 2022. Smart Materials. Materials, 15(18), p.6307.
  • 19 Bahl, S., Nagar, H., Singh, I. and Sehgal, S., 2020. Smart materials types, properties and applications: A review. Materials Today: Proceedings, 28, pp.1302-1306.
  • 20 Addington, M. and D. Schodek, Smart Materials and Technologies in Architecture: For the Architecture and Design Professions. 2012: Routledge.
  • 21 Qader, I.N., Mediha, K.Ö.K., Dagdelen, F. and AYDOĞDU, Y., 2019. A review of smart materials: researches and applications. El-Cezeri, 6(3), pp.755-788.
  • 22 Shanthi, M., Sekhar, E.S., Ankireddy, S., Shah, S.G., Bhaskar, V., Chawla, S. and Trivedi, K., 2014. Smart materials in dentistry: Think smart!. Journal of Pediatric Dentistry/Jan- Apr, 2(1).
  • 23 Heywang, W., Lubitz, K. and Wersing, W. eds., 2008. Piezoelectricity: evolution and future of a technology (Vol. 114). Springer Science & Business Media.
  • 24 A. Shafik, R.B. Mrad, Piezoelectric Motor Technology: A Review, in: C. Ru, X. Liu, Y. Sun (Eds.), Nanopositioning Technologies, Springer International Publishing, Switzerland, 2016, pp. 33–59.
  • 25 Wang, S., Rong, W., Wang, L., Xie, H., Sun, L. and Mills, J.K., 2019. A survey of piezoelectric actuators with long working stroke in recent years: Classifications, principles, connections and distinctions. Mechanical Systems and Signal Processing, 123, pp.591-605.
  • 26 V.A. Bardin, V.A. Vasil’Ev, Combining measurement and control functions in the structure of a multilayer piezoelectric actuator of nano- and micromotions, Meas. Tech+ 60 (2017) 711–716.
  • 27 Y.B. Ham, W.S. Seo, W.Y. Cho, D.W. Yun, J.H. Park, S.N. Yun, Development of a piezoelectric pump using hinge-lever amplification mechanism, J. Electroceram. 23 (2009) 346–350.
  • 28 J.W. Lee, Y.C. Li, K.S. Chen, Y.H. Liu, Design and control of a cascaded piezoelectric actuated two-degrees-of-freedom positioning compliant stage, Precis. Eng. 45 (2016) 374–386.
  • 29 Y. Peng, Y. Peng, X. Gu, J. Wang, H. Yu, A review of long range piezoelectric motors using frequency leveraged method, Sensor. Actuat. A-Phys. 235, (2015) 240–255.
  • 30 Gautschi, G. and Gautschi, G., 2002. Background of piezoelectric sensors (pp. 5-11). Springer Berlin Heidelberg.
  • 31 Kulkarni, H., Zohaib, K., Khusru, A. and Aiyappa, K.S., 2018. Application of piezoelectric technology in automotive systems. Materials Today: Proceedings, 5(10), pp.21299-21304.
  • 32 Ölander, A., 1932. An electrochemical investigation of solid cadmium-gold alloys. Journal of the American Chemical Society, 54(10), pp.3819-3833.
  • 33 Vernon, L.B. and Vernon, H.M., VERNON BENSHOFF Co, 1941. Process of manufacturing articles of thermoplastic synthetic resins. U.S. Patent 2,234,993.
  • 34 J. Damodharan, A. Sreedharan, T. Ramalingam, A review on smart materials, types and applications, Int. J. Eng. Technol. Sci. Res. 5 (2018) 5.
  • 35 Jani, J.M., Leary, M., Subic, A. and Gibson, M.A., 2014. A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015), 56, pp.1078-1113.
  • 36 Buehler, W.J., Gilfrich, J.V. and Wiley, R.C., 1963. Effect of low‐temperature phase changes on the mechanical properties of alloys near composition TiNi. Journal of applied physics, 34(5), pp.1475-1477.
  • 37 Kauffman, G.B. and Mayo, I., 1997. The story of nitinol: the serendipitous discovery of the memory metal and its applications. The chemical educator, 2, pp.1-21.
  • 38 Furuya, Y., 1996. Design and material evaluation of shape memory composites. Journal of intelligent material systems and structures, 7(3), pp.321-330.
  • 39 Kohl, M., 2004. Shape memory microactuators. Springer Science & Business Media.
  • 40 Duerig, T., Pelton, A. and Stöckel, D.J.M.S., 1999. An overview of nitinol medical applications. Materials Science and Engineering: A, 273, pp.149-160.
  • 41 Okotete, E., Osundare, A., Olajide, J., Desai, D. and Sadiku, E., 2020. Shape Memory Nanomaterials for Damping Applications. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications (pp. 1-32). Cham: Springer International Publishing.
  • 42 Bil, C., Massey, K. and Abdullah, E.J., 2013. Wing morphing control with shape memory alloy actuators. Journal of Intelligent Material Systems and Structures, 24(7), pp.879-898.
  • 43 Kheirikhah, M.M., Rabiee, S. and Edalat, M.E., 2011. A review of shape memory alloy actuators in robotics. RoboCup 2010: Robot Soccer World Cup XIV 14, pp.206-217.
  • 44 Wahi, S.K., Kumar, M., Santapuri, S. and Dapino, M.J., 2019. Computationally efficient locally linearized constitutive model for magnetostrictive materials. Journal of Applied Physics, 125(21).
  • 45 Joule, J.P., 1842. On a new class of magnetic forces. Ann. Electr. Magn. Chem, 8(1842), pp.219-224.
  • 46 E. Villari, Intorno alle modificazioni del memento magnetico di una verga di ferro e di acciaio, prodotte per la trazione della medesima e pel passaggio di una corrente attraverso la stessa, Il Nuovo Cimento 20 (1) (1864) 317–362.
  • 47 Dapino, M.J., 2002. On magnetostrictive materials and their use in smart material transducers. Struct. Eng. Mech. J, 17, pp.1-28.
  • 48 Olabi, A.G. and Grunwald, A., 2008. Design and application of magnetostrictive materials. Materials & Design, 29(2), pp.469-483.
  • 49 Clarisse Ribeiro, V. Correia, P. Martins, F.M. Gama, S. Lanceros-Mendez, Proving the suitability of magnetoelectric stimuli for tissue engineering applications, Colloids Surf. B Biointerfaces 140 (2016) 430–436.
  • 50 S.D. Bhame, P.A. Joy, Enhanced magnetostrictive properties of CoFe2O4 synthesized by an autocombustion method, Sensor Actuator Phys. 137 (2) (2007) 256–261.
  • 51 Xuegen Zhao, Nigel Mellors, D.G. Lord, Magnetomechanical performance of directionally solidified Fe–Ga alloys, J. Appl. Phys. 101 (9) (2007), 09C513.
  • 52 T Toby Hansen, Magnetostrictive materials and ultrasonics, Chemtech 26 (8) (1996) 56–59.
  • 53 Hal R. Holmes, Andrew DeRouin, Samantha Wright, M Riedemann Travor, Thomas A. Lograsso, Rupak M. Rajachar, Keat Ghee Ong, Biodegradation and biocompatibility of mechanically active magnetoelastic materials, Smart Mater. Struct. 23 (9) (2014), 095036.
  • 54 Murzin, D., Mapps, D.J., Levada, K., Belyaev, V., Omelyanchik, A., Panina, L. and Rodionova, V., 2020. Ultrasensitive magnetic field sensors for biomedical applications. Sensors, 20(6), p.1569.
  • 55 Vranish, J.M., Naik, D.P., Restorff, J.B. and Teter, J.P., 1991. Magnetostrictive direct drive rotary motor development. IEEE Transactions on Magnetics, 27(6), pp.5355-5357.
  • 56 Bushko, D.A. and Goldie, J.H., 1991. High performance magnetostrictive actuators. IEEE Aerospace and Electronic Systems Magazine, 6(11), pp.21-25.
  • 57 Arani, H.K., Shariyat, M. and Mohammadian, A., 2020. Vibration analysis of magnetostrictive nano-plate by using modified couple stress and nonlocal elasticity theories. International Journal of Materials and Metallurgical Engineering, 14(9), pp.229-234.
  • 58 Shin-ichi Yamaura, Microstructure and magnetostriction of heavily groove-rolled Fe-Co alloy wires, Mater. Sci. Eng., B 264 (2021) 114946.
  • 59 Shuai Ren, Dezhen Xue, Yuanchao Ji, Xiaolian Liu, Sen Yang, Xiaobing Ren, Low-fieldtriggered large magnetostriction in iron-palladium strain glass alloys, Phys. Rev. Lett. 119 (12) (2017) 125701.
  • 60 Newnham, R.E., Sundar, V., Yimnirun, R., Su, J. and Zhang, Q.M., 1997. Electrostriction: nonlinear electromechanical coupling in solid dielectrics. The Journal of Physical Chemistry B, 101(48), pp.10141-10150.
  • 61 Damjanovic, D. and Newnham, R.E., 1992. Electrostrictive and piezoelectric materials for actuator applications. Journal of intelligent material systems and structures, 3(2), pp.190-208.
  • 62 Coutte, J., Dubus, B., Debus, J.C., Granger, C. and Jones, D., 2002. Design, production and testing of PMN–PT electrostrictive transducers. Ultrasonics, 40(1-8), pp.883-888.
  • 63 Uchino, K. 1986. "Electrostrictive Actuators: Materials and Applications", Am. Cer. Soc. Bull., 65(4):647-652.
  • 64 Ganet, F., Le, M., Capsal, J. et al. Development of a smart guide wire using an electrostrictive polymer: option for steerable orientation and force feedback. Sci Rep 5, 18593 (2016).
  • 65 Rabinow, J., 1948. The magnetic fluid clutch. Electrical Engineering, 67(12), pp.1167-1167.
  • 66 Ginder, J.M., Davis, L.C. and Elie, L.D., 1996. Rheology of magnetorheological fluids: models and measurements. International journal of modern physics b, 10(23n24), pp.3293-3303.
  • 67 De Vicente, J., Klingenberg, D.J. and Hidalgo-Alvarez, R., 2011. Magnetorheological fluids: a review. Soft matter, 7(8), pp.3701-3710.
  • 68 Rabbani Y, Ashtiani M, Hashemabadi SH. An experimental study on the effects of temperature and magnetic field strength on the magnetorheological fluid stability and MR effect. Soft Matter. 015;11(22):4453–60.
  • 69 Rabbani, Y., Hajinajaf, N. and Tavakoli, O., 2019. An experimental study on stability and rheological properties of magnetorheological fluid using iron nanoparticle core–shell structured by cellulose. Journal of Thermal Analysis and Calorimetry, 135, pp.1687-1697.
  • 70 Milecki, A. and Hauke, M., 2012. Application of magnetorheological fluid in industrial shock absorbers. Mechanical Systems and Signal Processing, 28, pp.528-541.
  • 71 Okui, M., Iikawa, S., Yamada, Y. and Nakamura, T., 2018. Fundamental characteristic of novel actuation system with variable viscoelastic joints and magneto-rheological clutches for human assistance. Journal of Intelligent Material Systems and Structures, 29(1), pp.82-90.
  • 72 Nakamura, T., Midorikawa, Y. and Tomori, H., 2011. Position and vibration control of variable rheological joints using artificial muscles and magneto-rheological brake. International Journal of Humanoid Robotics, 8(01), pp.205-222.
  • 73 Christie, M.D., Sun, S., Deng, L., Ning, D.H., Du, H., Zhang, S.W. and Li, W.H., 2019. A variable resonance magnetorheological-fluid-based pendulum tuned mass damper for seismic vibration suppression. Mechanical Systems and Signal Processing, 116, pp.530-544.
  • 74 Yildirim, G. and Genc, S., 2013. Experimental study on heat transfer of the magnetorheological fluids. Smart materials and structures, 22(8), p.085001.
  • 75 Donado, F., Carrillo, J.L. and Mendoza, M.E., 2002. Sound propagation in magnetorheological suspensions. Journal of Physics: Condensed Matter, 14(9), p.2153.
  • 76 Alekhina, I., Kramarenko, E., Makarova, L. and Perov, N., 2022. Magnetorheological composites for biomedical applications. In Magnetic Materials and Technologies for Medical Applications (pp. 501-526). Woodhead Publishing.
  • 77 Munteanu, A. and Sedlacik, M., 2023. Progress in Surface Functionalized Particle-based Magnetorheological Composites. In Magnetic Soft Matter: Fundamentals and Applications (pp. 85-106). The Royal Society of Chemistry.
  • 78 Winslow, W.M., 1949. Induced fibration of suspensions. Journal of applied physics, 20(12), pp.1137-1140.
  • 79 Electrorheological Fluids: Mechanisms, Properties, Technology and Applications, ed. R. Tao and G. D. Roy, World Scientific, Singapore, 1994.
  • 80 Wen, W., Huang, X. and Sheng, P., 2008. Electrorheological fluids: structures and mechanisms. Soft Matter, 4(2), pp.200-210.
  • 81 Ma, H., Wen, W., Tam, W.Y. and Sheng, P., 1996. Frequency dependent electrorheological properties: origin and bounds. Physical review letters, 77(12), p.2499.
  • 82 Tam, W.Y., Yi, G.H., Wen, W., Ma, H., Loy, M.M. and Sheng, P., 1997. New electrorheological fluid: theory and experiment. Physical review letters, 78(15), p.2987.
  • 83 Lin, C.J., Lee, C.Y. and Liu, Y., 2017. Vibration control design for a plate structure with electrorheological atva using interval type-2 fuzzy system. Applied Sciences, 7(7), p.707.
  • 84 Lin, C.J.; Lee, C.Y.; Cheng, C.H.; Chen, G.F. Vibration Control of a Cantilever Beam Using a Tunable Vibration Absorber Embedded with ER Fluids. Int. J. Aerosp. Ind. Mechatron. Manuf. Eng. 2013, 7, 1412–1418.
  • 85 Sun, Y.; Thomas, M. Control of torsional rotor vibrations using an electrorheological fluid dynamic absorber. J. Vib. Control 2011, 17, 1253–1264.
  • 86 Chen, W., Pan, Y., Chen, J., Ye, F., Liu, S.H. and Yin, J., 2018. Stimuli-responsive organic chromic materials with near-infrared emission. Chinese Chemical Letters, 29(10), pp.1429-1435.
  • 87 Jiang, Y., 2014. An outlook review: Mechanochromic materials and their potential for biological and healthcare applications. Materials Science and Engineering: C, 45, pp.682-689.
  • 88 Bar, N. and Chowdhury, P., 2022. A brief review on advances in rhodamine B based chromic materials and their prospects. ACS Applied Electronic Materials, 4(8), pp.3749-3771.
  • 89 El-Khodary, E., Gebaly, B., AlSalmawy, A. and Rafaat, E., 2020. Critical review on smart chromic clothing. Journal of Design Sciences and Applied Arts, 1(1), pp.90-95.
  • 90 Aburas, M., Soebarto, V., Williamson, T., Liang, R., Ebendorff-Heidepriem, H. and Wu, Y., 2019. Thermochromic smart window technologies for building application: A review. Applied Energy, 255, p.113522.
  • 91 Zhang, J., Zou, Q. and Tian, H., 2013. Photochromic materials: more than meets the eye. Advanced Materials, 25(3), pp.378-399.
  • 92 Tian, H. and Yang, S., 2004. Recent progresses on diarylethene based photochromic switches. Chemical Society Reviews, 33(2), pp.85-97.
  • 93 By controlling the intensity of the light, it is possible to manipulate the photokinetics of the colour-switching reaction. Thus, The photokinetics of the colour-switching serves information technologies such as recording, erasing, and rewriting.
  • 94 Photochromism has attracted significant attention after the invention of photochromic glass. Sunglasses that protect human eyes from UV light or intense sunshine can be given as an excellent example of the application of photochromic material.
  • 95 Li, X.N., Tu, Z.M., Li, L., Wang, Z.H. and Zhang, H., 2020. A novel viologen-based coordination polymer with multi-stimuli responsive chromic properties: photochromism, thermochromism, chemochromism and electrochromism. Dalton Transactions, 49(10), pp.3228-3233.
  • 96 Wang, X.; Wang, S.; Gu, C.; Zhang, W.; Zheng, H.; Zhang, J.; Lu, G.; Zhang, Y.; Li, M.; Zhang, S. X. A. Reversible Bond/Cation Coupled Electron Transfer on Phenylenediamine- Based Rhodamine B and Its Application on Electrochromism. ACS Appl. Mater. Interfaces 2017, 9 (23), 20196−20204.
  • 97 Platt, J. R., (1961). Electrochromism, a possible change of color producible in dyes by an electric field, The Journal of Chemical Physics, 34(3), 862–863.
  • 98 Chang, I. F., Gilbert, B. L., & Sun, T. I., (1975). Electrochemichromic systems for display applications, J. Electrochem. Soc., 122(7), 955–962.
  • 99 Monk, P. M. S., Mortimer, R. J., & Rosseinsky, D. R., (2007). Electrochromism and Electrochromic Devices, Cambridge University Press, Cambridge.
  • 100 Mortimer, R. J., Dyer, A. L., & Reynolds, J. R., (2006). Electrochromic organic and polymeric materials for display applications, Displays, 27, 2–18.
  • 101 Peter, B.; Michael, H. Chromic Phenomena; technological applications of colour chemistry, 3rd ed.; Royal Society of Chemistry: 2018.
  • 102 Gillaspie, D.T., Tenent, R.C. and Dillon, A.C., 2010. Metal-oxide films for electrochromic applications: present technology and future directions. Journal of Materials Chemistry, 20(43), pp.9585-9592.
  • 103 Wang, W., Fan, X., Li, F., Qiu, J., Umair, M.M., Ren, W., Ju, B., Zhang, S. and Tang, B., 2018. Magnetochromic photonic hydrogel for an alternating magnetic field‐responsive color display. Advanced Optical Materials, 6(4), p.1701093.
  • 104 Ge, J., Lee, H., He, L., Kim, J., Lu, Z., Kim, H., Goebl, J., Kwon, S. and Yin, Y., 2009. Magnetochromatic microspheres: rotating photonic crystals. Journal of the American Chemical Society, 131(43), pp.15687-15694.
  • 105 Kim, J., Choi, S.E., Lee, H. and Kwon, S., 2013. Magnetochromatic microactuators for a micropixellated color‐changing surface. Advanced Materials, 25(10), pp.1415-1419.
  • 106 J. Ge, Y. Hu, Y. Yin, Angew. Chem., Int. Ed. 2007, 119, 7572.
  • 107 J. Ge, L. He, J. Goebl, Y. Yin, J. Am. Chem. Soc. 2009, 131, 3484.
  • 108 Roch Romeo, Eur. Pat., 298839A1, 1987
  • 109 Intelligent Packaging, C. Nithya, 2011, http://www.slideshare.net/nithyac12/intelligentpackaging- 41285755 (accessed October, 2016).
  • 110 A. Pavelkova´, Acta Univ. Agric. Silvic. Mendelianae Brun., 2013, 61, 245–251.
  • 111 T. Okawa and S. Imai, U. S. Pat., 4,810,562, 1989.
  • 112 Yamazoe, N., & Shimizu, Y., (1986). Humidity sensors: Principles and Applications, Sensors and Actuators, 10, 379–398.
  • 113 Sohrabnezhad, S., Pourahmad, A., & Sadjadi, M. A., (2007). New methylene blue incorporated in mordenite zeolite as humidity sensor material, Materials Letters, 61, 2311–2314.
  • 114 Esse, R., & Saari, A., (2008). In: Smart Packaging Technologies, Kerry, J., & Butler, P., (ed.), John Wiley & Sons, West-Sussex, pp. 130–149.
  • 115 T. Okawa and S. Imai, U. S. Pat., 4,810,562, 1989.
  • 116 www.sfxc.co.uk
  • 117 D.-H. Park, W. Jeong, M. Seo, B. J. Park and J.-M. Kim, Adv. Funct. Mater., 2016, 26, 498-506.
  • 118 www.smarol.com (accessed Nov. 2017).
  • 119 L. Sheng, M. Li, S. Zhu, H. Li, Y.-G. Li, Y. Wang, Q. Li, S. Liang, K. Zhong and S. X.-A. Zhang, Nat. Commun., 2014, 5, 3044.
  • 120 S. X.-A. Zhang, L. Sheng and M. Li, U. S. Pat. Appl., 20160168797.
  • 121 Reichardt, Ch., & Welton, T., (2011). Solvents and Solvent Effects in Organic Chemistry, th edn., Wiley-VCH Verlag, Weinheim. pp. 4–140
  • 122 Thoraval, D., Bets, R. W., Bovenkamp, J. W., & Dix, J. K., (1988). Development of paper, chemical agent detector, 3-way liquid containing non-mutagenic dyes. I-Replacement of the Yellow Dye Thiodiphenyl-4,4’-diazo-bis-salicylic Acid (A2), Defense Research Establishment Ottawa, Report No. 962.
  • 123 Sata, T., (2004). Ion Exchange Membranes, Preparation, Characterization, Modification and Application, The Royal Society of Chemistry, Cambridge. pp. 276–280.
  • 124 Thoraval, D., & Bovenkamp, J. W., (1989). Paper chemical agent detectors, EP 0334668 A1, 27.
  • 125 Vik, M., & Viková, M., (2011). Identification Methods for Evaluation of Amount of Dangerous Substances in Air and on the Surface (in Czech), Report for National Authority for Nuclear, Biological and Chemical Protection Czech Republic.
  • 126 D. Charych, in Biosensors and Their Applications, ed. V. C. Yang and T. Ngo, Springer, Berlin, 2000.
  • 127 S. Lee, J.-Y. Kim, X. Chen and J. Yoon, Chem. Commun., 2016, 52, 9178.
  • 128 Yu Jun Tan, Jiake Wu, Hanying Li, and Benjamin C. K. Tee, ACS Applied Materials & Interfaces 2018 10 (18), 15331-15345
  • 129 Yang, Y.; Urban, M. W. Self-Healing Polymeric Materials. Chem. Soc. Rev. 2013, 42, 7446.
  • 130 Hager, M.D., Greil, P., Leyens, C., van der Zwaag, S. and Schubert, U.S., 2010. Selfhealing materials. Advanced Materials, 22(47), pp.5424-5430.
  • 131 Bekas, D.G., Tsirka, K., Baltzis, D. and Paipetis, A.S., 2016. Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques. Composites Part B: Engineering, 87, pp.92-119.
  • 132 Zwaag, S. ed., 2008. Self healing materials: an alternative approach to 20 centuries of materials science (Vol. 30). Dordrecht, The Netherlands: Springer Science+ Business Media BV.
  • 133 White, S., Sottos, N., Geubelle, P. et al. Autonomic healing of polymer composites. Nature 409, 794–797 (2001).
  • 134 Tee, B. C.-K.; Wang, C.; Allen, R.; Bao, Z. An Electrically and Mechanically Self-Healing Composite with Pressure- and FlexionSensitive Properties for Electronic Skin Applications. Nat. Nanotechnol. 2012, 7 (12), 825−832.
  • 135 Lu, C.-C.; Lin, Y.-C.; Yeh, C.-H.; Huang, J.-C.; Chiu, P.-W. High Mobility Flexible Graphene Field-Effect Transistors with Self-Healing Gate Dielectrics. ACS Nano 2012, 6 (5), 4469−4474.
  • 136 Li, J.; Liang, J.; Li, L.; Ren, F.; Hu, W.; Li, J.; Qi, S.; Pei, Q. Healable Capacitive Touch Screen Sensors Based on Transparent Composite Electrodes Comprising Silver Nanowires and a Furan/ Maleimide Diels−Alder Cycloaddition Polymer. ACS Nano 2014, 8 (12), 12874−12882.
  • 137 Guo, K.; Zhang, D. L.; Zhang, X. M.; Zhang, J.; Ding, L. S.; Li, B. J.; Zhang, S. Conductive Elastomers with Autonomic Self-Healing Properties. Angew. Chem., Int. Ed. 2015, 54 (41), 12127−12133.
  • 138 Yang, Y.; Zhu, B.; Yin, D.; Wei, J.; Wang, Z.; Xiong, R.; Shi, J.; Liu, Z.; Lei, Q. Flexible Self-Healing Nanocomposites for Recoverable Motion Sensor. Nano Energy 2015, 17, 1−9.
  • 139 Sun, H.; You, X.; Jiang, Y.; Guan, G.; Fang, X.; Deng, J.; Chen, P.; Luo, Y.; Peng, H. Self-Healable Electrically Conducting Wires for Wearable Microelectronics. Angew. Chem., Int. Ed. 2014, 53 (36), 9526−9531.
  • 140 Banerjee, S.; Tripathy, R.; Cozzens, D.; Nagy, T.; Keki, S.; Zsuga, M.; Faust, R. Photoinduced Smart, Self-Healing Polymer Sealant for Photovoltaics. ACS Appl. Mater. Interfaces 2015 , 7 (3), 2064 −2072.

SOCIETY 5.0: CONSTRUCTING WITH SMART MATERIALS

Year 2023, Volume: 2 Issue: 1, 25 - 44, 26.12.2023

Abstract

Human-centred, resilient, and sustainable creations will be at the heart of the next society. Some perspectives such as “Building of pleasant infrastructure”, “Extension of healthy lifespan”, “Realization of the mobility revolution”, “Creation of next-generation supply chains”, and “FinTech” are proposed for the future society. The smart society concept requires the acquisition of enormous amounts of data in real-time gathering from large networks of smart devices. So, the proposed future society needs some technological infrastructure such as Artificial Intelligence (AI), the Internet of Things (IoT), Cyber-Physical Systems (CPS), Big Data and Cloud. To reach that vision, there increasingly is a need for developing “smart materials” that can sense, process, and respond to environmental stimuli with decentralized resources. In this review, a group of smart materials that can be used to create the society planned have been briefly mentioned.

References

  • 1 Mourtzis, D., Angelopoulos, J. and Panopoulos, N., 2022. A Literature Review of the Challenges and Opportunities of the Transition from Industry 4.0 to Society 5.0. Energies, 15(17), p.6276.
  • 2 Lu, Y. Industry 4.0: A survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 2017, 6, 1–10.
  • 3 Fukuyama, M., 2018. Society 5.0: Aiming for a new human-centered society. Japan Spotlight, 27(5), pp.47-50.
  • 4 Onday, O. Japan’s Society 5.0: Going Beyond Industry 4.0. Bus. Econ. J. 2019, 10, 1000389
  • 5 United Nations Do you Know All 17 SDGs? Available online: https://sdgs.un.org/goals (accessed on 05 August 2023).
  • 6 Keidanren. Society 5.0—Co-Creating the Future. Available online: https://www.keidanren.or.jp/en/policy/2018/095.html (acccessed on 5 August 2023).
  • 7 Dantas, T.; De-Souza, E.; Destro, I.; Hammes, G.; Rodriguez, C.; Soares, S. How the combination of Circular Economy and Industry 4.0 can contribute towards achieving the Sustainable Development Goals. Sustain. Prod. Consum. 2021, 26, 213–227.
  • 8 Zengin, Y., Naktiyok, S.,., Kavak, O. and Topçuoğlu, E., 2021. An investigation upon industry 4.0 and society 5.0 within the context of sustainable development goals. Sustainability, 13(5), p.2682.
  • 9 Li, Y.; Qian, X.; Zhang, L.; Dong, L. Exploring spatial explicit greenhouse gas inventories: Location-based accounting approach and implications in Japan. J. Clean. Prod. 2017, 167, 702–712.
  • 10 Michna, A.; Kmieciak, R. Open-Mindedness Culture, Knowledge-Sharing, Financial Performance, and Industry 4.0 in SMEs. Sustainable 2020, 12, 9041.
  • 11 Fukuda, K. Science, technology and innovation ecosystem transformation toward society 5.0. Int. J. Prod. Econ. 2020, 220, 107460
  • 12 Taniguchi-Matsuoka, A.; Shimoda, Y.; Sugiyama, M.; Kurokawa, Y.; Matoba, H.; Yamasaki, T.; Morikuni, T.; Yamaguchi, Y. Evaluating Japan’s national greenhouse gas reduction policy using a bottom-up residential end-use energy simulation model. Appl. Energy 2020, 279, 115792.
  • 13 Kroschwitz, J. (ed.) (1992) Encyclopedia of Chemical Technology. New York: John Wiley & Sons.
  • 14 Schwartz, M. ed., 2008. Smart materials. CRC press.
  • 15 R. Bogue, Smart materials: a review of capabilities and applications, Assem. Autom. 34 (2014) 16–22.
  • 16 See Akhras, G., “Smart Structures and their Applications in Civil Engineering”, Civil Engineering Report, CE97-2, RMC, Kingston, Ontario, Canada, 1997.
  • 17 Culshaw, B., Smart Structures and Materials, Artech House Inc, 1996 and Bank, H. T., Smith, R.C. and Wang, Y., Smart Material Structures, Modelling, Estimating and Control, John Wiley and Sons, 1996.
  • 18 Fortuna, L. and Buscarino, A., 2022. Smart Materials. Materials, 15(18), p.6307.
  • 19 Bahl, S., Nagar, H., Singh, I. and Sehgal, S., 2020. Smart materials types, properties and applications: A review. Materials Today: Proceedings, 28, pp.1302-1306.
  • 20 Addington, M. and D. Schodek, Smart Materials and Technologies in Architecture: For the Architecture and Design Professions. 2012: Routledge.
  • 21 Qader, I.N., Mediha, K.Ö.K., Dagdelen, F. and AYDOĞDU, Y., 2019. A review of smart materials: researches and applications. El-Cezeri, 6(3), pp.755-788.
  • 22 Shanthi, M., Sekhar, E.S., Ankireddy, S., Shah, S.G., Bhaskar, V., Chawla, S. and Trivedi, K., 2014. Smart materials in dentistry: Think smart!. Journal of Pediatric Dentistry/Jan- Apr, 2(1).
  • 23 Heywang, W., Lubitz, K. and Wersing, W. eds., 2008. Piezoelectricity: evolution and future of a technology (Vol. 114). Springer Science & Business Media.
  • 24 A. Shafik, R.B. Mrad, Piezoelectric Motor Technology: A Review, in: C. Ru, X. Liu, Y. Sun (Eds.), Nanopositioning Technologies, Springer International Publishing, Switzerland, 2016, pp. 33–59.
  • 25 Wang, S., Rong, W., Wang, L., Xie, H., Sun, L. and Mills, J.K., 2019. A survey of piezoelectric actuators with long working stroke in recent years: Classifications, principles, connections and distinctions. Mechanical Systems and Signal Processing, 123, pp.591-605.
  • 26 V.A. Bardin, V.A. Vasil’Ev, Combining measurement and control functions in the structure of a multilayer piezoelectric actuator of nano- and micromotions, Meas. Tech+ 60 (2017) 711–716.
  • 27 Y.B. Ham, W.S. Seo, W.Y. Cho, D.W. Yun, J.H. Park, S.N. Yun, Development of a piezoelectric pump using hinge-lever amplification mechanism, J. Electroceram. 23 (2009) 346–350.
  • 28 J.W. Lee, Y.C. Li, K.S. Chen, Y.H. Liu, Design and control of a cascaded piezoelectric actuated two-degrees-of-freedom positioning compliant stage, Precis. Eng. 45 (2016) 374–386.
  • 29 Y. Peng, Y. Peng, X. Gu, J. Wang, H. Yu, A review of long range piezoelectric motors using frequency leveraged method, Sensor. Actuat. A-Phys. 235, (2015) 240–255.
  • 30 Gautschi, G. and Gautschi, G., 2002. Background of piezoelectric sensors (pp. 5-11). Springer Berlin Heidelberg.
  • 31 Kulkarni, H., Zohaib, K., Khusru, A. and Aiyappa, K.S., 2018. Application of piezoelectric technology in automotive systems. Materials Today: Proceedings, 5(10), pp.21299-21304.
  • 32 Ölander, A., 1932. An electrochemical investigation of solid cadmium-gold alloys. Journal of the American Chemical Society, 54(10), pp.3819-3833.
  • 33 Vernon, L.B. and Vernon, H.M., VERNON BENSHOFF Co, 1941. Process of manufacturing articles of thermoplastic synthetic resins. U.S. Patent 2,234,993.
  • 34 J. Damodharan, A. Sreedharan, T. Ramalingam, A review on smart materials, types and applications, Int. J. Eng. Technol. Sci. Res. 5 (2018) 5.
  • 35 Jani, J.M., Leary, M., Subic, A. and Gibson, M.A., 2014. A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015), 56, pp.1078-1113.
  • 36 Buehler, W.J., Gilfrich, J.V. and Wiley, R.C., 1963. Effect of low‐temperature phase changes on the mechanical properties of alloys near composition TiNi. Journal of applied physics, 34(5), pp.1475-1477.
  • 37 Kauffman, G.B. and Mayo, I., 1997. The story of nitinol: the serendipitous discovery of the memory metal and its applications. The chemical educator, 2, pp.1-21.
  • 38 Furuya, Y., 1996. Design and material evaluation of shape memory composites. Journal of intelligent material systems and structures, 7(3), pp.321-330.
  • 39 Kohl, M., 2004. Shape memory microactuators. Springer Science & Business Media.
  • 40 Duerig, T., Pelton, A. and Stöckel, D.J.M.S., 1999. An overview of nitinol medical applications. Materials Science and Engineering: A, 273, pp.149-160.
  • 41 Okotete, E., Osundare, A., Olajide, J., Desai, D. and Sadiku, E., 2020. Shape Memory Nanomaterials for Damping Applications. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications (pp. 1-32). Cham: Springer International Publishing.
  • 42 Bil, C., Massey, K. and Abdullah, E.J., 2013. Wing morphing control with shape memory alloy actuators. Journal of Intelligent Material Systems and Structures, 24(7), pp.879-898.
  • 43 Kheirikhah, M.M., Rabiee, S. and Edalat, M.E., 2011. A review of shape memory alloy actuators in robotics. RoboCup 2010: Robot Soccer World Cup XIV 14, pp.206-217.
  • 44 Wahi, S.K., Kumar, M., Santapuri, S. and Dapino, M.J., 2019. Computationally efficient locally linearized constitutive model for magnetostrictive materials. Journal of Applied Physics, 125(21).
  • 45 Joule, J.P., 1842. On a new class of magnetic forces. Ann. Electr. Magn. Chem, 8(1842), pp.219-224.
  • 46 E. Villari, Intorno alle modificazioni del memento magnetico di una verga di ferro e di acciaio, prodotte per la trazione della medesima e pel passaggio di una corrente attraverso la stessa, Il Nuovo Cimento 20 (1) (1864) 317–362.
  • 47 Dapino, M.J., 2002. On magnetostrictive materials and their use in smart material transducers. Struct. Eng. Mech. J, 17, pp.1-28.
  • 48 Olabi, A.G. and Grunwald, A., 2008. Design and application of magnetostrictive materials. Materials & Design, 29(2), pp.469-483.
  • 49 Clarisse Ribeiro, V. Correia, P. Martins, F.M. Gama, S. Lanceros-Mendez, Proving the suitability of magnetoelectric stimuli for tissue engineering applications, Colloids Surf. B Biointerfaces 140 (2016) 430–436.
  • 50 S.D. Bhame, P.A. Joy, Enhanced magnetostrictive properties of CoFe2O4 synthesized by an autocombustion method, Sensor Actuator Phys. 137 (2) (2007) 256–261.
  • 51 Xuegen Zhao, Nigel Mellors, D.G. Lord, Magnetomechanical performance of directionally solidified Fe–Ga alloys, J. Appl. Phys. 101 (9) (2007), 09C513.
  • 52 T Toby Hansen, Magnetostrictive materials and ultrasonics, Chemtech 26 (8) (1996) 56–59.
  • 53 Hal R. Holmes, Andrew DeRouin, Samantha Wright, M Riedemann Travor, Thomas A. Lograsso, Rupak M. Rajachar, Keat Ghee Ong, Biodegradation and biocompatibility of mechanically active magnetoelastic materials, Smart Mater. Struct. 23 (9) (2014), 095036.
  • 54 Murzin, D., Mapps, D.J., Levada, K., Belyaev, V., Omelyanchik, A., Panina, L. and Rodionova, V., 2020. Ultrasensitive magnetic field sensors for biomedical applications. Sensors, 20(6), p.1569.
  • 55 Vranish, J.M., Naik, D.P., Restorff, J.B. and Teter, J.P., 1991. Magnetostrictive direct drive rotary motor development. IEEE Transactions on Magnetics, 27(6), pp.5355-5357.
  • 56 Bushko, D.A. and Goldie, J.H., 1991. High performance magnetostrictive actuators. IEEE Aerospace and Electronic Systems Magazine, 6(11), pp.21-25.
  • 57 Arani, H.K., Shariyat, M. and Mohammadian, A., 2020. Vibration analysis of magnetostrictive nano-plate by using modified couple stress and nonlocal elasticity theories. International Journal of Materials and Metallurgical Engineering, 14(9), pp.229-234.
  • 58 Shin-ichi Yamaura, Microstructure and magnetostriction of heavily groove-rolled Fe-Co alloy wires, Mater. Sci. Eng., B 264 (2021) 114946.
  • 59 Shuai Ren, Dezhen Xue, Yuanchao Ji, Xiaolian Liu, Sen Yang, Xiaobing Ren, Low-fieldtriggered large magnetostriction in iron-palladium strain glass alloys, Phys. Rev. Lett. 119 (12) (2017) 125701.
  • 60 Newnham, R.E., Sundar, V., Yimnirun, R., Su, J. and Zhang, Q.M., 1997. Electrostriction: nonlinear electromechanical coupling in solid dielectrics. The Journal of Physical Chemistry B, 101(48), pp.10141-10150.
  • 61 Damjanovic, D. and Newnham, R.E., 1992. Electrostrictive and piezoelectric materials for actuator applications. Journal of intelligent material systems and structures, 3(2), pp.190-208.
  • 62 Coutte, J., Dubus, B., Debus, J.C., Granger, C. and Jones, D., 2002. Design, production and testing of PMN–PT electrostrictive transducers. Ultrasonics, 40(1-8), pp.883-888.
  • 63 Uchino, K. 1986. "Electrostrictive Actuators: Materials and Applications", Am. Cer. Soc. Bull., 65(4):647-652.
  • 64 Ganet, F., Le, M., Capsal, J. et al. Development of a smart guide wire using an electrostrictive polymer: option for steerable orientation and force feedback. Sci Rep 5, 18593 (2016).
  • 65 Rabinow, J., 1948. The magnetic fluid clutch. Electrical Engineering, 67(12), pp.1167-1167.
  • 66 Ginder, J.M., Davis, L.C. and Elie, L.D., 1996. Rheology of magnetorheological fluids: models and measurements. International journal of modern physics b, 10(23n24), pp.3293-3303.
  • 67 De Vicente, J., Klingenberg, D.J. and Hidalgo-Alvarez, R., 2011. Magnetorheological fluids: a review. Soft matter, 7(8), pp.3701-3710.
  • 68 Rabbani Y, Ashtiani M, Hashemabadi SH. An experimental study on the effects of temperature and magnetic field strength on the magnetorheological fluid stability and MR effect. Soft Matter. 015;11(22):4453–60.
  • 69 Rabbani, Y., Hajinajaf, N. and Tavakoli, O., 2019. An experimental study on stability and rheological properties of magnetorheological fluid using iron nanoparticle core–shell structured by cellulose. Journal of Thermal Analysis and Calorimetry, 135, pp.1687-1697.
  • 70 Milecki, A. and Hauke, M., 2012. Application of magnetorheological fluid in industrial shock absorbers. Mechanical Systems and Signal Processing, 28, pp.528-541.
  • 71 Okui, M., Iikawa, S., Yamada, Y. and Nakamura, T., 2018. Fundamental characteristic of novel actuation system with variable viscoelastic joints and magneto-rheological clutches for human assistance. Journal of Intelligent Material Systems and Structures, 29(1), pp.82-90.
  • 72 Nakamura, T., Midorikawa, Y. and Tomori, H., 2011. Position and vibration control of variable rheological joints using artificial muscles and magneto-rheological brake. International Journal of Humanoid Robotics, 8(01), pp.205-222.
  • 73 Christie, M.D., Sun, S., Deng, L., Ning, D.H., Du, H., Zhang, S.W. and Li, W.H., 2019. A variable resonance magnetorheological-fluid-based pendulum tuned mass damper for seismic vibration suppression. Mechanical Systems and Signal Processing, 116, pp.530-544.
  • 74 Yildirim, G. and Genc, S., 2013. Experimental study on heat transfer of the magnetorheological fluids. Smart materials and structures, 22(8), p.085001.
  • 75 Donado, F., Carrillo, J.L. and Mendoza, M.E., 2002. Sound propagation in magnetorheological suspensions. Journal of Physics: Condensed Matter, 14(9), p.2153.
  • 76 Alekhina, I., Kramarenko, E., Makarova, L. and Perov, N., 2022. Magnetorheological composites for biomedical applications. In Magnetic Materials and Technologies for Medical Applications (pp. 501-526). Woodhead Publishing.
  • 77 Munteanu, A. and Sedlacik, M., 2023. Progress in Surface Functionalized Particle-based Magnetorheological Composites. In Magnetic Soft Matter: Fundamentals and Applications (pp. 85-106). The Royal Society of Chemistry.
  • 78 Winslow, W.M., 1949. Induced fibration of suspensions. Journal of applied physics, 20(12), pp.1137-1140.
  • 79 Electrorheological Fluids: Mechanisms, Properties, Technology and Applications, ed. R. Tao and G. D. Roy, World Scientific, Singapore, 1994.
  • 80 Wen, W., Huang, X. and Sheng, P., 2008. Electrorheological fluids: structures and mechanisms. Soft Matter, 4(2), pp.200-210.
  • 81 Ma, H., Wen, W., Tam, W.Y. and Sheng, P., 1996. Frequency dependent electrorheological properties: origin and bounds. Physical review letters, 77(12), p.2499.
  • 82 Tam, W.Y., Yi, G.H., Wen, W., Ma, H., Loy, M.M. and Sheng, P., 1997. New electrorheological fluid: theory and experiment. Physical review letters, 78(15), p.2987.
  • 83 Lin, C.J., Lee, C.Y. and Liu, Y., 2017. Vibration control design for a plate structure with electrorheological atva using interval type-2 fuzzy system. Applied Sciences, 7(7), p.707.
  • 84 Lin, C.J.; Lee, C.Y.; Cheng, C.H.; Chen, G.F. Vibration Control of a Cantilever Beam Using a Tunable Vibration Absorber Embedded with ER Fluids. Int. J. Aerosp. Ind. Mechatron. Manuf. Eng. 2013, 7, 1412–1418.
  • 85 Sun, Y.; Thomas, M. Control of torsional rotor vibrations using an electrorheological fluid dynamic absorber. J. Vib. Control 2011, 17, 1253–1264.
  • 86 Chen, W., Pan, Y., Chen, J., Ye, F., Liu, S.H. and Yin, J., 2018. Stimuli-responsive organic chromic materials with near-infrared emission. Chinese Chemical Letters, 29(10), pp.1429-1435.
  • 87 Jiang, Y., 2014. An outlook review: Mechanochromic materials and their potential for biological and healthcare applications. Materials Science and Engineering: C, 45, pp.682-689.
  • 88 Bar, N. and Chowdhury, P., 2022. A brief review on advances in rhodamine B based chromic materials and their prospects. ACS Applied Electronic Materials, 4(8), pp.3749-3771.
  • 89 El-Khodary, E., Gebaly, B., AlSalmawy, A. and Rafaat, E., 2020. Critical review on smart chromic clothing. Journal of Design Sciences and Applied Arts, 1(1), pp.90-95.
  • 90 Aburas, M., Soebarto, V., Williamson, T., Liang, R., Ebendorff-Heidepriem, H. and Wu, Y., 2019. Thermochromic smart window technologies for building application: A review. Applied Energy, 255, p.113522.
  • 91 Zhang, J., Zou, Q. and Tian, H., 2013. Photochromic materials: more than meets the eye. Advanced Materials, 25(3), pp.378-399.
  • 92 Tian, H. and Yang, S., 2004. Recent progresses on diarylethene based photochromic switches. Chemical Society Reviews, 33(2), pp.85-97.
  • 93 By controlling the intensity of the light, it is possible to manipulate the photokinetics of the colour-switching reaction. Thus, The photokinetics of the colour-switching serves information technologies such as recording, erasing, and rewriting.
  • 94 Photochromism has attracted significant attention after the invention of photochromic glass. Sunglasses that protect human eyes from UV light or intense sunshine can be given as an excellent example of the application of photochromic material.
  • 95 Li, X.N., Tu, Z.M., Li, L., Wang, Z.H. and Zhang, H., 2020. A novel viologen-based coordination polymer with multi-stimuli responsive chromic properties: photochromism, thermochromism, chemochromism and electrochromism. Dalton Transactions, 49(10), pp.3228-3233.
  • 96 Wang, X.; Wang, S.; Gu, C.; Zhang, W.; Zheng, H.; Zhang, J.; Lu, G.; Zhang, Y.; Li, M.; Zhang, S. X. A. Reversible Bond/Cation Coupled Electron Transfer on Phenylenediamine- Based Rhodamine B and Its Application on Electrochromism. ACS Appl. Mater. Interfaces 2017, 9 (23), 20196−20204.
  • 97 Platt, J. R., (1961). Electrochromism, a possible change of color producible in dyes by an electric field, The Journal of Chemical Physics, 34(3), 862–863.
  • 98 Chang, I. F., Gilbert, B. L., & Sun, T. I., (1975). Electrochemichromic systems for display applications, J. Electrochem. Soc., 122(7), 955–962.
  • 99 Monk, P. M. S., Mortimer, R. J., & Rosseinsky, D. R., (2007). Electrochromism and Electrochromic Devices, Cambridge University Press, Cambridge.
  • 100 Mortimer, R. J., Dyer, A. L., & Reynolds, J. R., (2006). Electrochromic organic and polymeric materials for display applications, Displays, 27, 2–18.
  • 101 Peter, B.; Michael, H. Chromic Phenomena; technological applications of colour chemistry, 3rd ed.; Royal Society of Chemistry: 2018.
  • 102 Gillaspie, D.T., Tenent, R.C. and Dillon, A.C., 2010. Metal-oxide films for electrochromic applications: present technology and future directions. Journal of Materials Chemistry, 20(43), pp.9585-9592.
  • 103 Wang, W., Fan, X., Li, F., Qiu, J., Umair, M.M., Ren, W., Ju, B., Zhang, S. and Tang, B., 2018. Magnetochromic photonic hydrogel for an alternating magnetic field‐responsive color display. Advanced Optical Materials, 6(4), p.1701093.
  • 104 Ge, J., Lee, H., He, L., Kim, J., Lu, Z., Kim, H., Goebl, J., Kwon, S. and Yin, Y., 2009. Magnetochromatic microspheres: rotating photonic crystals. Journal of the American Chemical Society, 131(43), pp.15687-15694.
  • 105 Kim, J., Choi, S.E., Lee, H. and Kwon, S., 2013. Magnetochromatic microactuators for a micropixellated color‐changing surface. Advanced Materials, 25(10), pp.1415-1419.
  • 106 J. Ge, Y. Hu, Y. Yin, Angew. Chem., Int. Ed. 2007, 119, 7572.
  • 107 J. Ge, L. He, J. Goebl, Y. Yin, J. Am. Chem. Soc. 2009, 131, 3484.
  • 108 Roch Romeo, Eur. Pat., 298839A1, 1987
  • 109 Intelligent Packaging, C. Nithya, 2011, http://www.slideshare.net/nithyac12/intelligentpackaging- 41285755 (accessed October, 2016).
  • 110 A. Pavelkova´, Acta Univ. Agric. Silvic. Mendelianae Brun., 2013, 61, 245–251.
  • 111 T. Okawa and S. Imai, U. S. Pat., 4,810,562, 1989.
  • 112 Yamazoe, N., & Shimizu, Y., (1986). Humidity sensors: Principles and Applications, Sensors and Actuators, 10, 379–398.
  • 113 Sohrabnezhad, S., Pourahmad, A., & Sadjadi, M. A., (2007). New methylene blue incorporated in mordenite zeolite as humidity sensor material, Materials Letters, 61, 2311–2314.
  • 114 Esse, R., & Saari, A., (2008). In: Smart Packaging Technologies, Kerry, J., & Butler, P., (ed.), John Wiley & Sons, West-Sussex, pp. 130–149.
  • 115 T. Okawa and S. Imai, U. S. Pat., 4,810,562, 1989.
  • 116 www.sfxc.co.uk
  • 117 D.-H. Park, W. Jeong, M. Seo, B. J. Park and J.-M. Kim, Adv. Funct. Mater., 2016, 26, 498-506.
  • 118 www.smarol.com (accessed Nov. 2017).
  • 119 L. Sheng, M. Li, S. Zhu, H. Li, Y.-G. Li, Y. Wang, Q. Li, S. Liang, K. Zhong and S. X.-A. Zhang, Nat. Commun., 2014, 5, 3044.
  • 120 S. X.-A. Zhang, L. Sheng and M. Li, U. S. Pat. Appl., 20160168797.
  • 121 Reichardt, Ch., & Welton, T., (2011). Solvents and Solvent Effects in Organic Chemistry, th edn., Wiley-VCH Verlag, Weinheim. pp. 4–140
  • 122 Thoraval, D., Bets, R. W., Bovenkamp, J. W., & Dix, J. K., (1988). Development of paper, chemical agent detector, 3-way liquid containing non-mutagenic dyes. I-Replacement of the Yellow Dye Thiodiphenyl-4,4’-diazo-bis-salicylic Acid (A2), Defense Research Establishment Ottawa, Report No. 962.
  • 123 Sata, T., (2004). Ion Exchange Membranes, Preparation, Characterization, Modification and Application, The Royal Society of Chemistry, Cambridge. pp. 276–280.
  • 124 Thoraval, D., & Bovenkamp, J. W., (1989). Paper chemical agent detectors, EP 0334668 A1, 27.
  • 125 Vik, M., & Viková, M., (2011). Identification Methods for Evaluation of Amount of Dangerous Substances in Air and on the Surface (in Czech), Report for National Authority for Nuclear, Biological and Chemical Protection Czech Republic.
  • 126 D. Charych, in Biosensors and Their Applications, ed. V. C. Yang and T. Ngo, Springer, Berlin, 2000.
  • 127 S. Lee, J.-Y. Kim, X. Chen and J. Yoon, Chem. Commun., 2016, 52, 9178.
  • 128 Yu Jun Tan, Jiake Wu, Hanying Li, and Benjamin C. K. Tee, ACS Applied Materials & Interfaces 2018 10 (18), 15331-15345
  • 129 Yang, Y.; Urban, M. W. Self-Healing Polymeric Materials. Chem. Soc. Rev. 2013, 42, 7446.
  • 130 Hager, M.D., Greil, P., Leyens, C., van der Zwaag, S. and Schubert, U.S., 2010. Selfhealing materials. Advanced Materials, 22(47), pp.5424-5430.
  • 131 Bekas, D.G., Tsirka, K., Baltzis, D. and Paipetis, A.S., 2016. Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques. Composites Part B: Engineering, 87, pp.92-119.
  • 132 Zwaag, S. ed., 2008. Self healing materials: an alternative approach to 20 centuries of materials science (Vol. 30). Dordrecht, The Netherlands: Springer Science+ Business Media BV.
  • 133 White, S., Sottos, N., Geubelle, P. et al. Autonomic healing of polymer composites. Nature 409, 794–797 (2001).
  • 134 Tee, B. C.-K.; Wang, C.; Allen, R.; Bao, Z. An Electrically and Mechanically Self-Healing Composite with Pressure- and FlexionSensitive Properties for Electronic Skin Applications. Nat. Nanotechnol. 2012, 7 (12), 825−832.
  • 135 Lu, C.-C.; Lin, Y.-C.; Yeh, C.-H.; Huang, J.-C.; Chiu, P.-W. High Mobility Flexible Graphene Field-Effect Transistors with Self-Healing Gate Dielectrics. ACS Nano 2012, 6 (5), 4469−4474.
  • 136 Li, J.; Liang, J.; Li, L.; Ren, F.; Hu, W.; Li, J.; Qi, S.; Pei, Q. Healable Capacitive Touch Screen Sensors Based on Transparent Composite Electrodes Comprising Silver Nanowires and a Furan/ Maleimide Diels−Alder Cycloaddition Polymer. ACS Nano 2014, 8 (12), 12874−12882.
  • 137 Guo, K.; Zhang, D. L.; Zhang, X. M.; Zhang, J.; Ding, L. S.; Li, B. J.; Zhang, S. Conductive Elastomers with Autonomic Self-Healing Properties. Angew. Chem., Int. Ed. 2015, 54 (41), 12127−12133.
  • 138 Yang, Y.; Zhu, B.; Yin, D.; Wei, J.; Wang, Z.; Xiong, R.; Shi, J.; Liu, Z.; Lei, Q. Flexible Self-Healing Nanocomposites for Recoverable Motion Sensor. Nano Energy 2015, 17, 1−9.
  • 139 Sun, H.; You, X.; Jiang, Y.; Guan, G.; Fang, X.; Deng, J.; Chen, P.; Luo, Y.; Peng, H. Self-Healable Electrically Conducting Wires for Wearable Microelectronics. Angew. Chem., Int. Ed. 2014, 53 (36), 9526−9531.
  • 140 Banerjee, S.; Tripathy, R.; Cozzens, D.; Nagy, T.; Keki, S.; Zsuga, M.; Faust, R. Photoinduced Smart, Self-Healing Polymer Sealant for Photovoltaics. ACS Appl. Mater. Interfaces 2015 , 7 (3), 2064 −2072.
There are 140 citations in total.

Details

Primary Language English
Subjects Information Systems For Sustainable Development and The Public Good
Journal Section Makaleler
Authors

Emre Alp 0000-0002-3857-0880

Publication Date December 26, 2023
Submission Date August 9, 2023
Published in Issue Year 2023 Volume: 2 Issue: 1

Cite

IEEE E. Alp, “SOCIETY 5.0: CONSTRUCTING WITH SMART MATERIALS”, JOSS, vol. 2, no. 1, pp. 25–44, 2023.