Research Article
BibTex RIS Cite

Evaluation of Variation on Myostatin (MSTN) Gene of Turkish Donkey Populations in Thrace Region of Turkey

Year 2022, , 426 - 434, 31.05.2022
https://doi.org/10.33462/jotaf.1015587

Abstract

Çalışma, Türkiye’de Trakya bölgesinde yetiştirilen 90 eşekte MSTN genindeki varyasyonunu belirlemeyi amaçlamıştır. GDF-8 (growth differentiation factor 8) olarak da adlandırılan miyostatin (MSTN), farklılaşma büyüme faktörü β (TGF-β) süper ailesinin bir parçasıdır ve memeli türlerinde kas kütlesi, büyüme ve gelişme üzerinde negatif düzenleyici rolü bulunmaktadır. MSTN geni, iskelet kası büyümesini olumsuz yönde düzenler ve iskelet kaslarının homeostazında önemli bir role sahiptir. Ayrıca, kas liflerinde protein dengesi Myostatin faktörü tarafından desteklenmektedir. MSTN geninin toplam 866 bç uzunluğunda kısmi intron 1, 2 ve ekzon 2 bölgeleri çoğaltılmış ve PCR ürünleri DNA dizilimi kullanılarak analiz edilmiştir. Bu çalışmada MSTN geninin ikinci ekzon bölgesinde proteinde amino asit değişikliğine neden olmayan yeni bir sinonim SNP g.4183919 G>A belirlenmiştir. G>A değişimi, lösin amino asidinde sessiz bir mutasyona neden olmuştur. Sinonim mutasyonlar nedeniyle mRNA düzeyinde ve proteinin işlevselliğinde değişiklikler meydana gelebilmektedir. Lösin, kas kütlesi kaybını önleyebilen ve miyostatin ekspresyonunu engelleyen önemli bir amino asit olduğundan, bu çalışmada eşeklerde Leu'nun sessiz mutasyonunun eşeklerin kas kütlesini ve fiziksel yapısını değiştirebileceği söylenebilir. Mutant lösin, kas kaybını önlemede daha düşük bir etkiye sahip olduğundan, daha fazla Myostatin protein ekspresyonuna neden olabilmektedir. Türk eşeklerinde daha önce atlarda bulunan bu mutasyonlar tespit edilememiştir, bu da eşeklerin yarış kabiliyeti için daha az gereksinime sahip olduklarını göstermektedir. Tespit edilen SNP ilk olarak ortaya konmuş ve mevcut çalışma ile Türk eşeklerinde MSTN geninin DNA dizileri ilk kez ortaya çıkartılmıştır. MSTN geninin dizileri, MW970078-MW970079 erişim numarasıyla NCBI GenBank'a girilmiştir. Eşek ırklarında MSTN genindeki SNP'lerin ve bunların ekonomik öneme sahip morfolojik karakterlerle ilişkisinin protein ve moleküler düzeyde belirlenmesi amacıyla daha ileri çalışmalara ihtiyaç vardır.

References

  • Baron, E., Lopes, M., Mendonça, D., da Câmara Machado, A. (2012). SNP identification and polymorphism analysis in exon 2 of the horse myostatin gene. Animal Genetics 43: 229–232, https://doi.org/10.1111/j.1365-2052.2011.02229.x
  • Bertolini, F., Scimone, C., Geraci, C., Schiavo, G., Utzeri, V.J., Chiofalo, V., Fontanesi, L. (2015). Next generation semiconductor based sequencing of the donkey (Equus asinus) genome provided comparative sequence data against the horse genome and a few millions of single nucleotide polymorphisms. PLoS ONE 10: 7:e0131925, https://doi.org/10.1371/journal.pone.0131925
  • Bignell, C.W., Malau-Aduli, A.E.O., Nichols, P.D., McCulloch, R., Kijas, J.W. (2010). East Friesian sheep carry a Myostatin allele known to cause muscle hypertrophy in other breeds. Animal Genetics 41: 445–446, https://doi.org/10.1111/j.1365-2052.2010.02021.x
  • Binns, M.M., Boehler, D.A., Lambert, D.H. (2010). Identification of the myostatin locus (MSTN) as having a major effect on optimum racing distance in the Thoroughbred horse in the USA. Animal Genetics 41 (1-2): 154-8, https://doi.org/10.1111/j.1365-2052.2010.02126.x
  • Cieslak, J., Borowska, A., Wodas, L., Mackowski, M. (2018). Interbreed Distribution of the Myostatin (MSTN) Gene 5′-Flanking Variants and Their Relationship with Horse Biometric Traits. Journal of Equine Veterinary Science 60: 83-89, https://doi.org/10.1016/j.jevs.2017.08.002
  • Clop, A., Marcq, F., Takeda, H., Pirottin, D., Tordoir, X., Bibé, B., Bouix, J., Caiment, F., Elsen, J.M., Eychenne, F., Larzul, C., Laville, E., Meish, F., Milenkovic, D., Tobin, J., Charlier, C., Georges M.A. (2006). Mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genetics 38 (7): 813-8, https://doi.org/10.1038/ng1810
  • Cruz, A., Ferian, A., Alves, P., Silva, W. J., Bento, M. R., Gasch, A., Labeit, S., Moriscot, A. S. (2020). Skeletal Muscle Anti-Atrophic Effects of Leucine Involve Myostatin Inhibition. DNA and Cell Biology 39 (12): 2289-2299, https://doi.org/10.1089/dna.2020.5423
  • Dall'Olio, S., Fontanesi, L., Nanni Costa, L., Tassinari, M., Minieri, L., Falaschini, A. (2010). Analysis of horse myostatin gene and identification of single nucleotide polymorphisms in breeds of different morphological types. Journal of Biomedical Biotechnology 542945: 1-11, https://doi.org/10.1155/2010/542945
  • Dall’Olio, S., Wang, Y., Sartori, C., Fontanesi, L., Mantovani, R. (2014). Association of myostatin (MSTN) gene polymorphisms with morphological traits in the Italian Heavy Draft Horse breed. Livest Science 160: 29-36, https://doi.org/10.1016/j.livsci.2013.12.002
  • Dong-hua, L., Hao-yuan, H., Xin, Z., Ting, S., Xian-yong, L., Hong, C., Lei, C., Dang, R. (2017). The genetic diversity analysis in the donkey myostatin gene. Journal of Integrative Agriculture 16 (3): 656-663, https://doi.org/10.1016/S2095-3119(16)61445-4
  • Feldman, B. J., Yamamoto, K. R. (2006). Myostatin modulates adipogenesis to generate adipocytes with favorable metabolic effects. Proceedings of the National Academy of Sciences of the United 103: 15675-15680, https://doi.org/10.1073/pnas.0607501103
  • Gilson, H., Schakman, O., Combaret, L., Lause, P., Grobet, L., Attaix, D., Ketelslegers, J.M. Thissen, J.P. (2007). Myostatin gene deletion prevents glucocorticoid-induced muscle atrophy. Endocrinology 148 (1): 452–460, https://doi.org/10.1210/en.2006-0539
  • Grobet, L., Martin, L.J.R., Poncelet, D., Pirrotin, D., Brouwers, B., Riquet, J., Schoeberlein, A., Dunner, S., Ménissier, F., Massabanda, J., Fries, R., Hanset, R., Georges, M. (1997). A deletion in the bovine myostatin gene causes the double-muscled phonotype in cattle. Nature Genetics 17: 71–74, https://doi.org/10.1038/ng0997-71
  • Grobet, L., Poncelet, D., Royo, L.J., Brouwers, B., Pirottin, D., Michaux, C., Ménissier, F., Zanotti, M., Dunner, S., Georges, M. (1998). Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mammalian Genome 9: 210–213, https://doi.org/10.1007/s003359900727
  • Gu, Z.L., Zhang, H.F., Zhu, D.H., Li, H. (2002). Single nucleotide polymorphism analysis of the chicken Myostatin gene in different chicken lines. Yi Chuan Xue Bao 29: 599–606.
  • Hill, E.W., Gu, J., Eivers, S.S., Fonseca, R.G., McGivney, B.A., Govindarajan, P., Orr, N., Katz, L.M., MacHugh, D.E. (2010a). A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in Thoroughbred horses. PLoS ONE 5 (1): 10.1371/annotation/de9e11b9-eb92-4ee5-a56a-908e06d1ed6c, https://doi.org/10.1371/annotation/de9e11b9-eb92-4ee5-a56a-908e06d1ed6c
  • Hill, E.W., McGivney, B.A., Gu, J., Whiston, R., Machugh, D.E. (2010b). A genome-wide SNP-association study confirms a sequence variant (g.66493737C>T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses. BMC Genomics 11 (11): 552, https://doi.org/10.1186/1471-2164-11-552
  • Hill, E.W., Fonseca, R.G., McGivney, B.A., Gu, J., MacHugh, D.E., Katz, L.M. (2012a). MSTN genotype (g.66493737C/T) association with speed indices in Thoroughbred racehorses. Journal of Applied Physiology 112: 86–90, https://doi.org/10.1152/japplphysiol.00793.2011
  • Hill, E. W., Ryan, D. P., Machugh, D. E. (2012b). Horses for courses: A DNA-based test for race distance aptitude in Thoroughbred racehorses. Recent Patents on DNA & Gene Sequences 6: 203–208, https://doi.org/10.2174/187221512802717277
  • Işık, R. Bilgen, G., Koşum, N., Kandemir, Ç., Taşkın, T. (2017). Polymorphism in exon 7 of β- Lactoglobulin (β-LG) gene and its association with milk yield in saanen goats. Journal of Tekirdag Agricultural Faculty, The Special Issue of 2nd International Balkan Agriculture Congress, May 16-18, 35-40. https://dergipark.org.tr/tr/pub/jotaf/issue/31157/336406
  • Johnson, P. L., McEwan, J. C., Dodds, K. G., Purchas, R. W., Blair, H. T. (2005). Meat quality traits were unaffected by a quantitative trait locus affecting leg composition traits in Texel sheep. Journal of Animal Science 83: 2729–2735.
  • Kambadur, R., Sharma, M., Smith, T. P. L., Bass, J. J. (1997). Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Research 7: 910–915, https://doi.org/10.1101/gr.7.9.910
  • Karim, L., Coppieters, W., Grobet, L., Valentini, A., Georges, M. (2000). Convenient genotyping of six myostatin mutations causing double-muscling in cattle using a multiplex oligonucleotide ligation assay. Animal Genetics 31 (6): 396-9, https://doi.org/10.1046/j.1365-2052.2000.00684.x
  • Khaerunnis, I., Pramujo, M., Arief, I. I., Budiman, C., Gunawan, A., Jakaria Sumantri, C. (2016). Polymorphism of the T4842G myostatin gene is associated with carcass characteristics in Indonesian chickens. International Journal of Poultry Science 15: 316-324, https://dx.doi.org/10.3923/ijps.2016.316.324
  • Kristofich, J., Morgenthaler, A. B., Kinney, W. R., Ebmeier, C. C., Snyder, D. J., Old, W. M., Cooper, V. S., Copley, S. D. (2018). Synonymous mutations make dramatic contributions to fitness when growth is limited by a weak-link enzyme. PLoS genetics 14 (8): e1007615, https://doi.org/10.1371/journal.pgen.1007615
  • Kumar, S., Stecher, G., Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33: 1870–1874, https://doi.org/10.1093/molbev/msw054
  • Li, R., Liu, D., Cao, C., Wang, S., Dang, R., Lan, X., Chen, H., Zhang, T., Liu, W., Lei, C. (2014). Single nucleotide polymorphisms of myostatin gene in Chinese domestic horses. Gene 538 (1): 150-154, https://doi.org/10.1016/j.gene.2013.12.027
  • Marcq, F., Barkouki, S.E., Elsen, J., Grobet, L., Royo, L., Leroy, P., Georges, M. (1998). Investigating the role of myostatin in the determinism of muscling characterizing Belgian Texel sheep. Animal Genetics 29 (1): 52.
  • Marshall, K., Henshall, J., Banks, R. G., Van der Werf, J. (1999). Finding major gene effects in Australian meat sheep – feasibility study for a Texel dataset. Proceedings of the Association for the Advancement of Animal Breeding and Genetics 13: 86–89.
  • McPherron, A.C., Lee, S. (1997). Double muscling in cattle due to mutations in the myostatin gene. PNAS 94 (23): 12457-12461, https://doi.org/10.1073/pnas.94.23.12457
  • Miranda, M.E., Amigues, Y., Boscher, M.Y., Ménissier, F., Cortés, O., Dunner, S. (2002). Simultaneous genotyping to detect myostatin gene polymorphism in beef cattle breeds. Journal of Animal Breeding and Genetics 119: 361–366, https://doi.org/10.1046/j.1439-0388.2002.00352.x
  • Pereira, G.L., de Matteis, R., Regitano, L.C.A., Chardulo, L.A.L., Curi, R.A. (2016). MSTN, CKM, and DMRT3 gene variants in different lines of quarter horses. Journal of Equine Veterinary Science 39: 33-37, https://doi.org/10.1016/j.jevs.2015.09.001
  • Ramamurthi, K.S., Schneewind, O. (2005). A Synonymous Mutation in Yersinia enterocolitica yopE affects the function of the YopE type III secretion signal. Journal of Bacteriology 187 (2): 707-715, https://doi.org/10.1128/jb.187.2.707-715.2005
  • Sambrook, J., Fritsch, E.F., Maniatis, T. (1989). Molecular Cloning: A laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, New York.
  • Stefaniuk, M., Kaczor, U., Augustyn, R., Gurgul, A., Kulisa, M., Podstawski, Z. (2014). Identification of a new haplotype within the promoter region of the MSTN gene in horses from five of the most common breeds in Poland. Folia Biologica (Krakow) 62 (3): 219-22, https://doi.org/10.3409/fb62_3.219
  • Stefaniuk, M., Ropka-Molik, K., Piorkowska, K., Kulisa, M., Podstawski, Z. (2016). Analysis of polymorphisms in the equine MSTN gene in Polish populations of horse breeds. Livestock Science 187: 151e7, https://doi.org/10.1016/j.livsci.2016.03.012
  • Tay, G.K., Iaschi, S.P.A., Bellinge, R.H.S., Chong, F.N., Hui, J. (2004). The development of sequence-based-typing of myostatin (GDF-8) to identify the double muscling phenotype in the goat. Small Ruminant Research 52 (1–2): 1-12, https://doi.org/10.1016/S0921-4488(03)00248-7
  • Tozaki, T., Miyake, T., Kakoi, H., Gawahara, H., Sugita, S., Hasegawa, T., Ishida, N., Hirota, K., Nakano, Y. A. (2010). A genome-wide association study for racing performances in Thoroughbreds clarifies a candidate region near the MSTN gene. Animal Genetics 41: 28–35, https://doi.org/10.1111/j.1365-2052.2010.02095.x
  • Tozaki, T., Sato, F., Hill, E.W., Miyake, T., Endo, Y., Kakoi, H., Gawahara, H., Hirota, K., Nakano, Y., Nambo, Y., Kurosawa, M. (2011). Sequence variants at the myostatin gene locus influence the body composition of Thoroughbred horses. The Journal of Veterinary Medical Science 73: 1617–1624, https://doi.org/10.1292/jvms.11-0295
  • Tozaki, T., Hill, E.W., Hirota, K., Kakoi, H., Gawahara, H., Miyake, T., Sugita, S., Hasegawa, T., Ishida, N., Nakano, Y., Kurosawai M. (2012). A cohort study of racing performance in Japanese Thoroughbred racehorses using genome information on ECA18. Animal Genetics 43: 42–52, https://doi.org/10.1111/j.1365-2052.2011.02201.x
  • Tüten Sevim, E., Özdil, F., Özkan Ünal, E. Arat, S. (2017). Nükleer transfer ile elde edilen klon sığır ve yavrularının mtDNA ve mikrosatellit belirteçlerle karakterizasyonu. Tekirdağ Ziraat Fakültesi Dergisi 14 (2): 150-157, https://dergipark.org.tr/en/pub/jotaf/issue/29441/315432
  • Walling, G.A., Visscher, P.M., Wilson, A.D., McTeir, B.L., Simm, G., Bishop, S.C. (2004). Mapping of quantitative trait loci for growth and carcass traits in commercial sheep populations. Journal of Animal Science 82: 2234–2245, https://doi.org/10.2527/2004.8282234x

Evaluation of Variation on Myostatin (MSTN) Gene of Turkish Donkey Populations in Thrace Region of Turkey

Year 2022, , 426 - 434, 31.05.2022
https://doi.org/10.33462/jotaf.1015587

Abstract

The study aimed to determine the MSTN gene variation in 90 donkeys reared in the Thrace region of Turkey. Myostatin (MSTN), also named GDF-8 (growth differentiation factor 8) is a part of the transforming growth factor β (TGF-β) superfamily and it has a negative regulator role on muscle mass, growth and development in mammalian species. MSTN gene regulates the skeletal muscle growth in a negative way and has a significant role in homeostasis of skeletal muscles. Also, in muscle fibers balance of protein has been promoted by Myostatin factor. The total of 866 bp long partial intron 1 and 2, whole exon 2 regions of MSTN gene was amplified and PCR products analysed using DNA sequencing. In this study, a novel synonymous SNP was determined as g.4183919 G>A in the second exon region of the MSTN gene which does not cause an amino acid change in the protein. The G>A transition caused a silent mutation in leucine (leu) amino acid. Alterations in mRNA level and functionality of protein can occur due to synonymous mutations. Since leucine is an important amino acid that can avoid muscle mass loss and inhibits the expression of Myostatin, it can be said that silent mutation of Leu in donkeys may have altered the muscle mass and physical factor of donkeys in this study. Mutant leucine may have a lower efficient effect on preventing loss of muscles and causes more Myostatin protein expression. The identified SNP was firstly released and the DNA sequences of the MSTN gene in Turkish donkeys was revealed for the first time with recent study. Turkish donkeys lacked these mutations that were identified before in horses, which cause for the less might require for race ability of donkeys. The sequences of MSTN gene were submitted to the NCBI GenBank with the accession number: MW970078- MW970079. Further studies are needed to conduct, on protein and molecular levels, SNPs on the MSTN gene and their association with the morphological characters that may affect economic traits in donkey breeds.

References

  • Baron, E., Lopes, M., Mendonça, D., da Câmara Machado, A. (2012). SNP identification and polymorphism analysis in exon 2 of the horse myostatin gene. Animal Genetics 43: 229–232, https://doi.org/10.1111/j.1365-2052.2011.02229.x
  • Bertolini, F., Scimone, C., Geraci, C., Schiavo, G., Utzeri, V.J., Chiofalo, V., Fontanesi, L. (2015). Next generation semiconductor based sequencing of the donkey (Equus asinus) genome provided comparative sequence data against the horse genome and a few millions of single nucleotide polymorphisms. PLoS ONE 10: 7:e0131925, https://doi.org/10.1371/journal.pone.0131925
  • Bignell, C.W., Malau-Aduli, A.E.O., Nichols, P.D., McCulloch, R., Kijas, J.W. (2010). East Friesian sheep carry a Myostatin allele known to cause muscle hypertrophy in other breeds. Animal Genetics 41: 445–446, https://doi.org/10.1111/j.1365-2052.2010.02021.x
  • Binns, M.M., Boehler, D.A., Lambert, D.H. (2010). Identification of the myostatin locus (MSTN) as having a major effect on optimum racing distance in the Thoroughbred horse in the USA. Animal Genetics 41 (1-2): 154-8, https://doi.org/10.1111/j.1365-2052.2010.02126.x
  • Cieslak, J., Borowska, A., Wodas, L., Mackowski, M. (2018). Interbreed Distribution of the Myostatin (MSTN) Gene 5′-Flanking Variants and Their Relationship with Horse Biometric Traits. Journal of Equine Veterinary Science 60: 83-89, https://doi.org/10.1016/j.jevs.2017.08.002
  • Clop, A., Marcq, F., Takeda, H., Pirottin, D., Tordoir, X., Bibé, B., Bouix, J., Caiment, F., Elsen, J.M., Eychenne, F., Larzul, C., Laville, E., Meish, F., Milenkovic, D., Tobin, J., Charlier, C., Georges M.A. (2006). Mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genetics 38 (7): 813-8, https://doi.org/10.1038/ng1810
  • Cruz, A., Ferian, A., Alves, P., Silva, W. J., Bento, M. R., Gasch, A., Labeit, S., Moriscot, A. S. (2020). Skeletal Muscle Anti-Atrophic Effects of Leucine Involve Myostatin Inhibition. DNA and Cell Biology 39 (12): 2289-2299, https://doi.org/10.1089/dna.2020.5423
  • Dall'Olio, S., Fontanesi, L., Nanni Costa, L., Tassinari, M., Minieri, L., Falaschini, A. (2010). Analysis of horse myostatin gene and identification of single nucleotide polymorphisms in breeds of different morphological types. Journal of Biomedical Biotechnology 542945: 1-11, https://doi.org/10.1155/2010/542945
  • Dall’Olio, S., Wang, Y., Sartori, C., Fontanesi, L., Mantovani, R. (2014). Association of myostatin (MSTN) gene polymorphisms with morphological traits in the Italian Heavy Draft Horse breed. Livest Science 160: 29-36, https://doi.org/10.1016/j.livsci.2013.12.002
  • Dong-hua, L., Hao-yuan, H., Xin, Z., Ting, S., Xian-yong, L., Hong, C., Lei, C., Dang, R. (2017). The genetic diversity analysis in the donkey myostatin gene. Journal of Integrative Agriculture 16 (3): 656-663, https://doi.org/10.1016/S2095-3119(16)61445-4
  • Feldman, B. J., Yamamoto, K. R. (2006). Myostatin modulates adipogenesis to generate adipocytes with favorable metabolic effects. Proceedings of the National Academy of Sciences of the United 103: 15675-15680, https://doi.org/10.1073/pnas.0607501103
  • Gilson, H., Schakman, O., Combaret, L., Lause, P., Grobet, L., Attaix, D., Ketelslegers, J.M. Thissen, J.P. (2007). Myostatin gene deletion prevents glucocorticoid-induced muscle atrophy. Endocrinology 148 (1): 452–460, https://doi.org/10.1210/en.2006-0539
  • Grobet, L., Martin, L.J.R., Poncelet, D., Pirrotin, D., Brouwers, B., Riquet, J., Schoeberlein, A., Dunner, S., Ménissier, F., Massabanda, J., Fries, R., Hanset, R., Georges, M. (1997). A deletion in the bovine myostatin gene causes the double-muscled phonotype in cattle. Nature Genetics 17: 71–74, https://doi.org/10.1038/ng0997-71
  • Grobet, L., Poncelet, D., Royo, L.J., Brouwers, B., Pirottin, D., Michaux, C., Ménissier, F., Zanotti, M., Dunner, S., Georges, M. (1998). Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mammalian Genome 9: 210–213, https://doi.org/10.1007/s003359900727
  • Gu, Z.L., Zhang, H.F., Zhu, D.H., Li, H. (2002). Single nucleotide polymorphism analysis of the chicken Myostatin gene in different chicken lines. Yi Chuan Xue Bao 29: 599–606.
  • Hill, E.W., Gu, J., Eivers, S.S., Fonseca, R.G., McGivney, B.A., Govindarajan, P., Orr, N., Katz, L.M., MacHugh, D.E. (2010a). A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in Thoroughbred horses. PLoS ONE 5 (1): 10.1371/annotation/de9e11b9-eb92-4ee5-a56a-908e06d1ed6c, https://doi.org/10.1371/annotation/de9e11b9-eb92-4ee5-a56a-908e06d1ed6c
  • Hill, E.W., McGivney, B.A., Gu, J., Whiston, R., Machugh, D.E. (2010b). A genome-wide SNP-association study confirms a sequence variant (g.66493737C>T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses. BMC Genomics 11 (11): 552, https://doi.org/10.1186/1471-2164-11-552
  • Hill, E.W., Fonseca, R.G., McGivney, B.A., Gu, J., MacHugh, D.E., Katz, L.M. (2012a). MSTN genotype (g.66493737C/T) association with speed indices in Thoroughbred racehorses. Journal of Applied Physiology 112: 86–90, https://doi.org/10.1152/japplphysiol.00793.2011
  • Hill, E. W., Ryan, D. P., Machugh, D. E. (2012b). Horses for courses: A DNA-based test for race distance aptitude in Thoroughbred racehorses. Recent Patents on DNA & Gene Sequences 6: 203–208, https://doi.org/10.2174/187221512802717277
  • Işık, R. Bilgen, G., Koşum, N., Kandemir, Ç., Taşkın, T. (2017). Polymorphism in exon 7 of β- Lactoglobulin (β-LG) gene and its association with milk yield in saanen goats. Journal of Tekirdag Agricultural Faculty, The Special Issue of 2nd International Balkan Agriculture Congress, May 16-18, 35-40. https://dergipark.org.tr/tr/pub/jotaf/issue/31157/336406
  • Johnson, P. L., McEwan, J. C., Dodds, K. G., Purchas, R. W., Blair, H. T. (2005). Meat quality traits were unaffected by a quantitative trait locus affecting leg composition traits in Texel sheep. Journal of Animal Science 83: 2729–2735.
  • Kambadur, R., Sharma, M., Smith, T. P. L., Bass, J. J. (1997). Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Research 7: 910–915, https://doi.org/10.1101/gr.7.9.910
  • Karim, L., Coppieters, W., Grobet, L., Valentini, A., Georges, M. (2000). Convenient genotyping of six myostatin mutations causing double-muscling in cattle using a multiplex oligonucleotide ligation assay. Animal Genetics 31 (6): 396-9, https://doi.org/10.1046/j.1365-2052.2000.00684.x
  • Khaerunnis, I., Pramujo, M., Arief, I. I., Budiman, C., Gunawan, A., Jakaria Sumantri, C. (2016). Polymorphism of the T4842G myostatin gene is associated with carcass characteristics in Indonesian chickens. International Journal of Poultry Science 15: 316-324, https://dx.doi.org/10.3923/ijps.2016.316.324
  • Kristofich, J., Morgenthaler, A. B., Kinney, W. R., Ebmeier, C. C., Snyder, D. J., Old, W. M., Cooper, V. S., Copley, S. D. (2018). Synonymous mutations make dramatic contributions to fitness when growth is limited by a weak-link enzyme. PLoS genetics 14 (8): e1007615, https://doi.org/10.1371/journal.pgen.1007615
  • Kumar, S., Stecher, G., Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33: 1870–1874, https://doi.org/10.1093/molbev/msw054
  • Li, R., Liu, D., Cao, C., Wang, S., Dang, R., Lan, X., Chen, H., Zhang, T., Liu, W., Lei, C. (2014). Single nucleotide polymorphisms of myostatin gene in Chinese domestic horses. Gene 538 (1): 150-154, https://doi.org/10.1016/j.gene.2013.12.027
  • Marcq, F., Barkouki, S.E., Elsen, J., Grobet, L., Royo, L., Leroy, P., Georges, M. (1998). Investigating the role of myostatin in the determinism of muscling characterizing Belgian Texel sheep. Animal Genetics 29 (1): 52.
  • Marshall, K., Henshall, J., Banks, R. G., Van der Werf, J. (1999). Finding major gene effects in Australian meat sheep – feasibility study for a Texel dataset. Proceedings of the Association for the Advancement of Animal Breeding and Genetics 13: 86–89.
  • McPherron, A.C., Lee, S. (1997). Double muscling in cattle due to mutations in the myostatin gene. PNAS 94 (23): 12457-12461, https://doi.org/10.1073/pnas.94.23.12457
  • Miranda, M.E., Amigues, Y., Boscher, M.Y., Ménissier, F., Cortés, O., Dunner, S. (2002). Simultaneous genotyping to detect myostatin gene polymorphism in beef cattle breeds. Journal of Animal Breeding and Genetics 119: 361–366, https://doi.org/10.1046/j.1439-0388.2002.00352.x
  • Pereira, G.L., de Matteis, R., Regitano, L.C.A., Chardulo, L.A.L., Curi, R.A. (2016). MSTN, CKM, and DMRT3 gene variants in different lines of quarter horses. Journal of Equine Veterinary Science 39: 33-37, https://doi.org/10.1016/j.jevs.2015.09.001
  • Ramamurthi, K.S., Schneewind, O. (2005). A Synonymous Mutation in Yersinia enterocolitica yopE affects the function of the YopE type III secretion signal. Journal of Bacteriology 187 (2): 707-715, https://doi.org/10.1128/jb.187.2.707-715.2005
  • Sambrook, J., Fritsch, E.F., Maniatis, T. (1989). Molecular Cloning: A laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, New York.
  • Stefaniuk, M., Kaczor, U., Augustyn, R., Gurgul, A., Kulisa, M., Podstawski, Z. (2014). Identification of a new haplotype within the promoter region of the MSTN gene in horses from five of the most common breeds in Poland. Folia Biologica (Krakow) 62 (3): 219-22, https://doi.org/10.3409/fb62_3.219
  • Stefaniuk, M., Ropka-Molik, K., Piorkowska, K., Kulisa, M., Podstawski, Z. (2016). Analysis of polymorphisms in the equine MSTN gene in Polish populations of horse breeds. Livestock Science 187: 151e7, https://doi.org/10.1016/j.livsci.2016.03.012
  • Tay, G.K., Iaschi, S.P.A., Bellinge, R.H.S., Chong, F.N., Hui, J. (2004). The development of sequence-based-typing of myostatin (GDF-8) to identify the double muscling phenotype in the goat. Small Ruminant Research 52 (1–2): 1-12, https://doi.org/10.1016/S0921-4488(03)00248-7
  • Tozaki, T., Miyake, T., Kakoi, H., Gawahara, H., Sugita, S., Hasegawa, T., Ishida, N., Hirota, K., Nakano, Y. A. (2010). A genome-wide association study for racing performances in Thoroughbreds clarifies a candidate region near the MSTN gene. Animal Genetics 41: 28–35, https://doi.org/10.1111/j.1365-2052.2010.02095.x
  • Tozaki, T., Sato, F., Hill, E.W., Miyake, T., Endo, Y., Kakoi, H., Gawahara, H., Hirota, K., Nakano, Y., Nambo, Y., Kurosawa, M. (2011). Sequence variants at the myostatin gene locus influence the body composition of Thoroughbred horses. The Journal of Veterinary Medical Science 73: 1617–1624, https://doi.org/10.1292/jvms.11-0295
  • Tozaki, T., Hill, E.W., Hirota, K., Kakoi, H., Gawahara, H., Miyake, T., Sugita, S., Hasegawa, T., Ishida, N., Nakano, Y., Kurosawai M. (2012). A cohort study of racing performance in Japanese Thoroughbred racehorses using genome information on ECA18. Animal Genetics 43: 42–52, https://doi.org/10.1111/j.1365-2052.2011.02201.x
  • Tüten Sevim, E., Özdil, F., Özkan Ünal, E. Arat, S. (2017). Nükleer transfer ile elde edilen klon sığır ve yavrularının mtDNA ve mikrosatellit belirteçlerle karakterizasyonu. Tekirdağ Ziraat Fakültesi Dergisi 14 (2): 150-157, https://dergipark.org.tr/en/pub/jotaf/issue/29441/315432
  • Walling, G.A., Visscher, P.M., Wilson, A.D., McTeir, B.L., Simm, G., Bishop, S.C. (2004). Mapping of quantitative trait loci for growth and carcass traits in commercial sheep populations. Journal of Animal Science 82: 2234–2245, https://doi.org/10.2527/2004.8282234x
There are 42 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Raziye Işık 0000-0003-2982-6562

Fulya Özdil 0000-0002-5298-6997

Sena Meral 0000-0002-0116-6366

Publication Date May 31, 2022
Submission Date October 27, 2021
Acceptance Date January 6, 2022
Published in Issue Year 2022

Cite

APA Işık, R., Özdil, F., & Meral, S. (2022). Evaluation of Variation on Myostatin (MSTN) Gene of Turkish Donkey Populations in Thrace Region of Turkey. Tekirdağ Ziraat Fakültesi Dergisi, 19(2), 426-434. https://doi.org/10.33462/jotaf.1015587
AMA Işık R, Özdil F, Meral S. Evaluation of Variation on Myostatin (MSTN) Gene of Turkish Donkey Populations in Thrace Region of Turkey. JOTAF. May 2022;19(2):426-434. doi:10.33462/jotaf.1015587
Chicago Işık, Raziye, Fulya Özdil, and Sena Meral. “Evaluation of Variation on Myostatin (MSTN) Gene of Turkish Donkey Populations in Thrace Region of Turkey”. Tekirdağ Ziraat Fakültesi Dergisi 19, no. 2 (May 2022): 426-34. https://doi.org/10.33462/jotaf.1015587.
EndNote Işık R, Özdil F, Meral S (May 1, 2022) Evaluation of Variation on Myostatin (MSTN) Gene of Turkish Donkey Populations in Thrace Region of Turkey. Tekirdağ Ziraat Fakültesi Dergisi 19 2 426–434.
IEEE R. Işık, F. Özdil, and S. Meral, “Evaluation of Variation on Myostatin (MSTN) Gene of Turkish Donkey Populations in Thrace Region of Turkey”, JOTAF, vol. 19, no. 2, pp. 426–434, 2022, doi: 10.33462/jotaf.1015587.
ISNAD Işık, Raziye et al. “Evaluation of Variation on Myostatin (MSTN) Gene of Turkish Donkey Populations in Thrace Region of Turkey”. Tekirdağ Ziraat Fakültesi Dergisi 19/2 (May 2022), 426-434. https://doi.org/10.33462/jotaf.1015587.
JAMA Işık R, Özdil F, Meral S. Evaluation of Variation on Myostatin (MSTN) Gene of Turkish Donkey Populations in Thrace Region of Turkey. JOTAF. 2022;19:426–434.
MLA Işık, Raziye et al. “Evaluation of Variation on Myostatin (MSTN) Gene of Turkish Donkey Populations in Thrace Region of Turkey”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 19, no. 2, 2022, pp. 426-34, doi:10.33462/jotaf.1015587.
Vancouver Işık R, Özdil F, Meral S. Evaluation of Variation on Myostatin (MSTN) Gene of Turkish Donkey Populations in Thrace Region of Turkey. JOTAF. 2022;19(2):426-34.