Research Article
BibTex RIS Cite

Genetic Diversity of Tobacco mosaic virus (TMV) isolates from tobacco growing fields of Western Anatolia, Türkiye

Year 2025, Volume: 22 Issue: 1, 98 - 107
https://doi.org/10.33462/jotaf.1413398

Abstract

Tobacco mosaic virus (TMV) is an important plant virus that is common in agriculture. It is the first evidence of the existence of viruses in history. Studies on the genetic diversity of the CP gene of TMV, which plays a leading role in host interaction, are limited both in our country and around the world. Genetic diversity analyses were conducted on ten isolates of the full CP gene region of TMV obtained from the most intensive tobacco cultivation areas in our country, and compared with global isolates. TMV infection was detected in 32 out of 300 plants collected from the Aegean and Marmara regions (Çanakkale, Balıkesir, İzmir, Manisa, Uşak, Aydın and Denizli) between 2019 and 2020 using conventional molecular techniques. To genetically characterize the virus, 10 samples were selected from each region, and the complete CP gene region sequences were determined. The aligned CP gene region sequences of TMV from Türkiye and its global isolates exhibited nucleotide homology ratios ranging from 87.7% to100%, with amino acid ratios ranging from 88.7% to 100%. The Türkiye isolates displayed similarity rates of 98.5% to 100% at the nucleotide level and 98.7% and 100% at the amino acid level. In phylogenetic analysis, the 196 known isolates of TMV registered in GenBank, belong to the CP gene region, were divided into two main clades (I and II) and two subclades (Ia and Ib). Turkish isolates were clustered in the major branch with the main clade I and subclade Ia isolates. Therefore, genetic analyses were performed on the CP gene region isolates obtained from different parts of the world and a wide range of hosts, including the isolates obtained from Türkiye. The results showed high genetic stability, similar to many tobamoviruses.

Ethical Statement

There is no need to obtain permission from the ethics committee for this study.

Supporting Institution

The Scientific Research Coordination Unit of Çanakkale Onsekiz Mart University (project # FHD-2023-4437).

Project Number

FHD-2023-4437

References

  • Alishiri, A., Rakhshandehroo, F., Zamanizadeh, H. R. and Palukaitis, P. (2013). Prevalence of tobacco mosaic virus in Iran and evolutionary analyses of the coat protein gene, The Plant Pathology Journal, 29(3): 260.
  • Alonso, J. M., Górzny, M. Ł. and Bittner, A. M. (2013). The physics of tobacco mosaic virus and virus-based devices in biotechnology. Trends Biotechnology, 31(9): 530-8.
  • Balsak, S.C., Avcu, S.G. and Buzkan, N. (2022). Detection and Molecular Characterization of Tobacco mild green mosaic virus Isolates Infecting Peppers in Turkey, Journal of Agriculture and Nature, 25(2): 490-496.
  • Çulal-Kılıç, H., Çıkrıkçı, M.Ö., Yardımcı, N.2017. Determination of Tobacco mosaic virus in tobacco fields in Denizli province, Turkey. Scientific Papers. Seres A., Agronomy, LX: 215-219.
  • Drake, J. W. and Holland, J. J. (1999). Mutation rates among RNA viruses. Proceedings of the National Academy of Sciences, 96(24): 13910-13913.
  • Erdiller, G. (1969). Studies on the symptoms, agents, transmission routes, and damage levels of tobacco mosaic disease in central and eastern black sea tobacco. (PhD. Thesis) Ankara University, Graduate School of Natural and Applied Sciences, Ankara, Türkiye. (In Turkish).
  • Erkan, S. and Yorgancı, Ü. (1988). The preliminary investigations as to virus diseases on eggplants. Journal of Turkish Phytopathology, 17 (3): 91.
  • Fraile, A. and García-Arenal, F. (2018). Tobamoviruses as models for the study of virus evolution. Advances in Virus Research, 102: 89-117.
  • Fraile, A., Escriu, F., Aranda, M. A., Malpica, J. M., Gibbs, A. J. and García-Arenal, F. (1997). A century of tobamovirus evolution in an Australian population of Nicotiana glauca. Journal of Virology, 71(11): 8316–8320.
  • Garcia-Arenal, F., Fraile, A. and Malpica, J. M. (2001). Variability and genetic structure of plant virus populations. Annual Review of Phytopathology, 39: 157−186.
  • Gibbs, A. J. (1999). Evolution and origins of tobamoviruses. Philosophical Transactions of the Royal Society of London Series B, 354(1383): 593–602.
  • Goelet, P., Lomonossoff, G. P., Butler, P. J. G., Akam, M. E., Gait, M. J. and Karn, J. (1982). Nucleotide sequence of tobacco mosaic virus RNA. Proceedings of the National Academy of Sciences of the United States of America, 79: 5818–5822.
  • Gül, U., Arısoy, H., Sivük, H. and Ataseven, Y. (2009). Comparison of profitableness between tobacco and some products in scope of alternative product project. Journal of Tekirdag Agricultural Faculty, 6(3): 215-226.
  • Güller, A., Usta, M. and Randa-Zelyüt, F. (2023). Genetic diversity and population structure of tomato brown rugose fruit virus (ToBRFV) variants from Antalya province, Turkey. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(3): 13356.
  • Karanfil, A. (2022). Prevalence and Genetic Diversity of Tobacco Mosaic Virus Isolates Infecting Squash Plants in Marmara Region of Turkey. Journal of Advanced Research in Natural and Applied Sciences, 8(2): 163-170.
  • Karanfil, A., Randa-Zelyüt, F. and Korkmaz, S. (2023). Population structure and genetic diversity of tobacco mild green mosaic virus variants in Western Anatolia of Turkey. Physiological and Molecular Plant Pathology, 125: 102008.
  • Kimaru, S. L., Kilalo, D. C., Muiru, W. M., Kimenju, J. W. and Thuku, C. R. (2020). Molecular detection of cucumber mosaic virus and tobacco mosaic virus infecting African Nightshades (Solanum scabrum Miller). International Journal of Agronomy, 2020: 8864499, 1-7.
  • King, A.M., Lefkowitz, E., Adams, M. J. and Carstens, E. B. (2012). Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses, Elsevier, 9.
  • Letunic, I. and Bork, P. (2021). Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1): W293–W296.
  • Li, R., Mock, R., Huang, Q., Abad, J., Hartung, J. and Kinard, G. (2008). A reliable and inexpensive method of nucleicacid extraction for the PCR-based detection of diverse plant pathogens. Journal of Virological Methods, 154(1-2): 48–55.
  • Luria, N., Smith, E., Reingold, V., Bekelman, I., Lapidot, M., Levin, I., Elad, N., Tam, Y., Sela, N., Abu-Ras, A., Ezra, N., Haberman, A., Yitzhak, L., Lachman, O. and Dombrovsky, A. (2017). A new Israeli Tobamovirus isolate infects tomato plants harboring Tm-22 resistance genes. PLOS ONE, 12(1): e0170429.
  • Malpica, J. M., Fraile, A., Moreno, I., Obies, C. I., Drake, J. W. and García-Arenal, F. (2002). The rate and character of spontaneous mutation in an RNA virus. Genetics, 162(4): 1505-1511.
  • Melcher, U., Lewandowski D. J. and Dawson, W. O. (2021). Tobamoviruses (Virgaviridae), Elsevier, 734-742, Amsterdam, The Netherlands.
  • Muhire, B. M., Varsani, A. and Martin, D. P. (2014). SDT: A Virus Classification Tool Based on Pairwise Sequence Alignment and Identity Calculation. PLoS ONE, 9(9): e108277.
  • Nichol, S. (1996). Life on the edge of catastrophe. Nature, 384: 218–219.
  • Okada, Y. (1999). Historical overview of research on the tobacco mosaic virus genome: genome organization, infectivity and gene manipulation. Philosophical Transactions of The Royal Society of London, Series B, Biological Sciences, 29; 354(1383): 569-82.
  • Randa-Zelyüt, F., Santosa, A. I. and Karanfil, A. (2022). ‘Candidatus Phytoplasma solani’ (Subgroup 16SrXII-A) Associated with Nicotiana tabacum leaf abnormality in Turkey. Journal of Tekirdag Agricultural Faculty, 19(3): 571-581.
  • Sacristán, S, Díaz, M., Fraile, A. and García-Arenal, F. (2011). Contact transmission of Tobacco mosaic virus: a quantitative analysis of parameters relevant for virus evolution. Journal of Virology, 85(10): 4974-81.
  • Sanjuán, R., Agudelo-Romero, P. and Elena, S. F. (2009). Upper-limit mutation rate estimation for a plant RNA virus. Biology Letters, 5(3): 394-396.
  • Sanjuán, R., Nebot, M. R., Chirico, N., Mansky, L. M. and Belshaw, R. (2010). Viral mutation rates. Journal of Virology, 84(19): 9733-9748.
  • Skotnicki, M. L., MacKenzie, A. M., Ding, S. W., Mo, J. Q. and Gibbs, A. J. (1993). RNA hybrid mismatch polymorphisms in Australian populations of turnip yellow mosaic tymovirus. Archives of Virology, 132: 83–99.
  • Smith, E. and Dombrovsky, A. (2020). Aspects in Tobamovirus Management in Intensive Agriculture. IntechOpen. Edited by Snježana Topolovec-Pintarić, Zagreb, Crotia. https://doi.org/10.5772/intechopen.87101
  • Tamura, K., Stecher, G. and Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 25;38(7): 3022-3027.
  • Tamura, T. (1992). Estimation of the number of nucleotide substitutions when there are strong 631 transition-transversion and G + C-content biases. Molecular Biology and Evolution, 9: 678–687.
  • TURKSTAT (2023). https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr (Accessed Date: 20 September 2023)
  • Zaitlin, M. (1999). Elucidation of the genome organization of tobacco mosaic virus. Evolution and origins of tobamoviruses. Philosophical Transactions of the Royal Society of London. Series B, 354: 587-591.
  • Zamfir, A. D., Babalola, B. M., Fraile, A., McLeish, M. and Garcia-Arenal, F. (2023). Tobamoviruses show broad host ranges and little genetic diversity among four habitat types of a heterogeneous ecosystem. Phytopathology, 113(9): 1697-1707.

Batı Anadolu Bölgesi Tütün Üretim Alanlarından Elde Edilen Tütün Mozaik Virüsü (TMV) İzolatlarının Genetik Çeşitliliği

Year 2025, Volume: 22 Issue: 1, 98 - 107
https://doi.org/10.33462/jotaf.1413398

Abstract

Tütün mozaik virüsü (TMV), tarımda yaygın olarak görülen önemli bir bitki virüsüdür. Tarihte virüslerin varlığının ilk kanıtıdır. Konakçı etkileşiminde öncü rol oynayan TMV' nin CP geninin genetik çeşitliliğine ilişkin çalışmalar hem ülkemizde hem de dünyada sınırlıdır. Bu çalışma kapsamında, ülkemizin en yoğun tütün üretimi yapılan bölgelerinden elde edilen 10 TMV izolatı ile gen bankasında bulunan küresel varyantların genetik çeşitlilik analizleri yapılması gerçekleştirilmiştir. Ege ve Marmara bölgelerinden (Çanakkale, Balıkesir, İzmir, Manisa, Uşak, Aydın and Denizli) 2019-2020 yılları arasında toplanan 300 bitkiden 32'sinde konvansiyonel moleküler teknikler kullanılarak TMV enfeksiyonu tespit edilmiştir. Genetik karakterizasyon için her bölgeyi temsil edecek şekilde 10 TMV izolatı seçilerek CP gen bölgesine ait nükleotid dizilimlerinin tamamı elde edilmiştir. Türk ve global TMV izolatlarının CP gen bölgesi dizilerinin çoklu dizi analizleri sonucunda nükleotid benzerlik oranları %87.7 ile 100 arasında, amino asit benzerlik oranlarının ise %88.7 ile 100 arasında değişen değerler gösterdiği belirlenmiştir. Türk izolatlarının kendi içlerinde ise nükleotit düzeyinde %98.5 ile 100, amino asit düzeyinde ise %98.7 ile 100 arasında benzerlik oranları gösterdiği görülmüştür. Gen bankasında kayıtlı tüm bilinen TMV izolatlarının (n=196) CP gen bölgesine göre gerçekleştirilen filogenetik analizleri sonucunda iki ana gruba (I ve II) ve bunlardan da birincisinin de iki alt gruba (Ia ve Ib) ayrıldığı belirlenmiştir. Türk izolatlarının Ia alt grubu içinde I ana grubuna ait olduğu görülmüştür. Bu analizler ile dünyanın farklı coğrafyalarından ve geniş bir konukçu yelpazesinden elde edilen izolatların yanı sıra Türkiye'den elde edilen izolatların da CP gen bölgesine göre genetik analizleri gerçekleştirilmiştir. Gerçekleştirilen bu çalışmaların sonucunda; birçok tobamovirus’larda olduğu gibi TMV’nin de yüksek genetik kararlılık gösterdiği belirlenmiştir.

Project Number

FHD-2023-4437

References

  • Alishiri, A., Rakhshandehroo, F., Zamanizadeh, H. R. and Palukaitis, P. (2013). Prevalence of tobacco mosaic virus in Iran and evolutionary analyses of the coat protein gene, The Plant Pathology Journal, 29(3): 260.
  • Alonso, J. M., Górzny, M. Ł. and Bittner, A. M. (2013). The physics of tobacco mosaic virus and virus-based devices in biotechnology. Trends Biotechnology, 31(9): 530-8.
  • Balsak, S.C., Avcu, S.G. and Buzkan, N. (2022). Detection and Molecular Characterization of Tobacco mild green mosaic virus Isolates Infecting Peppers in Turkey, Journal of Agriculture and Nature, 25(2): 490-496.
  • Çulal-Kılıç, H., Çıkrıkçı, M.Ö., Yardımcı, N.2017. Determination of Tobacco mosaic virus in tobacco fields in Denizli province, Turkey. Scientific Papers. Seres A., Agronomy, LX: 215-219.
  • Drake, J. W. and Holland, J. J. (1999). Mutation rates among RNA viruses. Proceedings of the National Academy of Sciences, 96(24): 13910-13913.
  • Erdiller, G. (1969). Studies on the symptoms, agents, transmission routes, and damage levels of tobacco mosaic disease in central and eastern black sea tobacco. (PhD. Thesis) Ankara University, Graduate School of Natural and Applied Sciences, Ankara, Türkiye. (In Turkish).
  • Erkan, S. and Yorgancı, Ü. (1988). The preliminary investigations as to virus diseases on eggplants. Journal of Turkish Phytopathology, 17 (3): 91.
  • Fraile, A. and García-Arenal, F. (2018). Tobamoviruses as models for the study of virus evolution. Advances in Virus Research, 102: 89-117.
  • Fraile, A., Escriu, F., Aranda, M. A., Malpica, J. M., Gibbs, A. J. and García-Arenal, F. (1997). A century of tobamovirus evolution in an Australian population of Nicotiana glauca. Journal of Virology, 71(11): 8316–8320.
  • Garcia-Arenal, F., Fraile, A. and Malpica, J. M. (2001). Variability and genetic structure of plant virus populations. Annual Review of Phytopathology, 39: 157−186.
  • Gibbs, A. J. (1999). Evolution and origins of tobamoviruses. Philosophical Transactions of the Royal Society of London Series B, 354(1383): 593–602.
  • Goelet, P., Lomonossoff, G. P., Butler, P. J. G., Akam, M. E., Gait, M. J. and Karn, J. (1982). Nucleotide sequence of tobacco mosaic virus RNA. Proceedings of the National Academy of Sciences of the United States of America, 79: 5818–5822.
  • Gül, U., Arısoy, H., Sivük, H. and Ataseven, Y. (2009). Comparison of profitableness between tobacco and some products in scope of alternative product project. Journal of Tekirdag Agricultural Faculty, 6(3): 215-226.
  • Güller, A., Usta, M. and Randa-Zelyüt, F. (2023). Genetic diversity and population structure of tomato brown rugose fruit virus (ToBRFV) variants from Antalya province, Turkey. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(3): 13356.
  • Karanfil, A. (2022). Prevalence and Genetic Diversity of Tobacco Mosaic Virus Isolates Infecting Squash Plants in Marmara Region of Turkey. Journal of Advanced Research in Natural and Applied Sciences, 8(2): 163-170.
  • Karanfil, A., Randa-Zelyüt, F. and Korkmaz, S. (2023). Population structure and genetic diversity of tobacco mild green mosaic virus variants in Western Anatolia of Turkey. Physiological and Molecular Plant Pathology, 125: 102008.
  • Kimaru, S. L., Kilalo, D. C., Muiru, W. M., Kimenju, J. W. and Thuku, C. R. (2020). Molecular detection of cucumber mosaic virus and tobacco mosaic virus infecting African Nightshades (Solanum scabrum Miller). International Journal of Agronomy, 2020: 8864499, 1-7.
  • King, A.M., Lefkowitz, E., Adams, M. J. and Carstens, E. B. (2012). Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses, Elsevier, 9.
  • Letunic, I. and Bork, P. (2021). Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1): W293–W296.
  • Li, R., Mock, R., Huang, Q., Abad, J., Hartung, J. and Kinard, G. (2008). A reliable and inexpensive method of nucleicacid extraction for the PCR-based detection of diverse plant pathogens. Journal of Virological Methods, 154(1-2): 48–55.
  • Luria, N., Smith, E., Reingold, V., Bekelman, I., Lapidot, M., Levin, I., Elad, N., Tam, Y., Sela, N., Abu-Ras, A., Ezra, N., Haberman, A., Yitzhak, L., Lachman, O. and Dombrovsky, A. (2017). A new Israeli Tobamovirus isolate infects tomato plants harboring Tm-22 resistance genes. PLOS ONE, 12(1): e0170429.
  • Malpica, J. M., Fraile, A., Moreno, I., Obies, C. I., Drake, J. W. and García-Arenal, F. (2002). The rate and character of spontaneous mutation in an RNA virus. Genetics, 162(4): 1505-1511.
  • Melcher, U., Lewandowski D. J. and Dawson, W. O. (2021). Tobamoviruses (Virgaviridae), Elsevier, 734-742, Amsterdam, The Netherlands.
  • Muhire, B. M., Varsani, A. and Martin, D. P. (2014). SDT: A Virus Classification Tool Based on Pairwise Sequence Alignment and Identity Calculation. PLoS ONE, 9(9): e108277.
  • Nichol, S. (1996). Life on the edge of catastrophe. Nature, 384: 218–219.
  • Okada, Y. (1999). Historical overview of research on the tobacco mosaic virus genome: genome organization, infectivity and gene manipulation. Philosophical Transactions of The Royal Society of London, Series B, Biological Sciences, 29; 354(1383): 569-82.
  • Randa-Zelyüt, F., Santosa, A. I. and Karanfil, A. (2022). ‘Candidatus Phytoplasma solani’ (Subgroup 16SrXII-A) Associated with Nicotiana tabacum leaf abnormality in Turkey. Journal of Tekirdag Agricultural Faculty, 19(3): 571-581.
  • Sacristán, S, Díaz, M., Fraile, A. and García-Arenal, F. (2011). Contact transmission of Tobacco mosaic virus: a quantitative analysis of parameters relevant for virus evolution. Journal of Virology, 85(10): 4974-81.
  • Sanjuán, R., Agudelo-Romero, P. and Elena, S. F. (2009). Upper-limit mutation rate estimation for a plant RNA virus. Biology Letters, 5(3): 394-396.
  • Sanjuán, R., Nebot, M. R., Chirico, N., Mansky, L. M. and Belshaw, R. (2010). Viral mutation rates. Journal of Virology, 84(19): 9733-9748.
  • Skotnicki, M. L., MacKenzie, A. M., Ding, S. W., Mo, J. Q. and Gibbs, A. J. (1993). RNA hybrid mismatch polymorphisms in Australian populations of turnip yellow mosaic tymovirus. Archives of Virology, 132: 83–99.
  • Smith, E. and Dombrovsky, A. (2020). Aspects in Tobamovirus Management in Intensive Agriculture. IntechOpen. Edited by Snježana Topolovec-Pintarić, Zagreb, Crotia. https://doi.org/10.5772/intechopen.87101
  • Tamura, K., Stecher, G. and Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 25;38(7): 3022-3027.
  • Tamura, T. (1992). Estimation of the number of nucleotide substitutions when there are strong 631 transition-transversion and G + C-content biases. Molecular Biology and Evolution, 9: 678–687.
  • TURKSTAT (2023). https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr (Accessed Date: 20 September 2023)
  • Zaitlin, M. (1999). Elucidation of the genome organization of tobacco mosaic virus. Evolution and origins of tobamoviruses. Philosophical Transactions of the Royal Society of London. Series B, 354: 587-591.
  • Zamfir, A. D., Babalola, B. M., Fraile, A., McLeish, M. and Garcia-Arenal, F. (2023). Tobamoviruses show broad host ranges and little genetic diversity among four habitat types of a heterogeneous ecosystem. Phytopathology, 113(9): 1697-1707.
There are 37 citations in total.

Details

Primary Language English
Subjects Phytopathology
Journal Section Articles
Authors

Filiz Randa Zelyüt 0000-0002-1366-4389

Ali Karanfil 0000-0002-4503-6344

Savaş Korkmaz 0000-0001-8227-3800

Project Number FHD-2023-4437
Early Pub Date January 14, 2025
Publication Date
Submission Date January 2, 2024
Acceptance Date October 17, 2024
Published in Issue Year 2025 Volume: 22 Issue: 1

Cite

APA Randa Zelyüt, F., Karanfil, A., & Korkmaz, S. (2025). Genetic Diversity of Tobacco mosaic virus (TMV) isolates from tobacco growing fields of Western Anatolia, Türkiye. Tekirdağ Ziraat Fakültesi Dergisi, 22(1), 98-107. https://doi.org/10.33462/jotaf.1413398
AMA Randa Zelyüt F, Karanfil A, Korkmaz S. Genetic Diversity of Tobacco mosaic virus (TMV) isolates from tobacco growing fields of Western Anatolia, Türkiye. JOTAF. January 2025;22(1):98-107. doi:10.33462/jotaf.1413398
Chicago Randa Zelyüt, Filiz, Ali Karanfil, and Savaş Korkmaz. “Genetic Diversity of Tobacco Mosaic Virus (TMV) Isolates from Tobacco Growing Fields of Western Anatolia, Türkiye”. Tekirdağ Ziraat Fakültesi Dergisi 22, no. 1 (January 2025): 98-107. https://doi.org/10.33462/jotaf.1413398.
EndNote Randa Zelyüt F, Karanfil A, Korkmaz S (January 1, 2025) Genetic Diversity of Tobacco mosaic virus (TMV) isolates from tobacco growing fields of Western Anatolia, Türkiye. Tekirdağ Ziraat Fakültesi Dergisi 22 1 98–107.
IEEE F. Randa Zelyüt, A. Karanfil, and S. Korkmaz, “Genetic Diversity of Tobacco mosaic virus (TMV) isolates from tobacco growing fields of Western Anatolia, Türkiye”, JOTAF, vol. 22, no. 1, pp. 98–107, 2025, doi: 10.33462/jotaf.1413398.
ISNAD Randa Zelyüt, Filiz et al. “Genetic Diversity of Tobacco Mosaic Virus (TMV) Isolates from Tobacco Growing Fields of Western Anatolia, Türkiye”. Tekirdağ Ziraat Fakültesi Dergisi 22/1 (January 2025), 98-107. https://doi.org/10.33462/jotaf.1413398.
JAMA Randa Zelyüt F, Karanfil A, Korkmaz S. Genetic Diversity of Tobacco mosaic virus (TMV) isolates from tobacco growing fields of Western Anatolia, Türkiye. JOTAF. 2025;22:98–107.
MLA Randa Zelyüt, Filiz et al. “Genetic Diversity of Tobacco Mosaic Virus (TMV) Isolates from Tobacco Growing Fields of Western Anatolia, Türkiye”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 22, no. 1, 2025, pp. 98-107, doi:10.33462/jotaf.1413398.
Vancouver Randa Zelyüt F, Karanfil A, Korkmaz S. Genetic Diversity of Tobacco mosaic virus (TMV) isolates from tobacco growing fields of Western Anatolia, Türkiye. JOTAF. 2025;22(1):98-107.