BibTex RIS Cite

THE GRAPHENE OXIDE EFFECT ON THE OPTICAL PROPERTIES OF NIPA-GO COMPOSITES

Year 2016, Volume: 3 Issue: 3, 463 - 478, 08.01.2017
https://doi.org/10.18596/jotcsa.48193

Abstract

Poly (N-isopropylacrylamide) (NIPA)-Graphene oxide (GO) composites were polymerizated radically with various contents of GO solution. The gelation process was performed by Steady State Fluorescence Spectroscopy. The results of gelation were modelled by Percolation and Classical Model, respectively.  Our results show that the critical exponent of gel fraction is agree with percolation model till 25 µl content of GO solution. On the other hand, the optical energy band gap of the NIPA-GO composite was decided by using UV spectroscopy from the absorbance measurement in the range of 200-800 nm. The effect of graphene oxide dopant on the gap has been examined for NIPA-GO composites. In conclusion, their gelation process and optical energy band gap behavior were investigated and correlated to the GO content in the composites.

References

  • Huang Y, Zeng M, Ren J, Wang J, Fan L, Xu Q, Preparation and swelling properties of graphene oxide/poly(acrylic acid-co-acrylamide) super-absorbent hydrogel nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012 May; 401: 97- 106. DOI:10.1016/j.colsurfa.2012.03.031.
  • Zhang L, Wang Z, Xu C, Li Y, Gao J, Wang W, Lui Y, High strength graphene oxide/polyvinyl alcohol composite hydrogels. Journal Material Chemistry, 2011 April; 2: 10399- 10406. DOI: 10.1039/C0JM04043F.
  • Shen J, Yan B, Li Ti, Long Y, Li N, Ye M, Study on graphene-oxide-based polyacrylamide composite hydrogels. Composites: Part A, 2012 September; 43: 1476- 1481. DOI:10.1016/j.compositesa.2012.04.006.
  • Wang J, Liu C, Shuai Y, Cui X, Nie L, Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels, Colloids and Surfaces B: Biointerfaces, 2014 January; 113: 223- 229. DOI:10.1016/j.colsurfb.2013.09.009.
  • Dušek K, Editor, Coexistence of Phases and the Nature of First- Order Phase Transition in Poly- N- isopropylacrylamide Gels. Hirotsu S: Advanced Polymer Science, Springer Berlin Heidelberg; 1993. 110: 1- 26 p. ISBN: 978-3-540-56970-1.
  • Yang Y, Song X, Yuan L, Li M, Liu J, Ji R, Zhao H, Synthesis of PNIPAM polymer brushes on reduced graphene oxide based on click chemistry and RAFT polymerization. Journal of Polymer Science, Polymer Chemistry, 2012 October; 50: 329- 337. DOI: 10. 1002/pola.25036.
  • Zhu S, Li J, Chen Y, Chen Z, Chen C, Li Y, Cui Z, Zhang D, Grafting of graphene oxide with stimuli-responsive polymers by using ATRP for drug release, Journal of Nanoparticle Research, 2012 September; 14: 1132- 42. DOI: 10.1007/s11051-012-1132-x.
  • Bai H, Li C, Wang X, Shi G, A pH-sensitive graphene oxide composite hydrogel. Chemistry Communication, 2010 February; 46: 2376-78, DOI: 10.1039/C000051E.
  • Alzari V, Nuvoli D, Scognamillo S, Piccinini M, Gioffredi E, Malucelli G, Marceddu S, Sechi M, Sanna V, Mariani A, Graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-isopropylacrylamide) prepared by frontal polymerization, Journal of Materials Chemistry, 2011 April; 21: 8727-33, DOI: 10.1039/C1JM11076D.
  • Dong J, Weng J, Dai L, The effect of graphene on the lower critical solution temperature of poly (N-isopropylacrylamide). Carbon, 2013 February; 52: 326- 36, doi:10.1016/j.carbon.2012.09.034.
  • GhavamiNejad A, Hashmi S, Joh H, Lee S, Lee Y, Vatankhah-Varnoosfaderani M, Stadler F.J, Network formation in graphene oxide composites with surface grafted PNIPAM chains in aqueous solution characterized by rheological experiments, Physical Chemistry Chemical Physics, 2014 March; 16: 8675- 85, DOI: 10.1039/C3CP55092C.
  • Kundu A, Nandi S, Das P, Nandi AK, Fluorescent Graphene Oxide via Polymer Grafting: An Efficient Nanocarrier for Both Hydrophilic and Hydrophobic Drugs, ACS Applied Materials and Interfaces, 2015 January; 7(6):3512- 23. DOI: 10. 1021/am507110r.
  • Evingur GA, Aktas DK, Pekcan Ö, Steady state fluorescence technique for studying phase transitions in PAAm- PNIPA mixture, Phase Transitions, 2009 January; 82(1): 53–65. DOI: 10.1080/01411590802296294.
  • Aktas DK, Evingur GA, Pekcan Ö, Universal behavior of gel formation from acrylamide-carrageenan mixture around the gel point: A fluorescence study, Journal Biomolecular Structure and Dynamics, 2006 March, 24(1), 83–90, DOI:10.1080/07391102.2006.10507102.
  • Aktas DK, Evingur GA, Pekcan Ö, Critical exponents of gelation and conductivity in Polyacrylamide gels doped by multiwalled carbon nanotubes, Composite Interfaces, 2012 April; 17: 301–318, DOI:10.1163/092764410X495243.
  • Evingur GA, Pekcan Ö, PAAm- GO Composites: Optical and mechanical properties with various GO contents, 46th IUPAC World Polymer Congress (Macro 2016) 17-21 July 2016, İstanbul-Turkey.
  • http://www.graphenea.com/
  • Evingur GA, Tezcan F, Erim FB, Pekcan Ö, Monitoring the gelation of polyacrylamide–sodium alginate composite by fluorescence technique, Phase Transitions, 2012 December; 85(6): 530-541, DOI: 10.1080/01411594.2011.629363.
  • Ashokkumar M, Grieser F, Sonophotoluminescence: pyranine emission induced by ultrasound, Chemical Communication, 1998; 5: 561- 62. DOI: 10.1039/A708708J.
  • Yılmaz Y, Uysal N, Gelir A, Güney O, Aktaş DK, Göğebakan S, Öner A, Elucidation of multiple- point interactions of pyranine fluoroprobe during the gelation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009 March, 72: 332- 38, DOI:10.1016/j.saa.2008.09.012.
  • Stauffer D, Coniglio A, Adam M, Gelation and Critical Phenomena, Advances in Polymer Science, 1982, 44: 103- 158, DOI: 10.1007/3-540-11471-8_4.
  • Stauffer D, Introduction to Percolation Theory, Taylor and Francis, London; 2 edition; 1994 July. ISBN-10: 0748402535.
  • de Gennes PG, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca; 1979 November. ISBN-10: 080141203X.
  • ,
  • Yılmaz Y, Erzan A, Pekcan Ö, Critical exponents and fractal dimension at the sol- gel phase transition via in situ fluorescence experiments, Physical Review E, 1998; 58: 7487- 7491, DOI: http://dx.doi.org/10.1103/PhysRevE.58.7487.
  • Yılmaz Y, Erzan A, Pekcan Ö, Slow Release percolate near glass transition, The European Physical Journal E, 2002; 9: 135- 141, DOI: 10.1140/epje/i2002-10069-1.
  • Aharony A, Universal critical amplitude ratios for percolation, Physical Review B, 1980; 22: 400-414. DOI: 10.1103/PhysRevB.22.400
  • Ghobadi N,Band gap determination using absorption spectrum fitting procedure, International Nano Letters, 2013 December; 3:2, DOI: 10.1186/2228-5326-3-2.
  • Dharma J, Simple Method of Measuring the Band Gap Energy Value of TiO2 in the Powder Form using a UV/Vis/NIR Spectrometer, Perkin Elmer Application note, PerkinElmer, Inc. Shelton, CT USA, 1-4.
Year 2016, Volume: 3 Issue: 3, 463 - 478, 08.01.2017
https://doi.org/10.18596/jotcsa.48193

Abstract

References

  • Huang Y, Zeng M, Ren J, Wang J, Fan L, Xu Q, Preparation and swelling properties of graphene oxide/poly(acrylic acid-co-acrylamide) super-absorbent hydrogel nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012 May; 401: 97- 106. DOI:10.1016/j.colsurfa.2012.03.031.
  • Zhang L, Wang Z, Xu C, Li Y, Gao J, Wang W, Lui Y, High strength graphene oxide/polyvinyl alcohol composite hydrogels. Journal Material Chemistry, 2011 April; 2: 10399- 10406. DOI: 10.1039/C0JM04043F.
  • Shen J, Yan B, Li Ti, Long Y, Li N, Ye M, Study on graphene-oxide-based polyacrylamide composite hydrogels. Composites: Part A, 2012 September; 43: 1476- 1481. DOI:10.1016/j.compositesa.2012.04.006.
  • Wang J, Liu C, Shuai Y, Cui X, Nie L, Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels, Colloids and Surfaces B: Biointerfaces, 2014 January; 113: 223- 229. DOI:10.1016/j.colsurfb.2013.09.009.
  • Dušek K, Editor, Coexistence of Phases and the Nature of First- Order Phase Transition in Poly- N- isopropylacrylamide Gels. Hirotsu S: Advanced Polymer Science, Springer Berlin Heidelberg; 1993. 110: 1- 26 p. ISBN: 978-3-540-56970-1.
  • Yang Y, Song X, Yuan L, Li M, Liu J, Ji R, Zhao H, Synthesis of PNIPAM polymer brushes on reduced graphene oxide based on click chemistry and RAFT polymerization. Journal of Polymer Science, Polymer Chemistry, 2012 October; 50: 329- 337. DOI: 10. 1002/pola.25036.
  • Zhu S, Li J, Chen Y, Chen Z, Chen C, Li Y, Cui Z, Zhang D, Grafting of graphene oxide with stimuli-responsive polymers by using ATRP for drug release, Journal of Nanoparticle Research, 2012 September; 14: 1132- 42. DOI: 10.1007/s11051-012-1132-x.
  • Bai H, Li C, Wang X, Shi G, A pH-sensitive graphene oxide composite hydrogel. Chemistry Communication, 2010 February; 46: 2376-78, DOI: 10.1039/C000051E.
  • Alzari V, Nuvoli D, Scognamillo S, Piccinini M, Gioffredi E, Malucelli G, Marceddu S, Sechi M, Sanna V, Mariani A, Graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-isopropylacrylamide) prepared by frontal polymerization, Journal of Materials Chemistry, 2011 April; 21: 8727-33, DOI: 10.1039/C1JM11076D.
  • Dong J, Weng J, Dai L, The effect of graphene on the lower critical solution temperature of poly (N-isopropylacrylamide). Carbon, 2013 February; 52: 326- 36, doi:10.1016/j.carbon.2012.09.034.
  • GhavamiNejad A, Hashmi S, Joh H, Lee S, Lee Y, Vatankhah-Varnoosfaderani M, Stadler F.J, Network formation in graphene oxide composites with surface grafted PNIPAM chains in aqueous solution characterized by rheological experiments, Physical Chemistry Chemical Physics, 2014 March; 16: 8675- 85, DOI: 10.1039/C3CP55092C.
  • Kundu A, Nandi S, Das P, Nandi AK, Fluorescent Graphene Oxide via Polymer Grafting: An Efficient Nanocarrier for Both Hydrophilic and Hydrophobic Drugs, ACS Applied Materials and Interfaces, 2015 January; 7(6):3512- 23. DOI: 10. 1021/am507110r.
  • Evingur GA, Aktas DK, Pekcan Ö, Steady state fluorescence technique for studying phase transitions in PAAm- PNIPA mixture, Phase Transitions, 2009 January; 82(1): 53–65. DOI: 10.1080/01411590802296294.
  • Aktas DK, Evingur GA, Pekcan Ö, Universal behavior of gel formation from acrylamide-carrageenan mixture around the gel point: A fluorescence study, Journal Biomolecular Structure and Dynamics, 2006 March, 24(1), 83–90, DOI:10.1080/07391102.2006.10507102.
  • Aktas DK, Evingur GA, Pekcan Ö, Critical exponents of gelation and conductivity in Polyacrylamide gels doped by multiwalled carbon nanotubes, Composite Interfaces, 2012 April; 17: 301–318, DOI:10.1163/092764410X495243.
  • Evingur GA, Pekcan Ö, PAAm- GO Composites: Optical and mechanical properties with various GO contents, 46th IUPAC World Polymer Congress (Macro 2016) 17-21 July 2016, İstanbul-Turkey.
  • http://www.graphenea.com/
  • Evingur GA, Tezcan F, Erim FB, Pekcan Ö, Monitoring the gelation of polyacrylamide–sodium alginate composite by fluorescence technique, Phase Transitions, 2012 December; 85(6): 530-541, DOI: 10.1080/01411594.2011.629363.
  • Ashokkumar M, Grieser F, Sonophotoluminescence: pyranine emission induced by ultrasound, Chemical Communication, 1998; 5: 561- 62. DOI: 10.1039/A708708J.
  • Yılmaz Y, Uysal N, Gelir A, Güney O, Aktaş DK, Göğebakan S, Öner A, Elucidation of multiple- point interactions of pyranine fluoroprobe during the gelation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009 March, 72: 332- 38, DOI:10.1016/j.saa.2008.09.012.
  • Stauffer D, Coniglio A, Adam M, Gelation and Critical Phenomena, Advances in Polymer Science, 1982, 44: 103- 158, DOI: 10.1007/3-540-11471-8_4.
  • Stauffer D, Introduction to Percolation Theory, Taylor and Francis, London; 2 edition; 1994 July. ISBN-10: 0748402535.
  • de Gennes PG, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca; 1979 November. ISBN-10: 080141203X.
  • ,
  • Yılmaz Y, Erzan A, Pekcan Ö, Critical exponents and fractal dimension at the sol- gel phase transition via in situ fluorescence experiments, Physical Review E, 1998; 58: 7487- 7491, DOI: http://dx.doi.org/10.1103/PhysRevE.58.7487.
  • Yılmaz Y, Erzan A, Pekcan Ö, Slow Release percolate near glass transition, The European Physical Journal E, 2002; 9: 135- 141, DOI: 10.1140/epje/i2002-10069-1.
  • Aharony A, Universal critical amplitude ratios for percolation, Physical Review B, 1980; 22: 400-414. DOI: 10.1103/PhysRevB.22.400
  • Ghobadi N,Band gap determination using absorption spectrum fitting procedure, International Nano Letters, 2013 December; 3:2, DOI: 10.1186/2228-5326-3-2.
  • Dharma J, Simple Method of Measuring the Band Gap Energy Value of TiO2 in the Powder Form using a UV/Vis/NIR Spectrometer, Perkin Elmer Application note, PerkinElmer, Inc. Shelton, CT USA, 1-4.
There are 29 citations in total.

Details

Journal Section Articles
Authors

Gülşen Akın Evingur

Publication Date January 8, 2017
Submission Date August 19, 2016
Published in Issue Year 2016 Volume: 3 Issue: 3

Cite

Vancouver Akın Evingur G. THE GRAPHENE OXIDE EFFECT ON THE OPTICAL PROPERTIES OF NIPA-GO COMPOSITES. JOTCSA. 2017;3(3):463-78.