Research Article
BibTex RIS Cite

EFFECT OF ANNEALING TEMPERATURES ON THE CRYSTALLIZATION AND PHOTOCATALYTIC ACTIVITY OF MICRO-NANOPOROUS TiO2 FILMS PRODUCED BY ELECTROCHEMICAL ANODIZATION

Year 2018, Volume: 5 Issue: 1, 85 - 92, 15.12.2017
https://doi.org/10.18596/jotcsa.370781

Abstract



In this study, micro-nanoporous
TiO2 films were prepared by electrochemical anodization of titanium
(Gr-2) in an aqueous solution containing 0.5 wt. % HF solution at a constant
potential of 30 V and then annealed in ambient air at 500, 600, 700 and 800
°C for 2 h to obtain crystalline
structures. The crystalline phase and surface morphology of the samples were
characterized by X-ray diffraction (XRD) and scanning electron microscope
(SEM). The photocatalytic performances of the samples were evaluated by the
photocatalytic degradation of aqueous methylene blue (MB) solutions under UV
light illumination for different periods. XRD results indicated that at
annealing temperatures higher than 600°C, anatase started to transform into
rutile. Increasing annealing temperatures resulted in reduced micro-nanopores
diameter and increased wall thickness. At 800
°C, the structure completely
disappeared.
The results demonstrated
that
changes in both the
crystalline structure and surface morphology have a strong influence on the
photoactivity of the
nanostructured TiO2
films.

References

  • Ahmed M.A., 2012, Synthesis and structural features of mesoporous NiO/TiO2 nanocomposites prepared by sol–gel method for photodegradation of methylene blue dye, J. Photochem. Photobiol. A 238 63–70.
  • Beltran A., Gracia L., Andres J., 2006, Density functional theory study of the brookite surfaces and phase transitions between natural titania polymorphs, J. Phys. Chem. B 46 23417-23423.
  • Chen X.B., Mao S.S., 2007, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev. 107 2891.
  • Dikici, T, Yildirim, S., Yurddaskal, M., Erol, M., Yigit, R., Toparli, M. and Celik, E., 2015, A comparative study on the photocatalytic activities of microporous and nanoporous TiO2 layers prepared by electrochemical anodization, Surf. & Coat. Tech. 263 1.
  • Fujishima A., Honda K., 1972, Nature 238 637.
  • Fujishima A., Rao T.N., Tryk D.A., 2000, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C Rev. 1 1–21.
  • Gong D., Grimes C.A., Varghese O.K., Hu W.C., Singh R.S., Chen Z., Dickey E.C., 2001, J. Mater. Res. 16 3331.
  • Indira K., Ningshen S., Mudali U.K., Rajendran N., 2012, Effect of anodization parameters on the structural morphology of titanium in fluoride containing electrolytes, Mater. Charac.71 58-65.
  • Kenanakis G., Vernardou D., Dalamagkas A., Katsarakis N., 2015, Photocatalytic and electrooxidation properties of TiO2 thin films deposited by sol–gel Catal. Today, 240, 146-152
  • Komarov F.F., Vlasukova L.A., Milchanin O.M., Gaiduk P.I., Yuvchenko V.N., Grechnyi S.S., 2005, Ion-beam formation of nanopores and nanoclusters in SiO2, Vacuum 78 361.
  • Linsebigler A.L., Lu G.Q., Yates J.T., 1995, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev. 95 735–758.
  • Liu Z.Y., Sun D.D., Guo P., Leckie J.O., 2007, An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method, Nano Lett. 7 1081–1085.
  • Liu Z.Y., Zhang X.T., Nishimoto S., Jin M., Tryk D.A., Murakami T., Fujishima A., 2008, Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol, J. Phys. Chem. C 112 253-259.
  • Masahashi N., Mizukoshi Y., Semboshi S., Ohtsu N., 2009, Enhanced photocatalytic activity of rutile TiO2 prepared by anodic oxidation in a high concentration sulfuric acid electrolyte, Appl. Catal. B: Environ. l 90 255-261.
  • Matsumoto Y., Koinuma M., Iwanaga Y., Sato T., Ida S., 2009, N Doping of oxide nanosheets, J. Am. Chem. Soc. 131 6644–6645
  • Pan J.H., Lee W.I., 2006, Preparation of highly ordered cubic mesoporous WO3/TiO2 films and their photocatalytic properties, Chem. Mater. 18 847-853.
  • Ryu J., Park D.S., Hahn B.D., Choi J.J., Yoon W.H., Kim K.Y., Yun H.S., 2008, Photocatalytic TiO2 thin films by aerosol-deposition: From micron-sized particles to nano-grained thin film at room temperature, Appl. Catal. B: Environ. 83 1-7.
  • Tomandl G., Mangler M., Pippel E., Woltersdorf J., 2000, Evidence of nanopores in sol–gel based TiO2 and TiN ultrafiltration membranes, Mater Chem Phys 63 139–144.
  • Yu H., Chen S., Quan X., Zhao H., Zhang Y., 2009, Silicon nanowire/TiO2 heterojunction arrays for effective photoelectrocatalysis under simulated solar light irradiation, Appl. Catal. B: Environ. 90 242-248.
  • Yu J.G., Yu H.G., Cheng B., Zhao X.J., Yu J.C., Ho W.K., 2003, J. Phys. Chem. B 107 13871.
  • Zhao Y., Zhang X., Zhai J., He J., Jiang L., Liu Z., Nishimoto S., Murakami T., Fujishima A., Zhu D., 2008, Enhanced photocatalytic activity of hierarchically micro-/nano-porous TiO2 films, App. Catal. B: Environ. 83 24-29.
Year 2018, Volume: 5 Issue: 1, 85 - 92, 15.12.2017
https://doi.org/10.18596/jotcsa.370781

Abstract

References

  • Ahmed M.A., 2012, Synthesis and structural features of mesoporous NiO/TiO2 nanocomposites prepared by sol–gel method for photodegradation of methylene blue dye, J. Photochem. Photobiol. A 238 63–70.
  • Beltran A., Gracia L., Andres J., 2006, Density functional theory study of the brookite surfaces and phase transitions between natural titania polymorphs, J. Phys. Chem. B 46 23417-23423.
  • Chen X.B., Mao S.S., 2007, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev. 107 2891.
  • Dikici, T, Yildirim, S., Yurddaskal, M., Erol, M., Yigit, R., Toparli, M. and Celik, E., 2015, A comparative study on the photocatalytic activities of microporous and nanoporous TiO2 layers prepared by electrochemical anodization, Surf. & Coat. Tech. 263 1.
  • Fujishima A., Honda K., 1972, Nature 238 637.
  • Fujishima A., Rao T.N., Tryk D.A., 2000, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C Rev. 1 1–21.
  • Gong D., Grimes C.A., Varghese O.K., Hu W.C., Singh R.S., Chen Z., Dickey E.C., 2001, J. Mater. Res. 16 3331.
  • Indira K., Ningshen S., Mudali U.K., Rajendran N., 2012, Effect of anodization parameters on the structural morphology of titanium in fluoride containing electrolytes, Mater. Charac.71 58-65.
  • Kenanakis G., Vernardou D., Dalamagkas A., Katsarakis N., 2015, Photocatalytic and electrooxidation properties of TiO2 thin films deposited by sol–gel Catal. Today, 240, 146-152
  • Komarov F.F., Vlasukova L.A., Milchanin O.M., Gaiduk P.I., Yuvchenko V.N., Grechnyi S.S., 2005, Ion-beam formation of nanopores and nanoclusters in SiO2, Vacuum 78 361.
  • Linsebigler A.L., Lu G.Q., Yates J.T., 1995, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev. 95 735–758.
  • Liu Z.Y., Sun D.D., Guo P., Leckie J.O., 2007, An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method, Nano Lett. 7 1081–1085.
  • Liu Z.Y., Zhang X.T., Nishimoto S., Jin M., Tryk D.A., Murakami T., Fujishima A., 2008, Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol, J. Phys. Chem. C 112 253-259.
  • Masahashi N., Mizukoshi Y., Semboshi S., Ohtsu N., 2009, Enhanced photocatalytic activity of rutile TiO2 prepared by anodic oxidation in a high concentration sulfuric acid electrolyte, Appl. Catal. B: Environ. l 90 255-261.
  • Matsumoto Y., Koinuma M., Iwanaga Y., Sato T., Ida S., 2009, N Doping of oxide nanosheets, J. Am. Chem. Soc. 131 6644–6645
  • Pan J.H., Lee W.I., 2006, Preparation of highly ordered cubic mesoporous WO3/TiO2 films and their photocatalytic properties, Chem. Mater. 18 847-853.
  • Ryu J., Park D.S., Hahn B.D., Choi J.J., Yoon W.H., Kim K.Y., Yun H.S., 2008, Photocatalytic TiO2 thin films by aerosol-deposition: From micron-sized particles to nano-grained thin film at room temperature, Appl. Catal. B: Environ. 83 1-7.
  • Tomandl G., Mangler M., Pippel E., Woltersdorf J., 2000, Evidence of nanopores in sol–gel based TiO2 and TiN ultrafiltration membranes, Mater Chem Phys 63 139–144.
  • Yu H., Chen S., Quan X., Zhao H., Zhang Y., 2009, Silicon nanowire/TiO2 heterojunction arrays for effective photoelectrocatalysis under simulated solar light irradiation, Appl. Catal. B: Environ. 90 242-248.
  • Yu J.G., Yu H.G., Cheng B., Zhao X.J., Yu J.C., Ho W.K., 2003, J. Phys. Chem. B 107 13871.
  • Zhao Y., Zhang X., Zhai J., He J., Jiang L., Liu Z., Nishimoto S., Murakami T., Fujishima A., Zhu D., 2008, Enhanced photocatalytic activity of hierarchically micro-/nano-porous TiO2 films, App. Catal. B: Environ. 83 24-29.
There are 21 citations in total.

Details

Subjects Engineering, Chemical Engineering
Journal Section Articles
Authors

Melis Yurddaskal This is me

Metin Yurddaskal This is me

Tuncay Dikici This is me

Hülya Durmuş This is me

Publication Date December 15, 2017
Submission Date December 11, 2017
Acceptance Date December 23, 2017
Published in Issue Year 2018 Volume: 5 Issue: 1

Cite

Vancouver Yurddaskal M, Yurddaskal M, Dikici T, Durmuş H. EFFECT OF ANNEALING TEMPERATURES ON THE CRYSTALLIZATION AND PHOTOCATALYTIC ACTIVITY OF MICRO-NANOPOROUS TiO2 FILMS PRODUCED BY ELECTROCHEMICAL ANODIZATION. JOTCSA. 2017;5(1):85-92.