Research Article
BibTex RIS Cite

A New Highly Thermally Stable Co(II)-coordination polymer with Semi-flexible Bis(Imidazole) Directed Secondary Building Unit: Solvothermal Syntheses and Structures

Year 2018, Volume: 5 Issue: 3, 1083 - 1094, 01.09.2018
https://doi.org/10.18596/jotcsa.355518

Abstract

A
new thermally highly stable 2D coordination polymer, formulated as
[Co(μ6-aO2btc)0.5(μ-obix)]n  (ao2btc = dioxygenated form of
3,3′,5,5′-azobenzenetetracarboxylate) synthesized using the semi-flexible
1,2-bis(imidazole-1-ylmethyl)benzene (obix) ligand in solvothermal conditions
and characterized by single-crystal diffraction, FT-IR and photoluminescence
spectroscopy and thermogravimetric/differential thermal analysis.
Crystallographic studies of complex 1
reveal that two Co(II) ions are bridged by carboxylate groups of ao2btc ligand
to form paddle-wheel SBU. These SBUs are stabilized by the coordination of obix
ligand. The Co(II) ions are µ6-bridged by hexadentate aO2btc ligand
to generate 2D polymer chains with 3,4-connected binodal net (point symbol {4.62}2{42.62.82})
and topological type is 3,4L13. Thermal analysis shows that complex 1 thermally
stable up to 401 °C.

References

  • 1. Lu JY. Crystal engineering of Cu-containing metal–organic coordination polymers under hydrothermal conditions. Coordination Chemistry Reviews. 2003;246(1):327-47.
  • 2. Janiak C. Engineering coordination polymers towards applications. Dalton Transactions. 2003(14):2781-804.
  • 3. Thapa KB, Chen J-D. Crystal engineering of coordination polymers containing flexible bis-pyridyl-bis-amide ligands. CrystEngComm. 2015;17(25):4611-26.
  • 4. Biradha K, Sarkar M, Rajput L. Crystal engineering of coordination polymers using 4,4[prime or minute]-bipyridine as a bond between transition metal atoms. Chemical Communications. 2006(40):4169-79.
  • 5. Semerci F, Yesilel OZ, Keskin S, Darcan C, Tas M, Dal H. Construction of homo- and heterometallic-pyridine-2,3-dicarboxylate metallosupramolecular networks with structural diversity: 1D T5(2) water tape and unexpected coordination mode of pyridine-2,3-dicarboxylate. CrystEngComm. 2013;15(6):1244-56.
  • 6. Li X-L, Liu G-Z, Xin L-Y, Wang L-Y. Binuclear and tetranuclear Mn(II) clusters in coordination polymers derived from semirigid tetracarboxylate and N‑donor ligands: syntheses, new topology structures and magnetism. Journal of Solid State Chemistry. 2017;246:252-7.
  • 7. Ma J, Tran LD, Matzger AJ. Toward Topology Prediction in Zr-Based Microporous Coordination Polymers: The Role of Linker Geometry and Flexibility. Crystal Growth & Design. 2016;16(7):4148-53.
  • 8. Zhu X-D, Li Y, Gao J-G, Wang F-H, Li Q-H, Yang H-X, et al. Two new coordination polymers with flexible alicyclic carboxylate and bipyridyl co-ligands bearing trinuclear [Ni3(COO)6] SBUs: Synthesis, crystal structures, and magnetic properties. Journal of Molecular Structure. 2017;1130:89-95.
  • 9. Semerci F. Syntheses and photoluminescence properties of new Zn (II) and Cd (II) coordination polymers prepared from 5-sulfoisophthalate ligand. Turkish Journal of Chemistry. 2017;41(2):243-55.
  • 10. Yang Y, Yang J, Du P, Liu Y-Y, Ma J-F. A series of metal-organic frameworks based on a semi-rigid bifunctional ligand 5-[(1H-1,2,4-triazol-1-yl)methoxy] isophthalic acid and flexible N-donor bridging ligands. CrystEngComm. 2014;16(28):6380-90.
  • 11. Semerci F, Yeşilel OZ, Yüksel F. Self-assembly of three new metal organic coordination networks based on 1,2-bis(imidazol-1yl-methyl)benzene. Polyhedron. 2015;102:1-7.
  • 12. Semerci F, Yeşilel OZ, Yüksel F, Şahin O. One-pot synthesis of two new metal–organic networks: hydrogen bonded mononuclear Cu(II) complex and mixed-valence Cu(I,II) coordination polymer with encapsulated 14-membered unique water cluster. Inorganic Chemistry Communications. 2015;62:29-33.
  • 13. Schoedel A, Li M, Li D, O’Keeffe M, Yaghi OM. Structures of Metal–Organic Frameworks with Rod Secondary Building Units. Chemical Reviews. 2016;116(19):12466-535.
  • 14. Ren G-J, Chang Z, Xu J, Hu Z, Liu Y-Q, Xu Y-L, et al. Construction of a polyhedron decorated MOF with a unique network through the combination of two classic secondary building units. Chemical Communications. 2016;52(10):2079-82.
  • 15. Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O'Keeffe M, et al. Modular Chemistry:  Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal−Organic Carboxylate Frameworks. Accounts of Chemical Research. 2001;34(4):319-30.
  • 16. Liu T-F, Lu J, Cao R. Coordination polymers based on flexible ditopic carboxylate or nitrogen-donor ligands. CrystEngComm. 2010;12(3):660-70.
  • 17. Heim D, Écija D, Seufert K, Auwärter W, Aurisicchio C, Fabbro C, et al. Self-Assembly of Flexible One-Dimensional Coordination Polymers on Metal Surfaces. Journal of the American Chemical Society. 2010;132(19):6783-90.
  • 18. Reineke TM, Eddaoudi M, Moler D, O'Keeffe M, Yaghi OM. Large Free Volume in Maximally Interpenetrating Networks:  The Role of Secondary Building Units Exemplified by Tb2(ADB)3[(CH3)2SO]4·16[(CH3)2SO]1. Journal of the American Chemical Society. 2000;122(19):4843-4.
  • 19. Meng M, Zhong D-C, Lu T-B. Three porous metal-organic frameworks based on an azobenzenetricarboxylate ligand: synthesis, structures, and magnetic properties. CrystEngComm. 2011;13(22):6794-800.
  • 20. Lee Y-G, Moon HR, Cheon YE, Suh MP. A Comparison of the H2 Sorption Capacities of Isostructural Metal–Organic Frameworks With and Without Accessible Metal Sites: [{Zn2(abtc)(dmf)2}3] and [{Cu2(abtc)(dmf)2}3] versus [{Cu2(abtc)}3]. Angewandte Chemie International Edition. 2008;47(40):7741-5.
  • 21. Zhang S, Ma J, Zhang X, Duan E, Cheng P. Assembly of Metal–Organic Frameworks Based on 3,3′,5,5′-Azobenzene-tetracarboxylic Acid: Photoluminescences, Magnetic Properties, and Gas Separations. Inorganic Chemistry. 2015;54(2):586-95.
  • 22. Xu Y-C, Chen Y, Qiu H-J, Zeng X-S, Xu H-L, Li J, et al. Metal nuclearity affects network connectivity: a series of highly connected metal-organic frameworks based on polynuclear metal clusters as secondary building units. CrystEngComm. 2016;18(42):8182-93.
  • 23. Li Y-P, Zhang L-J, Ji W-J. Synthesis, characterization, crystal structure of magnesium compound based 3, 3′, 5, 5′-azobenzentetracarboxylic acid and application as high-performance heterogeneous catalyst for cyanosilylation. Journal of Molecular Structure. 2017;1133:607-14.
  • 24. Fan L, Fan W, Li B, Liu X, Zhao X, Zhang X. Structural diversities and related properties of four coordination polymers synthesized from original ligand of 3,3[prime or minute],5,5[prime or minute]-azobenzenetetracarboxylic acid. Dalton Transactions. 2015;44(5):2380-9.
  • 25. Liu W, Ye L, Liu X, Yuan L, Jiang J, Yan C. Hydrothermal syntheses, structures and luminescent properties of d10 metal-organic frameworks based on rigid 3,3[prime or minute],5,5[prime or minute]-azobenzenetetracarboxylic acid. CrystEngComm. 2008;10(10):1395-403.
  • 26. Miller SR, Alvarez E, Fradcourt L, Devic T, Wuttke S, Wheatley PS, et al. A rare example of a porous Ca-MOF for the controlled release of biologically active NO. Chemical Communications. 2013;49(71):7773-5.
  • 27. Arıcı M, Yeşilel OZ, Taş M. Coordination Polymers Assembled From 3,3′,5,5′-Azobenzenetetracarboxylic Acid and Different Bis(imidazole) Ligands with Varying Flexibility. Crystal Growth & Design. 2015;15(6):3024-31.
  • 28. Arıcı M, Yeşilel OZ, Taş M, Demiral H. Effect of Solvent Molecule in Pore for Flexible Porous Coordination Polymer upon Gas Adsorption and Iodine Encapsulation. Inorganic Chemistry. 2015;54(23):11283-91.
  • 29. Arıcı M, Yeşilel OZ, Taş M, Demiral H, Erer H. Construction, Structural Diversity, and Properties of Seven Zn(II)-Coordination Polymers Based on 3,3′,5,5′-Azobenzenetetracarboxylic Acid and Flexible Substitute Bis(imidazole) Linkers. Crystal Growth & Design. 2016;16(9):5448-59.
  • 30. Arıcı M, Yeşilel OZ, Taş M. Cd(II)-coordination polymers based on tetracarboxylic acid and diverse bis(imidazole) ligands: Synthesis, structural diversity and photoluminescence properties. Journal of Solid State Chemistry. 2017;245:146-51.
  • 31. Erer H, Yeşilel OZ, Arıcı M. A Series of Zinc(II) 3D → 3D Interpenetrated Coordination Polymers Based On Thiophene-2,5-dicarboxylate and Bis(Imidazole) Derivative Linkers. Crystal Growth & Design. 2015;15(7):3201-11.
  • 32. Erer H, Karaçam S, Arıcı M, Yeşilel OZ, Çelik Ö. Hydrothermal synthesis and characterization of Zn(II), Cd(II) and Ag(I)-saccharinate complexes containing bis(imidazol) derivatives. Polyhedron. 2015;98:180-9.
  • 33. Wang XX, Liu YG, Van Hecke K, Goltsev A, Cui GH. Three Silver(I) Coordination Polymers Constructed from Flexible Bis(benzimidazole) and Carboxylates Ligands. Zeitschrift für anorganische und allgemeine Chemie. 2015;641(5):903-10.
  • 34. Tan H-Y, Zhang H-X, Ou H-D, Kang B-S. Chair-form [Ag2(1,2-bimb)2]2+ in silver(I) complexes containing the ditopic ligand 1,2-bis(1-imidazolylmethyl)benzene (1,2-bimb). Inorganica Chimica Acta. 2004;357(3):869-74.
  • 35. Wang X-S, Ma S, Rauch K, Simmons JM, Yuan D, Wang X, et al. Metal−Organic Frameworks Based on Double-Bond-Coupled Di-Isophthalate Linkers with High Hydrogen and Methane Uptakes. Chemistry of Materials. 2008;20(9):3145-52.
  • 36. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography. 2009;42(2):339-41.
  • 37. Sheldrick G. A short history of SHELX. Acta Crystallogr A. 2008;64(1):112-22.
  • 38. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, et al. Mercury: visualization and analysis of crystal structures. Journal of Applied Crystallography. 2006;39(3):453-7.
  • 39. Blatov VA, Shevchenko AP, Proserpio DM. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro. Cryst Growth Des. 2014;14(7):3576-86.
Year 2018, Volume: 5 Issue: 3, 1083 - 1094, 01.09.2018
https://doi.org/10.18596/jotcsa.355518

Abstract

References

  • 1. Lu JY. Crystal engineering of Cu-containing metal–organic coordination polymers under hydrothermal conditions. Coordination Chemistry Reviews. 2003;246(1):327-47.
  • 2. Janiak C. Engineering coordination polymers towards applications. Dalton Transactions. 2003(14):2781-804.
  • 3. Thapa KB, Chen J-D. Crystal engineering of coordination polymers containing flexible bis-pyridyl-bis-amide ligands. CrystEngComm. 2015;17(25):4611-26.
  • 4. Biradha K, Sarkar M, Rajput L. Crystal engineering of coordination polymers using 4,4[prime or minute]-bipyridine as a bond between transition metal atoms. Chemical Communications. 2006(40):4169-79.
  • 5. Semerci F, Yesilel OZ, Keskin S, Darcan C, Tas M, Dal H. Construction of homo- and heterometallic-pyridine-2,3-dicarboxylate metallosupramolecular networks with structural diversity: 1D T5(2) water tape and unexpected coordination mode of pyridine-2,3-dicarboxylate. CrystEngComm. 2013;15(6):1244-56.
  • 6. Li X-L, Liu G-Z, Xin L-Y, Wang L-Y. Binuclear and tetranuclear Mn(II) clusters in coordination polymers derived from semirigid tetracarboxylate and N‑donor ligands: syntheses, new topology structures and magnetism. Journal of Solid State Chemistry. 2017;246:252-7.
  • 7. Ma J, Tran LD, Matzger AJ. Toward Topology Prediction in Zr-Based Microporous Coordination Polymers: The Role of Linker Geometry and Flexibility. Crystal Growth & Design. 2016;16(7):4148-53.
  • 8. Zhu X-D, Li Y, Gao J-G, Wang F-H, Li Q-H, Yang H-X, et al. Two new coordination polymers with flexible alicyclic carboxylate and bipyridyl co-ligands bearing trinuclear [Ni3(COO)6] SBUs: Synthesis, crystal structures, and magnetic properties. Journal of Molecular Structure. 2017;1130:89-95.
  • 9. Semerci F. Syntheses and photoluminescence properties of new Zn (II) and Cd (II) coordination polymers prepared from 5-sulfoisophthalate ligand. Turkish Journal of Chemistry. 2017;41(2):243-55.
  • 10. Yang Y, Yang J, Du P, Liu Y-Y, Ma J-F. A series of metal-organic frameworks based on a semi-rigid bifunctional ligand 5-[(1H-1,2,4-triazol-1-yl)methoxy] isophthalic acid and flexible N-donor bridging ligands. CrystEngComm. 2014;16(28):6380-90.
  • 11. Semerci F, Yeşilel OZ, Yüksel F. Self-assembly of three new metal organic coordination networks based on 1,2-bis(imidazol-1yl-methyl)benzene. Polyhedron. 2015;102:1-7.
  • 12. Semerci F, Yeşilel OZ, Yüksel F, Şahin O. One-pot synthesis of two new metal–organic networks: hydrogen bonded mononuclear Cu(II) complex and mixed-valence Cu(I,II) coordination polymer with encapsulated 14-membered unique water cluster. Inorganic Chemistry Communications. 2015;62:29-33.
  • 13. Schoedel A, Li M, Li D, O’Keeffe M, Yaghi OM. Structures of Metal–Organic Frameworks with Rod Secondary Building Units. Chemical Reviews. 2016;116(19):12466-535.
  • 14. Ren G-J, Chang Z, Xu J, Hu Z, Liu Y-Q, Xu Y-L, et al. Construction of a polyhedron decorated MOF with a unique network through the combination of two classic secondary building units. Chemical Communications. 2016;52(10):2079-82.
  • 15. Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O'Keeffe M, et al. Modular Chemistry:  Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal−Organic Carboxylate Frameworks. Accounts of Chemical Research. 2001;34(4):319-30.
  • 16. Liu T-F, Lu J, Cao R. Coordination polymers based on flexible ditopic carboxylate or nitrogen-donor ligands. CrystEngComm. 2010;12(3):660-70.
  • 17. Heim D, Écija D, Seufert K, Auwärter W, Aurisicchio C, Fabbro C, et al. Self-Assembly of Flexible One-Dimensional Coordination Polymers on Metal Surfaces. Journal of the American Chemical Society. 2010;132(19):6783-90.
  • 18. Reineke TM, Eddaoudi M, Moler D, O'Keeffe M, Yaghi OM. Large Free Volume in Maximally Interpenetrating Networks:  The Role of Secondary Building Units Exemplified by Tb2(ADB)3[(CH3)2SO]4·16[(CH3)2SO]1. Journal of the American Chemical Society. 2000;122(19):4843-4.
  • 19. Meng M, Zhong D-C, Lu T-B. Three porous metal-organic frameworks based on an azobenzenetricarboxylate ligand: synthesis, structures, and magnetic properties. CrystEngComm. 2011;13(22):6794-800.
  • 20. Lee Y-G, Moon HR, Cheon YE, Suh MP. A Comparison of the H2 Sorption Capacities of Isostructural Metal–Organic Frameworks With and Without Accessible Metal Sites: [{Zn2(abtc)(dmf)2}3] and [{Cu2(abtc)(dmf)2}3] versus [{Cu2(abtc)}3]. Angewandte Chemie International Edition. 2008;47(40):7741-5.
  • 21. Zhang S, Ma J, Zhang X, Duan E, Cheng P. Assembly of Metal–Organic Frameworks Based on 3,3′,5,5′-Azobenzene-tetracarboxylic Acid: Photoluminescences, Magnetic Properties, and Gas Separations. Inorganic Chemistry. 2015;54(2):586-95.
  • 22. Xu Y-C, Chen Y, Qiu H-J, Zeng X-S, Xu H-L, Li J, et al. Metal nuclearity affects network connectivity: a series of highly connected metal-organic frameworks based on polynuclear metal clusters as secondary building units. CrystEngComm. 2016;18(42):8182-93.
  • 23. Li Y-P, Zhang L-J, Ji W-J. Synthesis, characterization, crystal structure of magnesium compound based 3, 3′, 5, 5′-azobenzentetracarboxylic acid and application as high-performance heterogeneous catalyst for cyanosilylation. Journal of Molecular Structure. 2017;1133:607-14.
  • 24. Fan L, Fan W, Li B, Liu X, Zhao X, Zhang X. Structural diversities and related properties of four coordination polymers synthesized from original ligand of 3,3[prime or minute],5,5[prime or minute]-azobenzenetetracarboxylic acid. Dalton Transactions. 2015;44(5):2380-9.
  • 25. Liu W, Ye L, Liu X, Yuan L, Jiang J, Yan C. Hydrothermal syntheses, structures and luminescent properties of d10 metal-organic frameworks based on rigid 3,3[prime or minute],5,5[prime or minute]-azobenzenetetracarboxylic acid. CrystEngComm. 2008;10(10):1395-403.
  • 26. Miller SR, Alvarez E, Fradcourt L, Devic T, Wuttke S, Wheatley PS, et al. A rare example of a porous Ca-MOF for the controlled release of biologically active NO. Chemical Communications. 2013;49(71):7773-5.
  • 27. Arıcı M, Yeşilel OZ, Taş M. Coordination Polymers Assembled From 3,3′,5,5′-Azobenzenetetracarboxylic Acid and Different Bis(imidazole) Ligands with Varying Flexibility. Crystal Growth & Design. 2015;15(6):3024-31.
  • 28. Arıcı M, Yeşilel OZ, Taş M, Demiral H. Effect of Solvent Molecule in Pore for Flexible Porous Coordination Polymer upon Gas Adsorption and Iodine Encapsulation. Inorganic Chemistry. 2015;54(23):11283-91.
  • 29. Arıcı M, Yeşilel OZ, Taş M, Demiral H, Erer H. Construction, Structural Diversity, and Properties of Seven Zn(II)-Coordination Polymers Based on 3,3′,5,5′-Azobenzenetetracarboxylic Acid and Flexible Substitute Bis(imidazole) Linkers. Crystal Growth & Design. 2016;16(9):5448-59.
  • 30. Arıcı M, Yeşilel OZ, Taş M. Cd(II)-coordination polymers based on tetracarboxylic acid and diverse bis(imidazole) ligands: Synthesis, structural diversity and photoluminescence properties. Journal of Solid State Chemistry. 2017;245:146-51.
  • 31. Erer H, Yeşilel OZ, Arıcı M. A Series of Zinc(II) 3D → 3D Interpenetrated Coordination Polymers Based On Thiophene-2,5-dicarboxylate and Bis(Imidazole) Derivative Linkers. Crystal Growth & Design. 2015;15(7):3201-11.
  • 32. Erer H, Karaçam S, Arıcı M, Yeşilel OZ, Çelik Ö. Hydrothermal synthesis and characterization of Zn(II), Cd(II) and Ag(I)-saccharinate complexes containing bis(imidazol) derivatives. Polyhedron. 2015;98:180-9.
  • 33. Wang XX, Liu YG, Van Hecke K, Goltsev A, Cui GH. Three Silver(I) Coordination Polymers Constructed from Flexible Bis(benzimidazole) and Carboxylates Ligands. Zeitschrift für anorganische und allgemeine Chemie. 2015;641(5):903-10.
  • 34. Tan H-Y, Zhang H-X, Ou H-D, Kang B-S. Chair-form [Ag2(1,2-bimb)2]2+ in silver(I) complexes containing the ditopic ligand 1,2-bis(1-imidazolylmethyl)benzene (1,2-bimb). Inorganica Chimica Acta. 2004;357(3):869-74.
  • 35. Wang X-S, Ma S, Rauch K, Simmons JM, Yuan D, Wang X, et al. Metal−Organic Frameworks Based on Double-Bond-Coupled Di-Isophthalate Linkers with High Hydrogen and Methane Uptakes. Chemistry of Materials. 2008;20(9):3145-52.
  • 36. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography. 2009;42(2):339-41.
  • 37. Sheldrick G. A short history of SHELX. Acta Crystallogr A. 2008;64(1):112-22.
  • 38. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, et al. Mercury: visualization and analysis of crystal structures. Journal of Applied Crystallography. 2006;39(3):453-7.
  • 39. Blatov VA, Shevchenko AP, Proserpio DM. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro. Cryst Growth Des. 2014;14(7):3576-86.
There are 39 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Fatih Semerci

Publication Date September 1, 2018
Submission Date November 18, 2017
Acceptance Date September 12, 2018
Published in Issue Year 2018 Volume: 5 Issue: 3

Cite

Vancouver Semerci F. A New Highly Thermally Stable Co(II)-coordination polymer with Semi-flexible Bis(Imidazole) Directed Secondary Building Unit: Solvothermal Syntheses and Structures. JOTCSA. 2018;5(3):1083-94.