Research Article
BibTex RIS Cite
Year 2018, Volume: 5 Issue: 3, 1153 - 1168, 01.09.2018
https://doi.org/10.18596/jotcsa.424226

Abstract

References

  • 1. Lashtabeg A, Skinner SJ. Solid oxide fuel cells - a challenge for materials chemists? Journal of Materials Chemistry. 2006;16(31):3161-70.
  • 2. Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors? Chemical Reviews. 2004;104(10):4245-69.
  • 3. Ormerod RM. Solid oxide fuel cells. Chemical Society Reviews. 2003;32(1):17-28.
  • 4. Choudhury A, Chandra H, Arora A. Application of solid oxide fuel cell technology for power generation-A review. Renewable & Sustainable Energy Reviews. 2013;20:430-42.
  • 5. Baur EaP, H. Zeitschrift fur electrochemie. 1937;43(9):727.
  • 6. Yamamoto O, Takeda Y, Kanno R, Noda M. Perovskite-Type Oxides As Oxygen Electrodes For High-Temperature Oxide Fuel-Cells. Solid State Ionics. 1987;22(2-3):241-6.
  • 7. Yamamoto O. Solid oxide fuel cells: fundamental aspects and prospects. Electrochimica Acta. 2000;45(15-16):2423-35.
  • 8. Wachsman ED, Lee KT. Lowering the Temperature of Solid Oxide Fuel Cells. Science. 2011;334(6058):935-9.
  • 9. Brett DJL, Atkinson A, Brandon NP, Skinner SJ. Intermediate temperature solid oxide fuel cells. Chemical Society Reviews. 2008;37(8):1568-78.
  • 10. Istomin SY, Antipov EV. Cathode materials based on perovskite-like transition metal oxides for intermediate temperature solid oxide fuel cells. Russian Chemical Reviews. 2013;82(7):686-700.
  • 11. Tsipis EV, Kharton VV. Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. Journal of Solid State Electrochemistry. 2008;12(9):1039-60.
  • 12. Sun CW, Hui R, Roller J. Cathode materials for solid oxide fuel cells: a review. Journal of Solid State Electrochemistry. 2010;14(7):1125-44.
  • 13. Tezuka K, Hinatsu Y, Nakamura A, Inami T, Shimojo Y, Morii Y. Magnetic and neutron diffraction study on perovskites La1-xSrxCrO3. Journal of Solid State Chemistry. 1998;141(2):404-10.
  • 14. Sengodan S, Choi S, Jun A, Shin TH, Ju YW, Jeong HY, et al. Layered oxygen-deficient double perovskite as an effcient and stable anode for direct hydrocarbon solid oxide fuel cells. Nature Materials. 2015;14(2):205-9.
  • 15. Carpanese MP, Clematis D, Bertei A, Giuliano A, Sanson A, Mercadelli E, et al. Understanding the electrochemical behaviour of LSM-based SOFC cathodes. Part I - Experimental and electrochemical. Solid State Ionics. 2017;301:106-15.
  • 16. Mizusaki J, Mori N, Takai H, Yonemura Y, Minamiue H, Tagawa H, et al. Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1-xSrxMnO3+d. Solid State Ionics. 2000;129(1-4):163-77.
  • 17. De Souza RA, Kilner JA, Walker JF. A SIMS study of oxygen tracer diffusion and surface exchange in La0.8Sr0.2MnO3+delta. Materials Letters. 2000;43(1-2):43-52.
  • 18. Chen YB, Shen J, Yang GM, Zhou W, Shao ZP. A single-/double-perovskite composite with an overwhelming single-perovskite phase for the oxygen reduction reaction at intermediate temperatures. Journal of Materials Chemistry A. 2017;5(47):24842-9.

Transition Metal Doped Solid Oxide Fuel Cell Cathodes

Year 2018, Volume: 5 Issue: 3, 1153 - 1168, 01.09.2018
https://doi.org/10.18596/jotcsa.424226

Abstract

Fuel cells have developed of excessive interest as a probable economical, efficient, and clean candidate for alternative and environmental friendly power generation services. Solid Oxide Fuel Cell (SOFC) is an elevated temperature fuel cell, dealing with power generation as well as heat. Up to now many studies have been made to replace platinum, Pt, with a new cathode catalyst for intermediate temperature-solid oxide fuel cells (IT-SOFC) (500 °C<T) range but research has become inadequate. Since Pt sources are limited and very expensive, they could not meet the supply for the commercial fuel cells, the scientists started for searching new materials. There are two important aspects about SOFC cathodes, different cathode materials effect on the electrode electrochemical performance and the oxygen reduction reaction (ORR) kinetics. Understanding in these concepts would lead to improvements of SOFC systems. The production of novel and supreme cathode electrodes used in IT-SOFC is aimed to employ cheaper metals (Fe, Co, Cr, Mn, Gd, and V) by using superior properties of perovskite structure. The reduction of oxygen on metal oxide surface is achieved within the complicated mechanism. The completion of these steps depends on the nature of oxide ion carrier in cathode, atomic formation in crystal structure, and microstructure of cathode materials. The analysis of the impedances required the use of three to four (RQ) circuits in series in the equivalent circuit model. Of the four cathodes synthesized, the vanadium doped cathode on YSZ showed the highest area specific resistance.

References

  • 1. Lashtabeg A, Skinner SJ. Solid oxide fuel cells - a challenge for materials chemists? Journal of Materials Chemistry. 2006;16(31):3161-70.
  • 2. Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors? Chemical Reviews. 2004;104(10):4245-69.
  • 3. Ormerod RM. Solid oxide fuel cells. Chemical Society Reviews. 2003;32(1):17-28.
  • 4. Choudhury A, Chandra H, Arora A. Application of solid oxide fuel cell technology for power generation-A review. Renewable & Sustainable Energy Reviews. 2013;20:430-42.
  • 5. Baur EaP, H. Zeitschrift fur electrochemie. 1937;43(9):727.
  • 6. Yamamoto O, Takeda Y, Kanno R, Noda M. Perovskite-Type Oxides As Oxygen Electrodes For High-Temperature Oxide Fuel-Cells. Solid State Ionics. 1987;22(2-3):241-6.
  • 7. Yamamoto O. Solid oxide fuel cells: fundamental aspects and prospects. Electrochimica Acta. 2000;45(15-16):2423-35.
  • 8. Wachsman ED, Lee KT. Lowering the Temperature of Solid Oxide Fuel Cells. Science. 2011;334(6058):935-9.
  • 9. Brett DJL, Atkinson A, Brandon NP, Skinner SJ. Intermediate temperature solid oxide fuel cells. Chemical Society Reviews. 2008;37(8):1568-78.
  • 10. Istomin SY, Antipov EV. Cathode materials based on perovskite-like transition metal oxides for intermediate temperature solid oxide fuel cells. Russian Chemical Reviews. 2013;82(7):686-700.
  • 11. Tsipis EV, Kharton VV. Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. Journal of Solid State Electrochemistry. 2008;12(9):1039-60.
  • 12. Sun CW, Hui R, Roller J. Cathode materials for solid oxide fuel cells: a review. Journal of Solid State Electrochemistry. 2010;14(7):1125-44.
  • 13. Tezuka K, Hinatsu Y, Nakamura A, Inami T, Shimojo Y, Morii Y. Magnetic and neutron diffraction study on perovskites La1-xSrxCrO3. Journal of Solid State Chemistry. 1998;141(2):404-10.
  • 14. Sengodan S, Choi S, Jun A, Shin TH, Ju YW, Jeong HY, et al. Layered oxygen-deficient double perovskite as an effcient and stable anode for direct hydrocarbon solid oxide fuel cells. Nature Materials. 2015;14(2):205-9.
  • 15. Carpanese MP, Clematis D, Bertei A, Giuliano A, Sanson A, Mercadelli E, et al. Understanding the electrochemical behaviour of LSM-based SOFC cathodes. Part I - Experimental and electrochemical. Solid State Ionics. 2017;301:106-15.
  • 16. Mizusaki J, Mori N, Takai H, Yonemura Y, Minamiue H, Tagawa H, et al. Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1-xSrxMnO3+d. Solid State Ionics. 2000;129(1-4):163-77.
  • 17. De Souza RA, Kilner JA, Walker JF. A SIMS study of oxygen tracer diffusion and surface exchange in La0.8Sr0.2MnO3+delta. Materials Letters. 2000;43(1-2):43-52.
  • 18. Chen YB, Shen J, Yang GM, Zhou W, Shao ZP. A single-/double-perovskite composite with an overwhelming single-perovskite phase for the oxygen reduction reaction at intermediate temperatures. Journal of Materials Chemistry A. 2017;5(47):24842-9.
There are 18 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Ayşenur Eslem Kısa This is me 0000-0003-4506-7236

Oktay Demircan 0000-0002-4304-2708

Publication Date September 1, 2018
Submission Date May 16, 2018
Acceptance Date September 20, 2018
Published in Issue Year 2018 Volume: 5 Issue: 3

Cite

Vancouver Kısa AE, Demircan O. Transition Metal Doped Solid Oxide Fuel Cell Cathodes. JOTCSA. 2018;5(3):1153-68.