Research Article
BibTex RIS Cite

Comparison of Antioxidant Activities of Mono-, Di- and Tri-substituted Coumarins

Year 2020, Volume: 7 Issue: 1, 87 - 96, 15.02.2020
https://doi.org/10.18596/jotcsa.624265

Abstract

In this study; Numerous
coumarin compounds were synthesized by Pechmann and Knoevenagel methods, and
the substitution of the formyl group was provided by the Duff reaction. The IR
spectras and melting points of the synthesized compounds were compared with the
literature values. Also confirmed by GC/MS analysis. And the synthesized
coumarin derivatives were compared in terms of antioxidant activity according
to DPPH and Cuprac methods. The main aim of the study is to determine the
effects of substituents on antioxidant activity.

Supporting Institution

Research Fund of The İstanbul University-Cerrahpaşa.

Project Number

FYL-2017-23395.

References

  • 1. Khan KM, Saıfy ZS, Hayat S, Khan MZ, Noor F, Makhmoor T, Choudhary MI, Zıa-ullah MI, Perveen S. Synthesis, Antioxidant and Insecticidal Activities of Some Coumarin Derivatives. J. Chem. Soc. Pac. 2002; 24 (3): 226-230.
  • 2. Yao C, Zeng H. Synthesis and Spectroscopic Study of Coumarin Derivatives ,UV-Vis absorption spectroscopy and fluorescence spectroscopy, 2011; 27 (4): 599-603.
  • 3. O'Kennedy R, Thornes RD, Coumarins: Biology, Applications and Mode of Action, John Wiley and Sons, Chichester, ISBN: 978-0-471-96997-6, p. 348-360 (1997).
  • 4. Bigi F, Chesini L, Maggi R, Sartori G, Montmorillonite KSF as an Inorganic Water Stable, and Reusable Catalyst for the Knoevenagel Synthesis of Coumarin-3-carboxylic Acids, J. Org. Chem. 1999; 64 (3): 1033-1035.
  • 5. Mausssaaoui Y, Ben Selam R, CR Chim. 2007; 10 (12): 1162-1169. 6. Adreani LL, Lapi E. One some new esters of coumarin-3-carboxylic acid with balsamic and bronchodilator action. Boll. Chim. Farm. 1960; 99: 583-586.
  • 7. Polyansky DE, Necker DC. Photodecomposition of Organic Peroxides Containing Coumarin Chromophore: Spectroscopic Studies. J. Phys. Chem. 2005; 109/12: 2793-2800. 8. Bolakatti GS, Maddi VS, Mamledesai SN, Ronad PM, Palkar MB, Swamy S. Synthesis and evaluation of antiinflammatory and analgesic activities of a novel series of coumarin Mannich bases. Arzneim. Forsch. 2008; 58 (10): 515-520.
  • 9. Tanaka T, Yamashita K, Hayashi M. Titanium Tetraisopropoxide Promoted Reactions for the Synthesis of Substituted Coumarins. Heterocycles. 2010; 80 (1): 631-636.
  • 10. Yuan HY, Wang M, Liu YJ, Liu Q. Copper(II)-Catalyzed C-C Bond-Forming Reactions of α-Electron–Withdrawing Group-Substituted Ketene S,S- Acetals with Carbonyl Compounds and a Facile Synthesis of Coumarins. Adv. Synth. Catal. 2009; 351 (1-2): 112-116.
  • 11. Kokare ND, Sangshetti JN, Shinde DB. Oxalic acid catalyzed solvent-free one pot synthesis of coumarins. Chinese Chem. Lett. 2007; 18 (11): 1309-1312.
  • 12. Montazeri N, Khaksar S, Nazari A, Alavi SS, Vahdat SM, Tajbakhsh M. Pentafluorophenylammonium triflate (PFPAT): An efficient, metal-free and Reusable catalyst for the von Pechmann reaction. J. Fluor. Chem. 2011; 132 (7): 450-452.
  • 13. Pozdnev VF. Improved method for synthesis of 7-amino-4-methylcoumarin, Chem. Heterocycl. Compd. 1990; 26 (3): 264-265.
  • 14. Murty KS, Rao PS, Seshadri TR. Geometrical Inversion in the Acids derived from The Coumarins Part 6 The Behaviour of the Acids derive from 4-Methyl- Coumarin, Proceedings–Indian Academy of Sciences. 1937; 6A: 316-327.
  • 15. Reszka P, Schulz R, Methling K, Lalk M, Bednarski PJ. Synthesis, Enzymatic Evaluation, and Docking Studies of Fluorogenic Caspase and Tetrapeptid Substrates. Chem. Med. Chem. 2010; 5 (1): 103-117.
  • 16. Anand B, Roy N, Sai SSS, Philip R. Spectral dispersion of ultrafast optical limiting in Coumarin-120 by white-light continuum Z-scan. Appl. Phys. Lett. 2013; 102 (20): 23302.
  • 17. Jung ME, Allen DA. Use of 4-Cyanocoumarins as Dienophiles in a Facile Synthesis of Highly Substituted Dibenzopyranones. Org. Lett. 2009; 11 (3): 757-760. 18. Mentzer C, Gley P, Molho D, Billet D. Estrogenic substances of the coumarin series II. Bull. Soc. Chim. Fr. 1946; 271-276.
  • 19. Timonen J, Aulaskari P, Hirva P, Vainiotalo P. Coumarin M. Spectrometry. Eur.J. Mass Spectrom. 2009; 15 (5): 595-603.
  • 20. Timonen JM, Nieminen RM, Sareila O, Goulas A, Moilanen LJ, Haukka M. Synthesis and anti-inflammatory effects of a series of novel 7-hydroxycoumarin Derivatives. Eur. J. Med. Chem. 2011; 46 (9): 3845-3850.
  • 21. Dong Y, Mao X, Jiang X, Hau J, Cheng Y, Zhu C. Electronic Supplementary Information. Roy. Soc. Chem. China. 2011; 1-10.
  • 22. Kulkarni A, Patil SA, Badami PS. DNA cleavage and in vitro antimicrobial studies of Co(II), Ni(II), and Cu(II) complexes with ONNO donor Schiff bases: Synthesis, spectral characterization and electrochemical studies. J. Enzym. Inhib.Med. Chem. 2010; 25 (1): 87-96.
  • 23. Huang X, Dong Y, Huang Q, Cheng Y. Hydrogen bond induced fluorescence recovery of coumarin-based sensor system. Tetrahedron Lett. 2013; 54 (29): 3822-3825.
  • 24. Hussien FAH, Keshe M, Alzobar K, Merza J, Karam A. Synthesis and Nitration of 7-Hydroxy-4-Methyl Coumarin via Pechmann Condensation Using Eco- Friendly Medias. Int. Lett. Chem. Phys. Astron. 2016; 69: 66-73.
  • 25. Kanodia S, Thapliyal PC. Regioselective mononitration of coumarins using claycop reagent. J.Indian Chem. Soc. 2011; 88 (2): 241-244.
  • 26. Al-Majedy YK, Al-Duhaidahawi DL, Al-Azawi KF, Kadhum AAH, Mohamad AB. Coumarins as Potential Antioxidant Agents Complemented with suggestted Mechanisms and Approved by Molecular Modeling Studies. Molecules. 2016; 21 (2): 135-139.
  • 27. Apak R, Güçlü K, Özyürek M, Karademir SE. A novel total antioxidant capacity index for dietary polyphenols, vitamin C and E, using their cupric ion reducing capability in the presence of neocuproine, CUPRAC method. J. Agric. Food Chem. 2004; 52: 7970-7981.
Year 2020, Volume: 7 Issue: 1, 87 - 96, 15.02.2020
https://doi.org/10.18596/jotcsa.624265

Abstract

Project Number

FYL-2017-23395.

References

  • 1. Khan KM, Saıfy ZS, Hayat S, Khan MZ, Noor F, Makhmoor T, Choudhary MI, Zıa-ullah MI, Perveen S. Synthesis, Antioxidant and Insecticidal Activities of Some Coumarin Derivatives. J. Chem. Soc. Pac. 2002; 24 (3): 226-230.
  • 2. Yao C, Zeng H. Synthesis and Spectroscopic Study of Coumarin Derivatives ,UV-Vis absorption spectroscopy and fluorescence spectroscopy, 2011; 27 (4): 599-603.
  • 3. O'Kennedy R, Thornes RD, Coumarins: Biology, Applications and Mode of Action, John Wiley and Sons, Chichester, ISBN: 978-0-471-96997-6, p. 348-360 (1997).
  • 4. Bigi F, Chesini L, Maggi R, Sartori G, Montmorillonite KSF as an Inorganic Water Stable, and Reusable Catalyst for the Knoevenagel Synthesis of Coumarin-3-carboxylic Acids, J. Org. Chem. 1999; 64 (3): 1033-1035.
  • 5. Mausssaaoui Y, Ben Selam R, CR Chim. 2007; 10 (12): 1162-1169. 6. Adreani LL, Lapi E. One some new esters of coumarin-3-carboxylic acid with balsamic and bronchodilator action. Boll. Chim. Farm. 1960; 99: 583-586.
  • 7. Polyansky DE, Necker DC. Photodecomposition of Organic Peroxides Containing Coumarin Chromophore: Spectroscopic Studies. J. Phys. Chem. 2005; 109/12: 2793-2800. 8. Bolakatti GS, Maddi VS, Mamledesai SN, Ronad PM, Palkar MB, Swamy S. Synthesis and evaluation of antiinflammatory and analgesic activities of a novel series of coumarin Mannich bases. Arzneim. Forsch. 2008; 58 (10): 515-520.
  • 9. Tanaka T, Yamashita K, Hayashi M. Titanium Tetraisopropoxide Promoted Reactions for the Synthesis of Substituted Coumarins. Heterocycles. 2010; 80 (1): 631-636.
  • 10. Yuan HY, Wang M, Liu YJ, Liu Q. Copper(II)-Catalyzed C-C Bond-Forming Reactions of α-Electron–Withdrawing Group-Substituted Ketene S,S- Acetals with Carbonyl Compounds and a Facile Synthesis of Coumarins. Adv. Synth. Catal. 2009; 351 (1-2): 112-116.
  • 11. Kokare ND, Sangshetti JN, Shinde DB. Oxalic acid catalyzed solvent-free one pot synthesis of coumarins. Chinese Chem. Lett. 2007; 18 (11): 1309-1312.
  • 12. Montazeri N, Khaksar S, Nazari A, Alavi SS, Vahdat SM, Tajbakhsh M. Pentafluorophenylammonium triflate (PFPAT): An efficient, metal-free and Reusable catalyst for the von Pechmann reaction. J. Fluor. Chem. 2011; 132 (7): 450-452.
  • 13. Pozdnev VF. Improved method for synthesis of 7-amino-4-methylcoumarin, Chem. Heterocycl. Compd. 1990; 26 (3): 264-265.
  • 14. Murty KS, Rao PS, Seshadri TR. Geometrical Inversion in the Acids derived from The Coumarins Part 6 The Behaviour of the Acids derive from 4-Methyl- Coumarin, Proceedings–Indian Academy of Sciences. 1937; 6A: 316-327.
  • 15. Reszka P, Schulz R, Methling K, Lalk M, Bednarski PJ. Synthesis, Enzymatic Evaluation, and Docking Studies of Fluorogenic Caspase and Tetrapeptid Substrates. Chem. Med. Chem. 2010; 5 (1): 103-117.
  • 16. Anand B, Roy N, Sai SSS, Philip R. Spectral dispersion of ultrafast optical limiting in Coumarin-120 by white-light continuum Z-scan. Appl. Phys. Lett. 2013; 102 (20): 23302.
  • 17. Jung ME, Allen DA. Use of 4-Cyanocoumarins as Dienophiles in a Facile Synthesis of Highly Substituted Dibenzopyranones. Org. Lett. 2009; 11 (3): 757-760. 18. Mentzer C, Gley P, Molho D, Billet D. Estrogenic substances of the coumarin series II. Bull. Soc. Chim. Fr. 1946; 271-276.
  • 19. Timonen J, Aulaskari P, Hirva P, Vainiotalo P. Coumarin M. Spectrometry. Eur.J. Mass Spectrom. 2009; 15 (5): 595-603.
  • 20. Timonen JM, Nieminen RM, Sareila O, Goulas A, Moilanen LJ, Haukka M. Synthesis and anti-inflammatory effects of a series of novel 7-hydroxycoumarin Derivatives. Eur. J. Med. Chem. 2011; 46 (9): 3845-3850.
  • 21. Dong Y, Mao X, Jiang X, Hau J, Cheng Y, Zhu C. Electronic Supplementary Information. Roy. Soc. Chem. China. 2011; 1-10.
  • 22. Kulkarni A, Patil SA, Badami PS. DNA cleavage and in vitro antimicrobial studies of Co(II), Ni(II), and Cu(II) complexes with ONNO donor Schiff bases: Synthesis, spectral characterization and electrochemical studies. J. Enzym. Inhib.Med. Chem. 2010; 25 (1): 87-96.
  • 23. Huang X, Dong Y, Huang Q, Cheng Y. Hydrogen bond induced fluorescence recovery of coumarin-based sensor system. Tetrahedron Lett. 2013; 54 (29): 3822-3825.
  • 24. Hussien FAH, Keshe M, Alzobar K, Merza J, Karam A. Synthesis and Nitration of 7-Hydroxy-4-Methyl Coumarin via Pechmann Condensation Using Eco- Friendly Medias. Int. Lett. Chem. Phys. Astron. 2016; 69: 66-73.
  • 25. Kanodia S, Thapliyal PC. Regioselective mononitration of coumarins using claycop reagent. J.Indian Chem. Soc. 2011; 88 (2): 241-244.
  • 26. Al-Majedy YK, Al-Duhaidahawi DL, Al-Azawi KF, Kadhum AAH, Mohamad AB. Coumarins as Potential Antioxidant Agents Complemented with suggestted Mechanisms and Approved by Molecular Modeling Studies. Molecules. 2016; 21 (2): 135-139.
  • 27. Apak R, Güçlü K, Özyürek M, Karademir SE. A novel total antioxidant capacity index for dietary polyphenols, vitamin C and E, using their cupric ion reducing capability in the presence of neocuproine, CUPRAC method. J. Agric. Food Chem. 2004; 52: 7970-7981.
There are 24 citations in total.

Details

Primary Language English
Subjects Organic Chemistry
Journal Section Articles
Authors

Hülya Çelik Onar 0000-0003-2573-5751

Hasniye Yaşa 0000-0003-3171-9096

Oktay Sin This is me 0000-0002-3622-8280

Project Number FYL-2017-23395.
Publication Date February 15, 2020
Submission Date September 25, 2019
Acceptance Date October 30, 2019
Published in Issue Year 2020 Volume: 7 Issue: 1

Cite

Vancouver Çelik Onar H, Yaşa H, Sin O. Comparison of Antioxidant Activities of Mono-, Di- and Tri-substituted Coumarins. JOTCSA. 2020;7(1):87-96.