Research Article
BibTex RIS Cite
Year 2020, Volume: 7 Issue: 2, 463 - 470, 23.06.2020
https://doi.org/10.18596/jotcsa.714635

Abstract

Supporting Institution

İstanbul Üniversitesi-Cerrahpaşa

Thanks

İstanbul Üniversitesi-Cerrahpaşa Bap Birimine teşekkür ederim.

References

  • 1. Poonia K, Siddiqui S, Arshad M, Kumar D. In vitro anticancer activities of Schiff base and its lanthanum complex. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2016;155:146-54.
  • 2. Wang M, Wang LF, Li YZ, Li QZ, Xu ZD, Qu DM. Antitumour activity of transition metal complexes with the thiosemicarbazone derived from 3-acetylumbelliferone. Transit Met Chem. 2001;26:307–10.
  • 3. Mokhles MA, Ammar AL, Hanan AM, Samia AM, Mamdouh MA, Ahmed AE. Synthesis, anticancer activity and molecular docking study of Schiff base complexes containing thiazole moiety. Beni-Suef Univ. J. Appl. Sci. 2016;5:85-96.
  • 4. Matar SA, Talib WH, Mustafa MS, Mubarak MS, AlDamen MA. Synthesis, characterization, and antimicrobial activity of Schiff bases derived from benzaldehydes and 3,3′-diaminodipropylamine. Arab. J. Chem. 2015;8:850-7.
  • 5. Venugopal KN, Jayashree BS. Microwave-induced synthesis of Schiff bases of bromcoumarins as antibacterials. Indian J. Pharm. Sci. 2008;70:88-91.
  • 6. Pandeya SN, Sriram D, Nath G, DeClercq E. Synthesis, antibacterial, antifungal and anti-HIV evaluation of Schiff and Mannich bases of isatin derivatives with 3-amino-2-methylmercapto quinazolin-4(3H)-one. Pharm Acta Helv. 1999;74:11–7.
  • 7. Holla BS, Akberali PM, Shivananda MK. Studies on nitrophenylfuran derivatives: Part XII. Synthesis, characterization, antibacterial and antiviral activities of some nitrophenylfurfurylidene-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines. Il Farmaco. 2001;56:919–27.
  • 8. Jarrahpour A, Khalili D, De Clercq E, Salmi C, Brunel JM. Synthesis, antibacterial, antifungal and antiviral activity evaluation of some new bis-Schiff bases of isatin and their derivatives. Molecules. 2007;12:1720–30.
  • 9. da Silva CM, da Silva DL, Modolo LV, Alves RB, de Resende MA, Martins CVB, de Fatima A. Schiff bases: A short review of their antimicrobial activities. J Adv Res. 2011;2:1–8.
  • 10. Singh H, Yadav LDS, Mishra SBS. Studies on some antifungal transition metal chelates of N-(5-phenyl-1, 3, 4-thiadiazol-2-yl) dithiocarbamic acid. J Inorg Nucl Chem. 1981;43:1701–4.
  • 11. Joseyphus RS, Nair MS. Antibacterial and Antifungal Studies on Some Schiff Base Complexes of Zinc (II). Mycobiology. 2008;36:93-8.
  • 12. Walsh OM, Meegan MJ, Prendergast RM, Nakib TA. Synthesis of 3-acetoxyazetidin-2-ones and 3-hydroxyazetidin-2-ones with antifungal and antibacterial activity. Eur J Med Chem. 1996;31:989–1000.
  • 13. Harpstrite SE, Collins SD, Oksman A, Goldberg DE, Sharma V. Synthesis, characterization, and antimalarial activity of novel schiff-base-phenol and naphthalene-amine ligands. Med. Chem. 2008;4(4):392-5.
  • 14. Aslam MAS, Mahmood SU, Shahid M, Saeed A, Iqbal J. Synthesis, biological assay in vitro and molecular docking studies of new Schiff base derivatives as potential urease inhibitors. Eur. J. Med. Chem. 2011;46:5473–9.
  • 15. Sangeeta S, Ahmad K, Noorussabah N, Bharti S, Mishra M.K, Sharma SR, Choudhary M. Synthesis, crystal structures, molecular docking and urease inhibition studies of Ni(II) and Cu(II) Schiff base complexes. J. Mol. Struct. 2018;1156:1–11.
  • 16. Anouar EH, Raweh S, Bayach I, Taha M, Baharudin MS, Di Meo F, Hasan MH, Adam A, Ismail NH, Weber JF, Trouillas P. Antioxidant properties of phenolic Schiff bases: structure-activity relationship and mechanism of action. Journal of Computer-Aided Mol. Des. 2013;27:951-64.
  • 17. Aziz AN, Taha M, Ismail NH, Anouar EH, Yousuf S, Jamil W, Awang K, Ahmat KAN, Khan KM, Kashif SM. Synthesis, crystal structure, DFT studies and evaluation of the antioxidant activity of 3,4-dimethoxybenzenamine Schiff bases. Molecules 2014;19:8414–33.
  • 18. Jamshidvand A, Sahihi M, Mirkhani V, Moghadam M, Mohammadpoor-Baltork I, Tangestaninejad S, Rudbari HA, Kargar H, Keshavarzi R, Gharaghani S. Studies on DNA binding properties of new Schiff base ligands using spectroscopic, electrochemical and computationalmethods: Influence of substitutions on DNA-binding. J. Mol. Liq. 2018;253:61–71.
  • 19. Mahmood K, Hashmi W, Ismail H, Mirza B, Twamley B, Akhter Z, Rozas I, Baker RJ. Synthesis, DNA binding and antibacterial activity of metal (II) complexes of a benzimidazole Schiff base. Polyhedron. 2019;157:326–34.
  • 20. Dhanaraj CJ, Nair MS. Synthesis, characterization, and antimicrobial studies of some Schiff-base metal(II) complexes. J Coord Chem. 2009;62:4018–28.
  • 21. Szady-Chelmieniecka A, Grech E, Rozwadowski Z, Dziembowska T, Schilf W, Kamienski B. Multinuclear NMR study of the intramolecular hydrogen bond in Schiff–Mannich bases. J Mol Struct. 2001;565:125–8.
  • 22. Jones RD, Summerville DA, Basolo F. Synthetic oxygen carriers related to biological systems. Chem Rev. 1979;17:139–79.
  • 23. Hadjoudis E, Mavridis IM. Photochromism and thermochromism of Schiff bases in the solid state structural aspects. Chem Soc Rev. 2004;33:579–88.
  • 24. Bhat K, Chang KJ, Aggarwal MD, Wang WS, Penn BG, Frazier DO. Synthesis and characterization of various Schiff bases for non-linear optical applications. Mater Chem Phys. 1996;44:261–6.
  • 25. Mahmoud MR, El-Gyar SA, Moustafa AA, Shaker A. Ni(II) complexes of some polyfunctional n-Naphthylideneamino acids. Polyhedron. 1987;6:1017–20.
  • 26. Qing-Yu H, Zheng-Hua M, Ya-Me Z. Preparation and oxygenation of manganese(II) complexes of imines derived from salicylaldehyde and amino acids. J Coord Chem. 1990;21:199–207.
  • 27. Memon SQ, Memon N, Mallah A, Soomro R, Khuhawar MY. Schiff Bases as Chelating Reagents for Metal Ions Analysis. Current Analytical Chem. 2014;10:393-417.
  • 28. Prajila M, Joseph A. Inhibition of mild steel corrosion in hydrochloric using three different 1,2,4-triazole Schiff's bases: A comparative study of electrochemical, theoretical and spectroscopic results. J Mol Liq. 2017; 241:1-8.
  • 29. Gupta NK, Quraishi MA, Verma C, Mukherjee AK. Green Schiff's bases as corrosion inhibitors for mild steel in 1 M HCl solution: experimental and theoretical approach. RSC Advances. 2016; 104:102076-87.
  • 30. Samadhiya S, Halve A. Synthetic utility of Schiff bases as potential herbicidal agents. Orient J. Chem. 2001;17 (electronic).
  • 31. Papic S, Koprivanac N, Grabaric Z, Parac-Osterman D. Metal complex dyes of nickel with Schiff bases. Dyes and Pigments. 1994;25:229–40. 32. Ahmed DS, El-Hiti GA, Hameed AS, Yousif E, Ahmed A. New tetra-Schiff bases as efficient photostabilizers for poly(vinyl chloride). Molecules. 2017;22:1506-21.
  • 33. Cinarli A, Gürbüz D, Tavman A, Birteksöz AS. Spectral characterization and antimicrobial activity of some Schiff bases derived from 4-chloro-2-aminophenol and various salicylaldehyde derivatives. Chinese J Chem. 2012;30:449–59.
  • 34. Cinarli A, Gürbüz D, Tavman A, Birteksöz AS. Synthesis, spectral characterizations and antimicrobial activity of some Schiff bases of 4-chloro-2-aminophenol. Bull Chem Soc Ethiop. 2011;25:407–17.

Dyeing Polyester, Cotton and Wool with Some Schiff Bases Derived from 4-chloroaminophenol and Various Benzaldehydes

Year 2020, Volume: 7 Issue: 2, 463 - 470, 23.06.2020
https://doi.org/10.18596/jotcsa.714635

Abstract

Dyeability of ten Schiff bases obtained from 4-chloroaminophenol and various benzaldehydes including methyl, chloro, bromo, nitro, methoxy and hydroxy groups was investigated on polyester, wool, and cotton fibers. The dry/wet rubbing and washing fastness of the compounds were measured. It is observed that the rubbing and washing fastness values are varying at the 4 – 5 range (1: weak, 5: excellent). The lightness (L), red-greenness (a) and yellow-blueness (b) properties of the compounds were also investigated. It was observed that dyeing properties of the compounds change depending on the substituent positions and the substituent effect is observed on wool mostly. Especially, 3- and 5-methyl derivatives (VIII and IX) exhibit similar behavior toward polyester and cotton while they behave differently on wool in point of the L, a and b values. On the other hand, it can be claimed that chlorine substituent increases the L value on wool.

References

  • 1. Poonia K, Siddiqui S, Arshad M, Kumar D. In vitro anticancer activities of Schiff base and its lanthanum complex. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2016;155:146-54.
  • 2. Wang M, Wang LF, Li YZ, Li QZ, Xu ZD, Qu DM. Antitumour activity of transition metal complexes with the thiosemicarbazone derived from 3-acetylumbelliferone. Transit Met Chem. 2001;26:307–10.
  • 3. Mokhles MA, Ammar AL, Hanan AM, Samia AM, Mamdouh MA, Ahmed AE. Synthesis, anticancer activity and molecular docking study of Schiff base complexes containing thiazole moiety. Beni-Suef Univ. J. Appl. Sci. 2016;5:85-96.
  • 4. Matar SA, Talib WH, Mustafa MS, Mubarak MS, AlDamen MA. Synthesis, characterization, and antimicrobial activity of Schiff bases derived from benzaldehydes and 3,3′-diaminodipropylamine. Arab. J. Chem. 2015;8:850-7.
  • 5. Venugopal KN, Jayashree BS. Microwave-induced synthesis of Schiff bases of bromcoumarins as antibacterials. Indian J. Pharm. Sci. 2008;70:88-91.
  • 6. Pandeya SN, Sriram D, Nath G, DeClercq E. Synthesis, antibacterial, antifungal and anti-HIV evaluation of Schiff and Mannich bases of isatin derivatives with 3-amino-2-methylmercapto quinazolin-4(3H)-one. Pharm Acta Helv. 1999;74:11–7.
  • 7. Holla BS, Akberali PM, Shivananda MK. Studies on nitrophenylfuran derivatives: Part XII. Synthesis, characterization, antibacterial and antiviral activities of some nitrophenylfurfurylidene-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines. Il Farmaco. 2001;56:919–27.
  • 8. Jarrahpour A, Khalili D, De Clercq E, Salmi C, Brunel JM. Synthesis, antibacterial, antifungal and antiviral activity evaluation of some new bis-Schiff bases of isatin and their derivatives. Molecules. 2007;12:1720–30.
  • 9. da Silva CM, da Silva DL, Modolo LV, Alves RB, de Resende MA, Martins CVB, de Fatima A. Schiff bases: A short review of their antimicrobial activities. J Adv Res. 2011;2:1–8.
  • 10. Singh H, Yadav LDS, Mishra SBS. Studies on some antifungal transition metal chelates of N-(5-phenyl-1, 3, 4-thiadiazol-2-yl) dithiocarbamic acid. J Inorg Nucl Chem. 1981;43:1701–4.
  • 11. Joseyphus RS, Nair MS. Antibacterial and Antifungal Studies on Some Schiff Base Complexes of Zinc (II). Mycobiology. 2008;36:93-8.
  • 12. Walsh OM, Meegan MJ, Prendergast RM, Nakib TA. Synthesis of 3-acetoxyazetidin-2-ones and 3-hydroxyazetidin-2-ones with antifungal and antibacterial activity. Eur J Med Chem. 1996;31:989–1000.
  • 13. Harpstrite SE, Collins SD, Oksman A, Goldberg DE, Sharma V. Synthesis, characterization, and antimalarial activity of novel schiff-base-phenol and naphthalene-amine ligands. Med. Chem. 2008;4(4):392-5.
  • 14. Aslam MAS, Mahmood SU, Shahid M, Saeed A, Iqbal J. Synthesis, biological assay in vitro and molecular docking studies of new Schiff base derivatives as potential urease inhibitors. Eur. J. Med. Chem. 2011;46:5473–9.
  • 15. Sangeeta S, Ahmad K, Noorussabah N, Bharti S, Mishra M.K, Sharma SR, Choudhary M. Synthesis, crystal structures, molecular docking and urease inhibition studies of Ni(II) and Cu(II) Schiff base complexes. J. Mol. Struct. 2018;1156:1–11.
  • 16. Anouar EH, Raweh S, Bayach I, Taha M, Baharudin MS, Di Meo F, Hasan MH, Adam A, Ismail NH, Weber JF, Trouillas P. Antioxidant properties of phenolic Schiff bases: structure-activity relationship and mechanism of action. Journal of Computer-Aided Mol. Des. 2013;27:951-64.
  • 17. Aziz AN, Taha M, Ismail NH, Anouar EH, Yousuf S, Jamil W, Awang K, Ahmat KAN, Khan KM, Kashif SM. Synthesis, crystal structure, DFT studies and evaluation of the antioxidant activity of 3,4-dimethoxybenzenamine Schiff bases. Molecules 2014;19:8414–33.
  • 18. Jamshidvand A, Sahihi M, Mirkhani V, Moghadam M, Mohammadpoor-Baltork I, Tangestaninejad S, Rudbari HA, Kargar H, Keshavarzi R, Gharaghani S. Studies on DNA binding properties of new Schiff base ligands using spectroscopic, electrochemical and computationalmethods: Influence of substitutions on DNA-binding. J. Mol. Liq. 2018;253:61–71.
  • 19. Mahmood K, Hashmi W, Ismail H, Mirza B, Twamley B, Akhter Z, Rozas I, Baker RJ. Synthesis, DNA binding and antibacterial activity of metal (II) complexes of a benzimidazole Schiff base. Polyhedron. 2019;157:326–34.
  • 20. Dhanaraj CJ, Nair MS. Synthesis, characterization, and antimicrobial studies of some Schiff-base metal(II) complexes. J Coord Chem. 2009;62:4018–28.
  • 21. Szady-Chelmieniecka A, Grech E, Rozwadowski Z, Dziembowska T, Schilf W, Kamienski B. Multinuclear NMR study of the intramolecular hydrogen bond in Schiff–Mannich bases. J Mol Struct. 2001;565:125–8.
  • 22. Jones RD, Summerville DA, Basolo F. Synthetic oxygen carriers related to biological systems. Chem Rev. 1979;17:139–79.
  • 23. Hadjoudis E, Mavridis IM. Photochromism and thermochromism of Schiff bases in the solid state structural aspects. Chem Soc Rev. 2004;33:579–88.
  • 24. Bhat K, Chang KJ, Aggarwal MD, Wang WS, Penn BG, Frazier DO. Synthesis and characterization of various Schiff bases for non-linear optical applications. Mater Chem Phys. 1996;44:261–6.
  • 25. Mahmoud MR, El-Gyar SA, Moustafa AA, Shaker A. Ni(II) complexes of some polyfunctional n-Naphthylideneamino acids. Polyhedron. 1987;6:1017–20.
  • 26. Qing-Yu H, Zheng-Hua M, Ya-Me Z. Preparation and oxygenation of manganese(II) complexes of imines derived from salicylaldehyde and amino acids. J Coord Chem. 1990;21:199–207.
  • 27. Memon SQ, Memon N, Mallah A, Soomro R, Khuhawar MY. Schiff Bases as Chelating Reagents for Metal Ions Analysis. Current Analytical Chem. 2014;10:393-417.
  • 28. Prajila M, Joseph A. Inhibition of mild steel corrosion in hydrochloric using three different 1,2,4-triazole Schiff's bases: A comparative study of electrochemical, theoretical and spectroscopic results. J Mol Liq. 2017; 241:1-8.
  • 29. Gupta NK, Quraishi MA, Verma C, Mukherjee AK. Green Schiff's bases as corrosion inhibitors for mild steel in 1 M HCl solution: experimental and theoretical approach. RSC Advances. 2016; 104:102076-87.
  • 30. Samadhiya S, Halve A. Synthetic utility of Schiff bases as potential herbicidal agents. Orient J. Chem. 2001;17 (electronic).
  • 31. Papic S, Koprivanac N, Grabaric Z, Parac-Osterman D. Metal complex dyes of nickel with Schiff bases. Dyes and Pigments. 1994;25:229–40. 32. Ahmed DS, El-Hiti GA, Hameed AS, Yousif E, Ahmed A. New tetra-Schiff bases as efficient photostabilizers for poly(vinyl chloride). Molecules. 2017;22:1506-21.
  • 33. Cinarli A, Gürbüz D, Tavman A, Birteksöz AS. Spectral characterization and antimicrobial activity of some Schiff bases derived from 4-chloro-2-aminophenol and various salicylaldehyde derivatives. Chinese J Chem. 2012;30:449–59.
  • 34. Cinarli A, Gürbüz D, Tavman A, Birteksöz AS. Synthesis, spectral characterizations and antimicrobial activity of some Schiff bases of 4-chloro-2-aminophenol. Bull Chem Soc Ethiop. 2011;25:407–17.
There are 33 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Demet Gürbüz 0000-0002-4679-7890

Publication Date June 23, 2020
Submission Date April 4, 2020
Acceptance Date May 4, 2020
Published in Issue Year 2020 Volume: 7 Issue: 2

Cite

Vancouver Gürbüz D. Dyeing Polyester, Cotton and Wool with Some Schiff Bases Derived from 4-chloroaminophenol and Various Benzaldehydes. JOTCSA. 2020;7(2):463-70.