Sorption of Cobalt and Nickel on Narcissus Tazetta L. Leaf Powder
Year 2021,
Volume: 8 Issue: 3, 705 - 714, 31.08.2021
Süleyman İnan
,
Bekir Özkan
Abstract
Narcissus tazetta Linnaeus are grown in the Karaburun district of the Agean Region in Turkey in large quantities. The flower has an economic value; however, the leaves of the plant are of no use. Within this study's scope, sorption behaviors of Narcissus tazetta L. leaf powder against cobalt and nickel ions were investigated by batch experiments. The effects of initial pH, contact time, initial metal concentration, temperature, and biosorbent dosage were examined using one-factor-at-a-time method. Maximum sorption capacities for Co(II) and Ni(II) were 43.48 and 35.97 mg g-1, respectively. The biosorption process is fast, and the equilibrium was attained in 15 min. for Co(II) and Ni(II). Data fit the pseudo-second-order kinetic model well for both metal ions. Thermodynamic parameters reveal that the biosorption is exothermic and spontaneous. Narcissus tazetta L. Leaf powder is a readily available, costless, and promising biomaterial that can be used to separate Co(II) and Ni(II) ions from an aqueous solution.
Thanks
The authors would like to thank Ms. Dilara Yörür, Ms. Ezgi Çelik, and Mr. Ümit Emre Kartal for their contribution in the laboratory.
References
- 1. Krishna B, Venkateswarlu P. Influence of Ficus religiosa leaf powder on bisorption of cobalt. Ind J Chem Technol. 2011 Sep;18:381–90.
- 2. Pahlavanzadeh H, Keshtkar AR, Safdari J, Abadi Z. Biosorption of nickel(II) from aqueous solution by brown algae: Equilibrium, dynamic and thermodynamic studies. Journal of Hazardous Materials. 2010 Mar;175(1–3):304–10. DOI: https://doi.org/10.1016/j.jhazmat.2009.10.004.
- 3. Koivula R, Harjula R, Lehto J. 63 Ni and 57 Co Uptake and Selectivity of Tin Antimonates of Different Structure. Separation Science and Technology. 2003 Jan 10;38(15):3795–808. DOI: https://doi.org/10.1081/SS-120024231.
- 4. Zafar MN, Nadeem R, Hanif MA. Biosorption of nickel from protonated rice bran. Journal of Hazardous Materials. 2007 May;143(1–2):478–85. DOI: https://doi.org/10.1016/j.jhazmat.2006.09.055.
- 5. Vijayaraghavan K, Jegan J, Palanivelu K, Velan M. Biosorption of cobalt(II) and nickel(II) by seaweeds: batch and column studies. Separation and Purification Technology. 2005 Jul;44(1):53–9. DOI: https://doi.org/10.1016/j.seppur.2004.12.003.
- 6. Esmaeili A, Aghababai Beni A. Biosorption of nickel and cobalt from plant effluent by Sargassum glaucescens nanoparticles at new membrane reactor. Int J Environ Sci Technol. 2015 Jun;12(6):2055–64. DOI: https://doi.org/10.1007/s13762-014-0744-3.
- 7. Foroutan R, Esmaeili H, Rishehri SD, Sadeghzadeh F, Mirahmadi S, Kosarifard M, et al. Zinc, nickel, and cobalt ions removal from aqueous solution and plating plant wastewater by modified Aspergillus flavus biomass: A dataset. Data in Brief. 2017 Jun;12:485–92. DOI: https://doi.org/10.1016/j.dib.2017.04.031.
- 8. Vijayaraghavan K, Palanivelu K, Velan M. Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles. Bioresource Technology. 2006 Aug;97(12):1411–9. DOI: https://doi.org/10.1016/j.biortech.2005.07.001.
- 9. Tounsadi H, Khalidi A, Abdennouri M, Barka N. Biosorption potential of Diplotaxis harra and Glebionis coronaria L. biomasses for the removal of Cd(II) and Co(II) from aqueous solutions. Journal of Environmental Chemical Engineering. 2015 Jun;3(2):822–30. DOI: https://doi.org/10.1016/j.jece.2015.03.022.
- 10. Prasad MNV, Freitas H. Removal of toxic metals from solution by leaf, stem and root phytomass of Quercus ilex L. (holly oak). Environmental Pollution. 2000 Nov;110(2):277–83. https://doi.org/10.1016/S0269-7491(99)00306-1.
- 11. Hanks GR. Commercial production of Narcissus bulbs. In: Narcissus and Daffodil. London: Taylor and Francis; 2002. p. 53–130.
- 12. İnan S, Özkan B. Eu (III) ’un Narcissus Tazetta L. Yaprak Tozu Üzerine Biyosorpsiyonu. Deu Muhendislik Fakultesi Fen ve Muhendislik. 2019 Sep 20;21(63):955–66. DOI: https://doi.org/10.21205/deufmd.2019216324.
- 13. Brigante M, Zanini G, Avena M. Effect of humic acids on the adsorption of paraquat by goethite. Journal of Hazardous Materials. 2010 Dec;184(1–3):241–7. DOI: https://doi.org/10.1016/j.jhazmat.2010.08.028.
- 14. Fu H, Quan X. Complexes of fulvic acid on the surface of hematite, goethite, and akaganeite: FTIR observation. Chemosphere. 2006 Apr;63(3):403–10. DOI: https://doi.org/10.1016/j.chemosphere.2005.08.054.
- 15. Wei W, Yang L, Zhong W, Cui J, Wei Z. Mechanism of enhanced humic acid removal from aqueous solution using poorly crystalline hydroxyapatite nanoparticles. Digest Journal of Nanomaterials and Biostructures. 2015;10(2):663–80.
- 16. Akar T, Kaynak Z, Ulusoy S, Yuvaci D, Ozsari G, Akar ST. Enhanced biosorption of nickel(II) ions by silica-gel-immobilized waste biomass: Biosorption characteristics in batch and dynamic flow mode. Journal of Hazardous Materials. 2009 Apr;163(2–3):1134–41. DOI: https://doi.org/10.1016/j.jhazmat.2008.07.084.
- 17. Lagergren S. About the theory of so-called adsorption of solution substances. 1898;24(4):147–56.
- 18. Ho YS, McKay G. Sorption of dye from aqueous solution by peat. Chemical Engineering Journal. 1998 Jun;70(2):115–24. DOI: https://doi.org/10.1016/S0923-0467(98)00076-1.
- 19.Ho YS, McKay G. The sorption of dye from aqueous solution by peat. Water Res. 1999; 33(2): 578-84. DOI: https://doi.org/10.1016/S0923-0467(98)00076-1.
- 20. Mahajan G, Sud D. Kinetics and equilibrium studies of Cr(VI) metal ion remediation by Arachis hypogea shells: A green approach. BioResources. 2011;6(3):3324–38. URL: https://ojs.cnr.ncsu.edu/index.php/BioRes/article/download/BioRes_06_3_3324_Mahajan_S_Kinetic_Sorption_Cr6_Arachis/1121.
- 21. Langmuir I. The adsorptıon of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 1918 Sep;40(9):1361–403. DOI: https://doi.org/10.1021/ja02242a004.
- 22. Weber TW, Chakravorti RK. Pore and solid diffusion models for fixed-bed adsorbers. AIChE J. 1974 Mar;20(2):228–38. DOI: https://doi.org/10.1002/aic.690200204.
- 23. Malkoc E. Ni(II) removal from aqueous solutions using cone biomass of Thuja orientalis. Journal of Hazardous Materials. 2006 Sep 21;137(2):899–908. DOI: https://doi.org/10.1016/j.jhazmat.2006.03.004.
- 24. Guzel F, Yakut H, Topal G. Determination of kinetic and equilibrium parameters of the batch adsorption of Mn(II), Co(II), Ni(II) and Cu(II) from aqueous solution by black carrot (Daucus carota L.) residues. Journal of Hazardous Materials. 2008 May 30;153(3):1275–87. DOI: https://doi.org/10.1016/j.jhazmat.2007.09.087.
- 25. Parab H, Joshi S, Shenoy N, Lali A, Sarma US, Sudersanan M. Determination of kinetic and equilibrium parameters of the batch adsorption of Co(II), Cr(III) and Ni(II) onto coir pith. Process Biochemistry. 2006 Mar;41(3):609–15. DOI: https://doi.org/10.1016/j.procbio.2005.08.006.
- 26. Nayak AK, Pal A. Green and efficient biosorptive removal of methylene blue by Abelmoschus esculentus seed: Process optimization and multi-variate modeling. Journal of Environmental Management. 2017 Sep;200:145–59. DOI: https://doi.org/10.1016/j.jenvman.2017.05.045.
- 27. Gerçel Ö, Özcan A, Özcan AS, Gerçel HF. Preparation of activated carbon from a renewable bio-plant of Euphorbia rigida by H2SO4 activation and its adsorption behavior in aqueous solutions. Applied Surface Science. 2007 Mar;253(11):4843–52. DOI: https://doi.org/10.1016/j.apsusc.2006.10.053.
Year 2021,
Volume: 8 Issue: 3, 705 - 714, 31.08.2021
Süleyman İnan
,
Bekir Özkan
References
- 1. Krishna B, Venkateswarlu P. Influence of Ficus religiosa leaf powder on bisorption of cobalt. Ind J Chem Technol. 2011 Sep;18:381–90.
- 2. Pahlavanzadeh H, Keshtkar AR, Safdari J, Abadi Z. Biosorption of nickel(II) from aqueous solution by brown algae: Equilibrium, dynamic and thermodynamic studies. Journal of Hazardous Materials. 2010 Mar;175(1–3):304–10. DOI: https://doi.org/10.1016/j.jhazmat.2009.10.004.
- 3. Koivula R, Harjula R, Lehto J. 63 Ni and 57 Co Uptake and Selectivity of Tin Antimonates of Different Structure. Separation Science and Technology. 2003 Jan 10;38(15):3795–808. DOI: https://doi.org/10.1081/SS-120024231.
- 4. Zafar MN, Nadeem R, Hanif MA. Biosorption of nickel from protonated rice bran. Journal of Hazardous Materials. 2007 May;143(1–2):478–85. DOI: https://doi.org/10.1016/j.jhazmat.2006.09.055.
- 5. Vijayaraghavan K, Jegan J, Palanivelu K, Velan M. Biosorption of cobalt(II) and nickel(II) by seaweeds: batch and column studies. Separation and Purification Technology. 2005 Jul;44(1):53–9. DOI: https://doi.org/10.1016/j.seppur.2004.12.003.
- 6. Esmaeili A, Aghababai Beni A. Biosorption of nickel and cobalt from plant effluent by Sargassum glaucescens nanoparticles at new membrane reactor. Int J Environ Sci Technol. 2015 Jun;12(6):2055–64. DOI: https://doi.org/10.1007/s13762-014-0744-3.
- 7. Foroutan R, Esmaeili H, Rishehri SD, Sadeghzadeh F, Mirahmadi S, Kosarifard M, et al. Zinc, nickel, and cobalt ions removal from aqueous solution and plating plant wastewater by modified Aspergillus flavus biomass: A dataset. Data in Brief. 2017 Jun;12:485–92. DOI: https://doi.org/10.1016/j.dib.2017.04.031.
- 8. Vijayaraghavan K, Palanivelu K, Velan M. Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles. Bioresource Technology. 2006 Aug;97(12):1411–9. DOI: https://doi.org/10.1016/j.biortech.2005.07.001.
- 9. Tounsadi H, Khalidi A, Abdennouri M, Barka N. Biosorption potential of Diplotaxis harra and Glebionis coronaria L. biomasses for the removal of Cd(II) and Co(II) from aqueous solutions. Journal of Environmental Chemical Engineering. 2015 Jun;3(2):822–30. DOI: https://doi.org/10.1016/j.jece.2015.03.022.
- 10. Prasad MNV, Freitas H. Removal of toxic metals from solution by leaf, stem and root phytomass of Quercus ilex L. (holly oak). Environmental Pollution. 2000 Nov;110(2):277–83. https://doi.org/10.1016/S0269-7491(99)00306-1.
- 11. Hanks GR. Commercial production of Narcissus bulbs. In: Narcissus and Daffodil. London: Taylor and Francis; 2002. p. 53–130.
- 12. İnan S, Özkan B. Eu (III) ’un Narcissus Tazetta L. Yaprak Tozu Üzerine Biyosorpsiyonu. Deu Muhendislik Fakultesi Fen ve Muhendislik. 2019 Sep 20;21(63):955–66. DOI: https://doi.org/10.21205/deufmd.2019216324.
- 13. Brigante M, Zanini G, Avena M. Effect of humic acids on the adsorption of paraquat by goethite. Journal of Hazardous Materials. 2010 Dec;184(1–3):241–7. DOI: https://doi.org/10.1016/j.jhazmat.2010.08.028.
- 14. Fu H, Quan X. Complexes of fulvic acid on the surface of hematite, goethite, and akaganeite: FTIR observation. Chemosphere. 2006 Apr;63(3):403–10. DOI: https://doi.org/10.1016/j.chemosphere.2005.08.054.
- 15. Wei W, Yang L, Zhong W, Cui J, Wei Z. Mechanism of enhanced humic acid removal from aqueous solution using poorly crystalline hydroxyapatite nanoparticles. Digest Journal of Nanomaterials and Biostructures. 2015;10(2):663–80.
- 16. Akar T, Kaynak Z, Ulusoy S, Yuvaci D, Ozsari G, Akar ST. Enhanced biosorption of nickel(II) ions by silica-gel-immobilized waste biomass: Biosorption characteristics in batch and dynamic flow mode. Journal of Hazardous Materials. 2009 Apr;163(2–3):1134–41. DOI: https://doi.org/10.1016/j.jhazmat.2008.07.084.
- 17. Lagergren S. About the theory of so-called adsorption of solution substances. 1898;24(4):147–56.
- 18. Ho YS, McKay G. Sorption of dye from aqueous solution by peat. Chemical Engineering Journal. 1998 Jun;70(2):115–24. DOI: https://doi.org/10.1016/S0923-0467(98)00076-1.
- 19.Ho YS, McKay G. The sorption of dye from aqueous solution by peat. Water Res. 1999; 33(2): 578-84. DOI: https://doi.org/10.1016/S0923-0467(98)00076-1.
- 20. Mahajan G, Sud D. Kinetics and equilibrium studies of Cr(VI) metal ion remediation by Arachis hypogea shells: A green approach. BioResources. 2011;6(3):3324–38. URL: https://ojs.cnr.ncsu.edu/index.php/BioRes/article/download/BioRes_06_3_3324_Mahajan_S_Kinetic_Sorption_Cr6_Arachis/1121.
- 21. Langmuir I. The adsorptıon of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 1918 Sep;40(9):1361–403. DOI: https://doi.org/10.1021/ja02242a004.
- 22. Weber TW, Chakravorti RK. Pore and solid diffusion models for fixed-bed adsorbers. AIChE J. 1974 Mar;20(2):228–38. DOI: https://doi.org/10.1002/aic.690200204.
- 23. Malkoc E. Ni(II) removal from aqueous solutions using cone biomass of Thuja orientalis. Journal of Hazardous Materials. 2006 Sep 21;137(2):899–908. DOI: https://doi.org/10.1016/j.jhazmat.2006.03.004.
- 24. Guzel F, Yakut H, Topal G. Determination of kinetic and equilibrium parameters of the batch adsorption of Mn(II), Co(II), Ni(II) and Cu(II) from aqueous solution by black carrot (Daucus carota L.) residues. Journal of Hazardous Materials. 2008 May 30;153(3):1275–87. DOI: https://doi.org/10.1016/j.jhazmat.2007.09.087.
- 25. Parab H, Joshi S, Shenoy N, Lali A, Sarma US, Sudersanan M. Determination of kinetic and equilibrium parameters of the batch adsorption of Co(II), Cr(III) and Ni(II) onto coir pith. Process Biochemistry. 2006 Mar;41(3):609–15. DOI: https://doi.org/10.1016/j.procbio.2005.08.006.
- 26. Nayak AK, Pal A. Green and efficient biosorptive removal of methylene blue by Abelmoschus esculentus seed: Process optimization and multi-variate modeling. Journal of Environmental Management. 2017 Sep;200:145–59. DOI: https://doi.org/10.1016/j.jenvman.2017.05.045.
- 27. Gerçel Ö, Özcan A, Özcan AS, Gerçel HF. Preparation of activated carbon from a renewable bio-plant of Euphorbia rigida by H2SO4 activation and its adsorption behavior in aqueous solutions. Applied Surface Science. 2007 Mar;253(11):4843–52. DOI: https://doi.org/10.1016/j.apsusc.2006.10.053.