Research Article
BibTex RIS Cite

Synthesis and Characterization of Some Transition Metals Complex Salts of Pyridinium Iodide Ionic Liquids: Application on Extractive Desulfurization

Year 2021, Volume: 8 Issue: 3, 763 - 774, 31.08.2021
https://doi.org/10.18596/jotcsa.942318

Abstract

The ionic liquid of pyridine base [emPy]I was prepared. Then, a series of complex salts were designed from it with some transition metal chlorides Fe(III), Co(II), Ni(II) and Cu(II) as Lewis acids. The compounds were characterized by spectroscopic and physical methods such as nuclear magnetic resonance "1H-NMR", infrared spectroscopy "FT-IR", electronic spectrum "UV", mass spectroscopy "MS", elemental analysis "CHN", magnetic susceptibility, molar conductivity, and other methods. The thermal stability of these compounds was also verified within the temperature range of (25-1000 °C). [emPy]I and its complex salts were tested in the extractive desulfurization process EDS. The procedure treats them with the model fuel of sulfur content of 2000 ppm, prepared from dissolving dibenzothiophene DBT in n-hexane. The ratio of sulfur removal was estimated using the GC-FID technique. The optimal conditions for EDS process were studied, and the possibility of reusing the extractant more than once without regeneration.

Thanks

The author is grateful to the University of Mosul for funding this work and the Department of Chemistry, the University of Liverpool, for use the laboratory features and analysis measurements.

References

  • 1. Zhang S, Zhang Q, Zhang ZC. Extractive desulfurization and denitrogenation of fuels using ionic liquids. Industrial & Engineering Chemistry Research. 2004;43(2):614-22. DOI: https://doi.org/10.1021/ie030561.
  • 2. Min W. A unique way to make ultra low sulfur diesel. Korean Journal of Chemical Engineering. 2002;19(4):601-6. DOI: https://doi.org/10.1007/BF02699303.
  • 3. Chen X, Yuan S, Abdeltawab AA, Al-Deyab SS, Zhang J, Yu L, et al. Extractive desulfurization and denitrogenation of fuels using functional acidic ionic liquids. Separation and Purification Technology. 2014;133:187-93. DOI: https://doi.org/10.1016/j.seppur.2014.06.031.
  • 4. Babich I, Moulijn J. Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel. 2003;82(6):607-31. DOI: https://doi.org/10.1016/S0016-2361(02)00324-1.
  • 5. Wang Y, Li H, Zhu W, Jiang X, He L, Lu J, et al. The extractive desulfurization of fuels using ionic liquids based on FeCl3. Petroleum Science and Technology. 2010;28(12):1203-10. DOI: https://doi.org/10.1080/10916460903066148.
  • 6. Zhang L, Wang J, Sun Y, Jiang B, Yang H. Deep oxidative desulfurization of fuels by superbase-derived Lewis acidic ionic liquids. Chemical Engineering Journal. 2017;328:445-53. DOI: https://doi.org/10.1016/j.cej.2017.07.060.
  • 7. Kianpour E, Azizian S. Polyethylene glycol as a green solvent for effective extractive desulfurization of liquid fuel at ambient conditions. Fuel. 2014;137:36-40. DOI: https://doi.org/10.1016/j.fuel.2014.07.096.
  • 8. Li C, Li D, Zou S, Li Z, Yin J, Wang A, et al. Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents. Green Chemistry. 2013;15(10):2793-9. DOI: https://doi.org/10.1039/C3GC41067F.
  • 9. Meier P, Reed L, Greenwood G. Removing gasoline sulfur. Hydrocarbon Engineering. 2001;6(1): 26-8. URL: https://www.osti.gov/etdeweb/biblio/20218722.
  • 10. Song Z, Zhou T, Qi Z, Sundmacher K. Systematic method for screening ionic liquids as extraction solvents exemplified by an extractive desulfurization process. ACS Sustainable Chemistry & Engineering. 2017;5(4):3382-9. DOI: https://doi.org/10.1021/acssuschemeng.7b00024.
  • 11. Paucar NE, Kiggins P, Blad B, De Jesus K, Afrin F, Pashikanti S, et al. Ionic liquids for the removal of sulfur and nitrogen compounds in fuels: a review. Environmental Chemistry Letters. 2021:1-24. DOI: https://doi.org/10.1007/s10311-020-01135-1.
  • 12. Sun L, Su T, Li P, Xu J, Chen N, Liao W, et al. Extraction coupled with aerobic oxidative desulfurization of model diesel using a B-type Anderson polyoxometalate catalyst in ionic liquids. Catalysis Letters. 2019;149(7):1888-93. DOI: https://doi.org/10.1007/s10562-019-02791-x.
  • 13. Yu G, Wu X, Wei L, Zhou Z, Liu W, Zhang F, et al. Desulfurization of diesel fuel by one-pot method with morpholinium-based Brønsted acidic ionic liquid. Fuel. 2021;296:120551. DOI: https://doi.org/10.1016/j.fuel.2021.120551.
  • 14. Ren Z, Wei L, Zhou Z, Zhang F, Liu W. Extractive desulfurization of model oil with protic ionic liquids. Energy & Fuels. 2018;32(9):9172-81. DOI: https://doi.org/10.1021/acs.energyfuels.8b01936.
  • 15. Yang H, Jiang B, Sun Y, Hao L, Huang Z, Zhang L. Synthesis and oxidative desulfurization of novel lactam-based Brønsted-Lewis acidic ionic liquids. Chemical Engineering Journal. 2016;306:131-8. DOI: https://doi.org/10.1016/j.cej.2016.07.044.
  • 16. Bhutto AW, Abro R, Gao S, Abbas T, Chen X, Yu G. Oxidative desulfurization of fuel oils using ionic liquids: A review. Journal of the Taiwan Institute of Chemical Engineers. 2016;62:84-97. DOI: https://doi.org/10.1016/j.jtice.2016.01.014.
  • 17. Jiang B, Yang H, Zhang L, Zhang R, Sun Y, Huang Y. Efficient oxidative desulfurization of diesel fuel using amide-based ionic liquids. Chemical Engineering Journal. 2016;283:89-96. DOI: https://doi.org/10.1016/j.cej.2015.07.070.
  • 18. Kulkarni PS, Afonso CA. Deep desulfurization of diesel fuel using ionic liquids: current status and future challenges. Green Chemistry. 2010;12(7):1139-49. DOI: https://doi.org/10.1039/C002113J.
  • 19. Gao H, Zeng S, Liu X, Nie Y, Zhang X, Zhang S. Extractive desulfurization of fuel using N-butylpyridinium-based ionic liquids. RSC Advances. 2015;5(38):30234-8. DOI: https://doi.org/10.1039/C5RA03762J.
  • 20. Dharaskar SA, Wasewar KL, Varma MN, Shende DZ. Extractive deep desulfurization of liquid fuels using Lewis-based ionic liquids. Journal of Energy. 2013;2013. DOI: https://doi.org/10.1155/2013/581723.
  • 21. Ko NH, Lee JS, Huh ES, Lee H, Jung KD, Kim HS, et al. Extractive desulfurization using Fe-containing ionic liquids. Energy & Fuels. 2008;22(3):1687-90. DOI: https://doi.org/10.1021/ef7007369.
  • 22. Hao Y, Hao Y-J, Ren J, Wu B, Wang X-J, Zhao D, et al. Extractive/catalytic oxidative mechanisms over [Hnmp] Cl· x FeCl 3 ionic liquids towards the desulfurization of model oils. New Journal of Chemistry. 2019;43(20):7725-32. DOI: https://doi.org/10.1039/C9NJ00691E.
  • 23. Brown LC, Hogg JM, Swadźba-Kwaśny M. Lewis acidic ionic liquids. Ionic Liquids II. 2017:185-224. DOI: https://doi.org/10.1007/978-3-319-89794-3_7.
  • 24. Singh SK, Savoy AW. Ionic liquids synthesis and applications: An overview. Journal of Molecular Liquids. 2020;297:112038. DOI: https://doi.org/10.1016/j.molliq.2019.112038.
  • 25. Ren T-J, Zhang J, Hu Y-H, Li J-P, Liu M-S, Zhao D-S. Extractive desulfurization of fuel oil with metal-based ionic liquids. Chinese Chemical Letters. 2015;26(9):1169-73. DOI: https://doi.org/10.1016/j.cclet.2015.05.023.
  • 26. Wang J, Zhang L, Sun Y, Jiang B, Chen Y, Gao X, et al. Deep catalytic oxidative desulfurization of fuels by novel Lewis acidic ionic liquids. Fuel processing technology. 2018;177:81-8. DOI: https://doi.org/10.1016/j.fuproc.2018.04.013.
  • 27. Earle MJ, McCormac PB, Seddon KR. Regioselective alkylation in ionic liquids. Chemical Communications. 1998(20):2245-6. DOI: https://doi.org/10.1039/A806328A.
  • 28. Ding Y-S, Zha M, Zhang J, Wang S-S. Synthesis, characterization and properties of geminal imidazolium ionic liquids. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007;298(3):201-5. DOI: https://doi.org/10.1016/j.colsurfa.2006.10.063.
  • 29. Moshikur RM, Chowdhury MR, Wakabayashi R, Tahara Y, Kamiya N, Moniruzzaman M, et al. Ionic liquids with N-methyl-2-pyrrolidonium cation as an enhancer for topical drug delivery: Synthesis, characterization, and skin-penetration evaluation. Journal of Molecular Liquids. 2020;299:112166. DOI: https://doi.org/10.1016/j.molliq.2019.112166.
  • 30. Liu Q-S, Yan P-F, Yang M, Tan Z-C, Li C-P, Welz-Biermann U. Dynamic viscosity and conductivity of ionic liquids [Cnpy][NTf2](n= 2, 4, 5). Acta Physico-Chimica Sinica. 2011;27(12):2762-6. URL: https://www.ingentaconnect.com/content/apcs/apcs/2011/00000027/00000012/art00007#expand/collapse.
  • 31. Pereiro AB, Araújo JM, Oliveira FS, Bernardes CE, Esperança JM, Lopes JNC, et al. Inorganic salts in purely ionic liquid media: the development of high ionicity ionic liquids (HIILs). Chemical communications. 2012;48(30):3656-8. DOI: https://doi.org/10.1039/C2CC30374D.
  • 32. Peppel T, Köckerling M. Investigations on a series of ionic liquids containing the [CoIIBr3quin]− anion (quin= quinoline). Crystal Growth & Design. 2011;11(12):5461-8. DOI: https://doi.org/10.1021/cg2010419.
  • 33. Boudalis AK, Rogez G, Heinrich B, Raptis RG, Turek P. Towards ionic liquids with tailored magnetic properties: bmim+ salts of ferro-and antiferromagnetic Cu II3 triangles. Dalton Transactions. 2017;46(36):12263-73. DOI: https://doi.org/10.1039/C7DT02472J.
  • 34. Okuhata M, Funasako Y, Takahashi K, Mochida T. A spin-crossover ionic liquid from the cationic iron (III) Schiff base complex. Chemical Communications. 2013;49(69):7662-4. DOI: https://doi.org/10.1039/C3CC44199G.
  • 35. Nacham O, Clark KD, Yu H, Anderson JL. Synthetic strategies for tailoring the physicochemical and magnetic properties of hydrophobic magnetic ionic liquids. Chemistry of Materials. 2015;27(3):923-31. DOI: https://doi.org/10.1021/cm504202v.
  • 36. Tamura T, Yoshida K, Hachida T, Tsuchiya M, Nakamura M, Kazue Y, et al. Physicochemical properties of glyme–Li salt complexes as a new family of room-temperature ionic liquids. Chemistry Letters. 2010;39(7):753-5. DOI: https://doi.org/10.1246/cl.2010.753.
  • 37. D'Anna F, Gunaratne HN, Lazzara G, Noto R, Rizzo C, Seddon KR. Solution and thermal behaviour of novel dicationic imidazolium ionic liquids. Organic & Biomolecular Chemistry. 2013;11(35):5836-46. DOI: https://doi.org/10.1039/C3OB40807H.
  • 38. Quitevis EL, Bardak F, Xiao D, Hines L, Son P, Bartsch R, et al. OKE Spectroscopy and Molecular Dynamics Simulations of Nonpolar and Polar Molecules in Ionic Liquids. Ionic liquids: Science and Applications, Visser AE, Bridges NJ, Rogers RD, Eds; 2012. DOI: https://10.1021/bk-2012-1117.ch013.
  • 39. Francisco M, Arce A, Soto A. Ionic liquids on desulfurization of fuel oils. Fluid Phase Equilibria. 2010;294(1-2):39-48. DOI: https://doi.org/10.1016/j.fluid.2009.12.020.
  • 40. Rodríguez-Cabo B, Rodríguez H, Rodil E, Arce A, Soto A. Extractive and oxidative-extractive desulfurization of fuels with ionic liquids. Fuel. 2014;117:882-9. DOI: https://doi.org/10.1016/j.fuel.2013.10.012.
  • 41. Zhang M, Zhu W, Xun S, Li H, Gu Q, Zhao Z, et al. Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid materials in ionic liquids. Chemical Engineering Journal. 2013;220:328-36. DOI: https://doi.org/10.1016/j.cej.2012.11.138.
  • 42. Chen X, Guo H, Abdeltawab AA, Guan Y, Al-Deyab SS, Yu G, et al. Brønsted–Lewis acidic ionic liquids and application in oxidative desulfurization of diesel fuel. Energy & Fuels. 2015;29(5):2998-3003. DOI: https://doi.org/10.1021/acs.energyfuels.5b00172.
  • 43. Gao H, Zeng S, He H, Dong H, Nie Y, Zhang X, et al. Deep desulfurization of gasoline fuel using FeCl3-containing lewis-acidic ionic liquids. Separation Science and Technology. 2014;49(8):1208-14. DOI: https://doi.org/10.1080/01496395.2013.868487.
Year 2021, Volume: 8 Issue: 3, 763 - 774, 31.08.2021
https://doi.org/10.18596/jotcsa.942318

Abstract

References

  • 1. Zhang S, Zhang Q, Zhang ZC. Extractive desulfurization and denitrogenation of fuels using ionic liquids. Industrial & Engineering Chemistry Research. 2004;43(2):614-22. DOI: https://doi.org/10.1021/ie030561.
  • 2. Min W. A unique way to make ultra low sulfur diesel. Korean Journal of Chemical Engineering. 2002;19(4):601-6. DOI: https://doi.org/10.1007/BF02699303.
  • 3. Chen X, Yuan S, Abdeltawab AA, Al-Deyab SS, Zhang J, Yu L, et al. Extractive desulfurization and denitrogenation of fuels using functional acidic ionic liquids. Separation and Purification Technology. 2014;133:187-93. DOI: https://doi.org/10.1016/j.seppur.2014.06.031.
  • 4. Babich I, Moulijn J. Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel. 2003;82(6):607-31. DOI: https://doi.org/10.1016/S0016-2361(02)00324-1.
  • 5. Wang Y, Li H, Zhu W, Jiang X, He L, Lu J, et al. The extractive desulfurization of fuels using ionic liquids based on FeCl3. Petroleum Science and Technology. 2010;28(12):1203-10. DOI: https://doi.org/10.1080/10916460903066148.
  • 6. Zhang L, Wang J, Sun Y, Jiang B, Yang H. Deep oxidative desulfurization of fuels by superbase-derived Lewis acidic ionic liquids. Chemical Engineering Journal. 2017;328:445-53. DOI: https://doi.org/10.1016/j.cej.2017.07.060.
  • 7. Kianpour E, Azizian S. Polyethylene glycol as a green solvent for effective extractive desulfurization of liquid fuel at ambient conditions. Fuel. 2014;137:36-40. DOI: https://doi.org/10.1016/j.fuel.2014.07.096.
  • 8. Li C, Li D, Zou S, Li Z, Yin J, Wang A, et al. Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents. Green Chemistry. 2013;15(10):2793-9. DOI: https://doi.org/10.1039/C3GC41067F.
  • 9. Meier P, Reed L, Greenwood G. Removing gasoline sulfur. Hydrocarbon Engineering. 2001;6(1): 26-8. URL: https://www.osti.gov/etdeweb/biblio/20218722.
  • 10. Song Z, Zhou T, Qi Z, Sundmacher K. Systematic method for screening ionic liquids as extraction solvents exemplified by an extractive desulfurization process. ACS Sustainable Chemistry & Engineering. 2017;5(4):3382-9. DOI: https://doi.org/10.1021/acssuschemeng.7b00024.
  • 11. Paucar NE, Kiggins P, Blad B, De Jesus K, Afrin F, Pashikanti S, et al. Ionic liquids for the removal of sulfur and nitrogen compounds in fuels: a review. Environmental Chemistry Letters. 2021:1-24. DOI: https://doi.org/10.1007/s10311-020-01135-1.
  • 12. Sun L, Su T, Li P, Xu J, Chen N, Liao W, et al. Extraction coupled with aerobic oxidative desulfurization of model diesel using a B-type Anderson polyoxometalate catalyst in ionic liquids. Catalysis Letters. 2019;149(7):1888-93. DOI: https://doi.org/10.1007/s10562-019-02791-x.
  • 13. Yu G, Wu X, Wei L, Zhou Z, Liu W, Zhang F, et al. Desulfurization of diesel fuel by one-pot method with morpholinium-based Brønsted acidic ionic liquid. Fuel. 2021;296:120551. DOI: https://doi.org/10.1016/j.fuel.2021.120551.
  • 14. Ren Z, Wei L, Zhou Z, Zhang F, Liu W. Extractive desulfurization of model oil with protic ionic liquids. Energy & Fuels. 2018;32(9):9172-81. DOI: https://doi.org/10.1021/acs.energyfuels.8b01936.
  • 15. Yang H, Jiang B, Sun Y, Hao L, Huang Z, Zhang L. Synthesis and oxidative desulfurization of novel lactam-based Brønsted-Lewis acidic ionic liquids. Chemical Engineering Journal. 2016;306:131-8. DOI: https://doi.org/10.1016/j.cej.2016.07.044.
  • 16. Bhutto AW, Abro R, Gao S, Abbas T, Chen X, Yu G. Oxidative desulfurization of fuel oils using ionic liquids: A review. Journal of the Taiwan Institute of Chemical Engineers. 2016;62:84-97. DOI: https://doi.org/10.1016/j.jtice.2016.01.014.
  • 17. Jiang B, Yang H, Zhang L, Zhang R, Sun Y, Huang Y. Efficient oxidative desulfurization of diesel fuel using amide-based ionic liquids. Chemical Engineering Journal. 2016;283:89-96. DOI: https://doi.org/10.1016/j.cej.2015.07.070.
  • 18. Kulkarni PS, Afonso CA. Deep desulfurization of diesel fuel using ionic liquids: current status and future challenges. Green Chemistry. 2010;12(7):1139-49. DOI: https://doi.org/10.1039/C002113J.
  • 19. Gao H, Zeng S, Liu X, Nie Y, Zhang X, Zhang S. Extractive desulfurization of fuel using N-butylpyridinium-based ionic liquids. RSC Advances. 2015;5(38):30234-8. DOI: https://doi.org/10.1039/C5RA03762J.
  • 20. Dharaskar SA, Wasewar KL, Varma MN, Shende DZ. Extractive deep desulfurization of liquid fuels using Lewis-based ionic liquids. Journal of Energy. 2013;2013. DOI: https://doi.org/10.1155/2013/581723.
  • 21. Ko NH, Lee JS, Huh ES, Lee H, Jung KD, Kim HS, et al. Extractive desulfurization using Fe-containing ionic liquids. Energy & Fuels. 2008;22(3):1687-90. DOI: https://doi.org/10.1021/ef7007369.
  • 22. Hao Y, Hao Y-J, Ren J, Wu B, Wang X-J, Zhao D, et al. Extractive/catalytic oxidative mechanisms over [Hnmp] Cl· x FeCl 3 ionic liquids towards the desulfurization of model oils. New Journal of Chemistry. 2019;43(20):7725-32. DOI: https://doi.org/10.1039/C9NJ00691E.
  • 23. Brown LC, Hogg JM, Swadźba-Kwaśny M. Lewis acidic ionic liquids. Ionic Liquids II. 2017:185-224. DOI: https://doi.org/10.1007/978-3-319-89794-3_7.
  • 24. Singh SK, Savoy AW. Ionic liquids synthesis and applications: An overview. Journal of Molecular Liquids. 2020;297:112038. DOI: https://doi.org/10.1016/j.molliq.2019.112038.
  • 25. Ren T-J, Zhang J, Hu Y-H, Li J-P, Liu M-S, Zhao D-S. Extractive desulfurization of fuel oil with metal-based ionic liquids. Chinese Chemical Letters. 2015;26(9):1169-73. DOI: https://doi.org/10.1016/j.cclet.2015.05.023.
  • 26. Wang J, Zhang L, Sun Y, Jiang B, Chen Y, Gao X, et al. Deep catalytic oxidative desulfurization of fuels by novel Lewis acidic ionic liquids. Fuel processing technology. 2018;177:81-8. DOI: https://doi.org/10.1016/j.fuproc.2018.04.013.
  • 27. Earle MJ, McCormac PB, Seddon KR. Regioselective alkylation in ionic liquids. Chemical Communications. 1998(20):2245-6. DOI: https://doi.org/10.1039/A806328A.
  • 28. Ding Y-S, Zha M, Zhang J, Wang S-S. Synthesis, characterization and properties of geminal imidazolium ionic liquids. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007;298(3):201-5. DOI: https://doi.org/10.1016/j.colsurfa.2006.10.063.
  • 29. Moshikur RM, Chowdhury MR, Wakabayashi R, Tahara Y, Kamiya N, Moniruzzaman M, et al. Ionic liquids with N-methyl-2-pyrrolidonium cation as an enhancer for topical drug delivery: Synthesis, characterization, and skin-penetration evaluation. Journal of Molecular Liquids. 2020;299:112166. DOI: https://doi.org/10.1016/j.molliq.2019.112166.
  • 30. Liu Q-S, Yan P-F, Yang M, Tan Z-C, Li C-P, Welz-Biermann U. Dynamic viscosity and conductivity of ionic liquids [Cnpy][NTf2](n= 2, 4, 5). Acta Physico-Chimica Sinica. 2011;27(12):2762-6. URL: https://www.ingentaconnect.com/content/apcs/apcs/2011/00000027/00000012/art00007#expand/collapse.
  • 31. Pereiro AB, Araújo JM, Oliveira FS, Bernardes CE, Esperança JM, Lopes JNC, et al. Inorganic salts in purely ionic liquid media: the development of high ionicity ionic liquids (HIILs). Chemical communications. 2012;48(30):3656-8. DOI: https://doi.org/10.1039/C2CC30374D.
  • 32. Peppel T, Köckerling M. Investigations on a series of ionic liquids containing the [CoIIBr3quin]− anion (quin= quinoline). Crystal Growth & Design. 2011;11(12):5461-8. DOI: https://doi.org/10.1021/cg2010419.
  • 33. Boudalis AK, Rogez G, Heinrich B, Raptis RG, Turek P. Towards ionic liquids with tailored magnetic properties: bmim+ salts of ferro-and antiferromagnetic Cu II3 triangles. Dalton Transactions. 2017;46(36):12263-73. DOI: https://doi.org/10.1039/C7DT02472J.
  • 34. Okuhata M, Funasako Y, Takahashi K, Mochida T. A spin-crossover ionic liquid from the cationic iron (III) Schiff base complex. Chemical Communications. 2013;49(69):7662-4. DOI: https://doi.org/10.1039/C3CC44199G.
  • 35. Nacham O, Clark KD, Yu H, Anderson JL. Synthetic strategies for tailoring the physicochemical and magnetic properties of hydrophobic magnetic ionic liquids. Chemistry of Materials. 2015;27(3):923-31. DOI: https://doi.org/10.1021/cm504202v.
  • 36. Tamura T, Yoshida K, Hachida T, Tsuchiya M, Nakamura M, Kazue Y, et al. Physicochemical properties of glyme–Li salt complexes as a new family of room-temperature ionic liquids. Chemistry Letters. 2010;39(7):753-5. DOI: https://doi.org/10.1246/cl.2010.753.
  • 37. D'Anna F, Gunaratne HN, Lazzara G, Noto R, Rizzo C, Seddon KR. Solution and thermal behaviour of novel dicationic imidazolium ionic liquids. Organic & Biomolecular Chemistry. 2013;11(35):5836-46. DOI: https://doi.org/10.1039/C3OB40807H.
  • 38. Quitevis EL, Bardak F, Xiao D, Hines L, Son P, Bartsch R, et al. OKE Spectroscopy and Molecular Dynamics Simulations of Nonpolar and Polar Molecules in Ionic Liquids. Ionic liquids: Science and Applications, Visser AE, Bridges NJ, Rogers RD, Eds; 2012. DOI: https://10.1021/bk-2012-1117.ch013.
  • 39. Francisco M, Arce A, Soto A. Ionic liquids on desulfurization of fuel oils. Fluid Phase Equilibria. 2010;294(1-2):39-48. DOI: https://doi.org/10.1016/j.fluid.2009.12.020.
  • 40. Rodríguez-Cabo B, Rodríguez H, Rodil E, Arce A, Soto A. Extractive and oxidative-extractive desulfurization of fuels with ionic liquids. Fuel. 2014;117:882-9. DOI: https://doi.org/10.1016/j.fuel.2013.10.012.
  • 41. Zhang M, Zhu W, Xun S, Li H, Gu Q, Zhao Z, et al. Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid materials in ionic liquids. Chemical Engineering Journal. 2013;220:328-36. DOI: https://doi.org/10.1016/j.cej.2012.11.138.
  • 42. Chen X, Guo H, Abdeltawab AA, Guan Y, Al-Deyab SS, Yu G, et al. Brønsted–Lewis acidic ionic liquids and application in oxidative desulfurization of diesel fuel. Energy & Fuels. 2015;29(5):2998-3003. DOI: https://doi.org/10.1021/acs.energyfuels.5b00172.
  • 43. Gao H, Zeng S, He H, Dong H, Nie Y, Zhang X, et al. Deep desulfurization of gasoline fuel using FeCl3-containing lewis-acidic ionic liquids. Separation Science and Technology. 2014;49(8):1208-14. DOI: https://doi.org/10.1080/01496395.2013.868487.
There are 43 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Assim A. Sabah 0000-0001-9985-496X

Publication Date August 31, 2021
Submission Date May 24, 2021
Acceptance Date June 27, 2021
Published in Issue Year 2021 Volume: 8 Issue: 3

Cite

Vancouver Sabah AA. Synthesis and Characterization of Some Transition Metals Complex Salts of Pyridinium Iodide Ionic Liquids: Application on Extractive Desulfurization. JOTCSA. 2021;8(3):763-74.

Cited By