Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Biosynthesis of Bimetallic Ag-Au (core-shell) Nanoparticles Using Aqueous Extract of Bay Leaves (Laurus nobilis L.)

Year 2021, Volume 8, Issue 4, 1035 - 1044, 30.11.2021
https://doi.org/10.18596/jotcsa.885558

Abstract

The green synthesis of bimetallic nanoparticles using plant extracts is attracting an increasing attention in the nanoparticle production field since, besides being available for the production of bimetallic nanoparticles, it is cost-effective, eco-friendly, and it is available for large scale production. The required agents to reduce and stabilize metal nanoparticles during synthesis already exist in plant extracts as phytochemicals. The study highlights the synthesis of gold, silver, and silver-gold (bimetallic) nanoparticles at room temperature using an aqueous extract of dried bay leaves and their physical and chemical characterizations for their potential applications. We have synthesized Ag, Au, and Ag-Au nanoparticles using the aqueous bay leaves extract. The nanoparticles were characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). According to UV-Vis spectroscopic results, it is concluded that Ag-Au bimetallic nanoparticles synthesized in the extract have a core-shell arrangement. XRD measurements revealed that all nanoparticles (Ag, Au, and Ag-Au) are in fcc structure. The nanoparticles' average sizes were measured as 10±7, 23±4, and 8±3 nm for Ag, Au, and Ag-Au nanoparticles, respectively, as determined from the TEM images. The results offer that besides Ag and Au nanoparticles, bimetallic Ag-Au nanoparticles synthesized in an aqueous extract of dried bay leaves may play a prominent role in the field of nanotechnology, especially in nanomedicine.

References

  • 1. Ding K, Cullen DA, Zhang L, Cao Z, Roy AD, Ivanov IN, et al. A general synthesis approach for supported bimetallic nanoparticles via surface inorganometallic chemistry. Science. 2018 Nov 2;362(6414):560–4.
  • 2. Sankar M, Dimitratos N, Miedziak PJ, Wells PP, Kiely CJ, Hutchings GJ. Designing bimetallic catalysts for a green and sustainable future. Chem Soc Rev. 2012;41(24):8099.
  • 3. Alonso DM, Wettstein SG, Dumesic JA. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev. 2012;41(24):8075.
  • 4. Ferrando R, Jellinek J, Johnston RL. Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles. Chem Rev. 2008 Mar 1;108(3):845–910.
  • 5. Chen HM, Liu RS, Jang L-Y, Lee J-F, Hu SF. Characterization of core–shell type and alloy Ag/Au bimetallic clusters by using extended X-ray absorption fine structure spectroscopy. Chemical Physics Letters. 2006 Apr;421(1–3):118–23.
  • 6. Chatterjee K, Sarkar S, Jagajjanani Rao K, Paria S. Core/shell nanoparticles in biomedical applications. Advances in Colloid and Interface Science. 2014 Jul;209:8–39.
  • 7. Kim K, Kim KL, Choi J-Y, Lee HB, Shin KS. Surface Enrichment of Ag Atoms in Au/Ag Alloy Nanoparticles Revealed by Surface-Enhanced Raman Scattering of 2,6-Dimethylphenyl Isocyanide. J Phys Chem C. 2010 Mar 4;114(8):3448–53.
  • 8. Zhang L, Zhang J, Wang F, Shen J, Zhang Y, Wu L, et al. An Au@Ag nanocube based plasmonic nano-sensor for rapid detection of sulfide ions with high sensitivity. RSC Adv. 2018;8(11):5792–6.
  • 9. Srnová-Šloufová I, Lednický F, Gemperle A, Gemperlová J. Core−Shell (Ag)Au Bimetallic Nanoparticles: Analysis of Transmission Electron Microscopy Images. Langmuir. 2000 Dec;16(25):9928–35.
  • 10. Xu S, Zhao B, Xu W, Fan Y. Preparation of Au–Ag coreshell nanoparticles and application of bimetallic sandwich in surface-enhanced Raman scattering (SERS). Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2005 May;257–258:313–7.
  • 11. Mallik K, Mandal M, Pradhan N, Pal T. Seed Mediated Formation of Bimetallic Nanoparticles by UV Irradiation: A Photochemical Approach for the Preparation of “Core−Shell” Type Structures. Nano Lett. 2001 Jun 1;1(6):319–22.
  • 12. Vinod M, Gopchandran KG. Ag@Au core–shell nanoparticles synthesized by pulsed laser ablation in water: Effect of plasmon coupling and their SERS performance. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015 Oct;149:913–9.
  • 13. Philip D. Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2009 Jul;73(2):374–81.
  • 14. Shankar SS, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science. 2004 Jul;275(2):496–502.
  • 15. Kalaiarasi R, Jayallakshmi N, Venkatachalam P. Phytosynthesis of nanoparticles and its applications. Plant Cell Biotechnology and Molecular Biology. 2010;11(1/4):1–16.
  • 16. Dwivedi AD, Gopal K. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010 Oct;369(1–3):27–33.
  • 17. Song JY, Kim BS. Biological synthesis of bimetallic Au/Ag nanoparticles using Persimmon (Diopyros kaki) leaf extract. Korean J Chem Eng. 2008 Jul;25(4):808–11.
  • 18. Sheny DS, Mathew J, Philip D. Phytosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2011 Jun;79(1):254–62.
  • 19. Mondal S, Roy N, Laskar RA, Sk I, Basu S, Mandal D, et al. Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves. Colloids and Surfaces B: Biointerfaces. 2011 Feb;82(2):497–504.
  • 20. Zhan G, Huang J, Du M, Abdul-Rauf I, Ma Y, Li Q. Green synthesis of Au–Pd bimetallic nanoparticles: Single-step bioreduction method with plant extract. Materials Letters. 2011 Oct;65(19–20):2989–91.
  • 21. Jacob J, Mukherjee T, Kapoor S. A simple approach for facile synthesis of Ag, anisotropic Au and bimetallic (Ag/Au) nanoparticles using cruciferous vegetable extracts. Materials Science and Engineering: C. 2012 Oct;32(7):1827–34.
  • 22. Tamuly C, Hazarika M, Borah SCh, Das MR, Boruah MP. In situ biosynthesis of Ag, Au and bimetallic nanoparticles using Piper pedicellatum C.DC: Green chemistry approach. Colloids and Surfaces B: Biointerfaces. 2013 Feb;102:627–34.
  • 23. AbdelHamid AA, Al-Ghobashy MA, Fawzy M, Mohamed MB, Abdel-Mottaleb MMSA. Phytosynthesis of Au, Ag, and Au–Ag Bimetallic Nanoparticles Using Aqueous Extract of Sago Pondweed ( Potamogeton pectinatus L.). ACS Sustainable Chem Eng. 2013 Dec 2;1(12):1520–9.
  • 24. Kasthuri J, Veerapandian S, Rajendiran N. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids and Surfaces B: Biointerfaces. 2009 Jan;68(1):55–60.
  • 25. Boote BW, Byun H, Kim J-H. Silver–Gold Bimetallic Nanoparticles and Their Applications as Optical Materials. J Nanosci Nanotech. 2014 Feb 1;14(2):1563–77.
  • 26. Hamidi-Asl E, Dardenne F, Pilehvar S, Blust R, De Wael K. Unique Properties of Core Shell Ag@Au Nanoparticles for the Aptasensing of Bacterial Cells. Chemosensors. 2016 Aug 29;4(3):16.
  • 27. Nagaonkar D. Sequentially Reduced Biogenic Silver-Gold Nanoparticles With Enhanced Antimicrobial Potential Over Silver And Gold Monometallic Nanoparticles. AML. 2015 Apr 10;6(4):334–41.
  • 28. Di Leo Lira P, Retta D, Tkacik E, Ringuelet J, Coussio JD, van Baren C, et al. Essential oil and by-products of distillation of bay leaves (Laurus nobilis L.) from Argentina. Industrial Crops and Products. 2009 Sep;30(2):259–64.
  • 29. Sellami IH, Wannes WA, Bettaieb I, Berrima S, Chahed T, Marzouk B, et al. Qualitative and quantitative changes in the essential oil of Laurus nobilis L. leaves as affected by different drying methods. Food Chemistry. 2011 May;126(2):691–7.
  • 30. Gómez-Coronado DJM, Barbas C. Optimized and Validated HPLC Method for α- and γ-Tocopherol Measurement in Laurus nobilis Leaves. New Data on Tocopherol Content. J Agric Food Chem. 2003 Aug;51(18):5196–201.
  • 31. Dall’Acqua S, Viola G, Giorgetti M, Loi MC, Innocenti G. Two New Sesquiterpene Lactones from the Leaves of Laurus nobilis. Chem Pharm Bull. 2006;54(8):1187–9.
  • 32. De Marino S, Borbone N, Zollo F, Ianaro A, Di Meglio P, Iorizzi M. Megastigmane and Phenolic Components from Laurus nobilis L. Leaves and Their Inhibitory Effects on Nitric Oxide Production. J Agric Food Chem. 2004 Dec;52(25):7525–31.
  • 33. Fiorini C, David B, Fourasté I, Vercauteren J. Acylated kaempferol glycosides from Laurus nobilis leaves. Phytochemistry. 1998 Mar;47(5):821–4.
  • 34. Sakar M, Engelshowe R. Monomere und dimere Gerbstoffvorstufen in Lorbeerblättern (Laurus nobilis L.). Z Für Lebensm-Unters Forsch. 1985;180(6):494–5.
  • 35. Baytop T. Therapy with medicinal plants in Turkey (past and present). Istanbul: Nobel Tıp Kitabevi; 2000.
  • 36. Jha A, Prasad K. Understanding the involved mechanism in plant-mediated synthesis of nanoparticles. In: Rai M, Posten C, editors. Green biosynthesis of nanoparticles: mechanisms and applications. Wallingford, Oxfordshire ; Boston, Massachusetts: CABI; 2013. p. 122–31. ISBN: 978-1-78064-223-9.
  • 37. Dias MI, Barros L, Dueñas M, Alves RC, Oliveira MBPP, Santos-Buelga C, et al. Nutritional and antioxidant contributions of Laurus nobilis L. leaves: Would be more suitable a wild or a cultivated sample? Food Chemistry. 2014 Aug;156:339–46.
  • 38. Sinha SN, Paul D. Eco-friendly green synthesis and spectrophotometric characterization of silver nanoparticles synthesized using some common Indian spices. Int J Green Herbal Chem. 2014;3:401–8.
  • 39. Vijayakumar S, Vaseeharan B, Malaikozhundan B, Shobiya M. Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: Characterization and biomedical applications. Biomedicine & Pharmacotherapy. 2016 Dec;84:1213–22.
  • 40. Khalil M, Mahmoud I, Hamed M. Green synthesis of gold nanoparticles using Laurus nobilis L. leaf extract and its antimicrobial activity. Int J Green Herbal Chem. 2015;4(3):265–79.
  • 41. Mulvaney P. Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir. 1996 Jan;12(3):788–800.
  • 42. Yang Y, Shi J, Kawamura G, Nogami M. Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced Raman scattering. Scripta Materialia. 2008 May;58(10):862–5.
  • 43. Gopinath K, Kumaraguru S, Bhakyaraj K, Mohan S, Venkatesh KS, Esakkirajan M, et al. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microbial Pathogenesis. 2016 Dec;101:1–11.
  • 44. Chavez K, Rosas G. Green Synthesis and Characterization of Ag@Au Core-shell Bimetallic Nanoparticles using the Extract of Hamelia patens Plant. Microsc Microanal. 2019 Aug;25(S2):1102–3.
  • 45. Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, et al. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology. 2008 Feb 20;19(7):075103.
  • 46. Dubey SP, Lahtinen M, Sillanpää M. Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010 Jul;364(1–3):34–41.
  • 47. Kumar VA, Ammani K, Jobina R, Subhaswaraj P, Siddhardha B. Photo-induced and phytomediated synthesis of silver nanoparticles using Derris trifoliata leaf extract and its larvicidal activity against Aedes aegypti. Journal of Photochemistry and Photobiology B: Biology. 2017 Jun;171:1–8.
  • 48. Groiss S, Selvaraj R, Varadavenkatesan T, Vinayagam R. Structural characterization, antibacterial and catalytic effect of iron oxide nanoparticles synthesised using the leaf extract of Cynometra ramiflora. Journal of Molecular Structure. 2017 Jan;1128:572–8.
  • 49. Nezamdoost T, Bagherieh-Najjar MB, Aghdasi M. Biogenic synthesis of stable bioactive silver chloride nanoparticles using Onosma dichroantha Boiss. root extract. Materials Letters. 2014 Dec;137:225–8.

Year 2021, Volume 8, Issue 4, 1035 - 1044, 30.11.2021
https://doi.org/10.18596/jotcsa.885558

Abstract

References

  • 1. Ding K, Cullen DA, Zhang L, Cao Z, Roy AD, Ivanov IN, et al. A general synthesis approach for supported bimetallic nanoparticles via surface inorganometallic chemistry. Science. 2018 Nov 2;362(6414):560–4.
  • 2. Sankar M, Dimitratos N, Miedziak PJ, Wells PP, Kiely CJ, Hutchings GJ. Designing bimetallic catalysts for a green and sustainable future. Chem Soc Rev. 2012;41(24):8099.
  • 3. Alonso DM, Wettstein SG, Dumesic JA. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev. 2012;41(24):8075.
  • 4. Ferrando R, Jellinek J, Johnston RL. Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles. Chem Rev. 2008 Mar 1;108(3):845–910.
  • 5. Chen HM, Liu RS, Jang L-Y, Lee J-F, Hu SF. Characterization of core–shell type and alloy Ag/Au bimetallic clusters by using extended X-ray absorption fine structure spectroscopy. Chemical Physics Letters. 2006 Apr;421(1–3):118–23.
  • 6. Chatterjee K, Sarkar S, Jagajjanani Rao K, Paria S. Core/shell nanoparticles in biomedical applications. Advances in Colloid and Interface Science. 2014 Jul;209:8–39.
  • 7. Kim K, Kim KL, Choi J-Y, Lee HB, Shin KS. Surface Enrichment of Ag Atoms in Au/Ag Alloy Nanoparticles Revealed by Surface-Enhanced Raman Scattering of 2,6-Dimethylphenyl Isocyanide. J Phys Chem C. 2010 Mar 4;114(8):3448–53.
  • 8. Zhang L, Zhang J, Wang F, Shen J, Zhang Y, Wu L, et al. An Au@Ag nanocube based plasmonic nano-sensor for rapid detection of sulfide ions with high sensitivity. RSC Adv. 2018;8(11):5792–6.
  • 9. Srnová-Šloufová I, Lednický F, Gemperle A, Gemperlová J. Core−Shell (Ag)Au Bimetallic Nanoparticles: Analysis of Transmission Electron Microscopy Images. Langmuir. 2000 Dec;16(25):9928–35.
  • 10. Xu S, Zhao B, Xu W, Fan Y. Preparation of Au–Ag coreshell nanoparticles and application of bimetallic sandwich in surface-enhanced Raman scattering (SERS). Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2005 May;257–258:313–7.
  • 11. Mallik K, Mandal M, Pradhan N, Pal T. Seed Mediated Formation of Bimetallic Nanoparticles by UV Irradiation: A Photochemical Approach for the Preparation of “Core−Shell” Type Structures. Nano Lett. 2001 Jun 1;1(6):319–22.
  • 12. Vinod M, Gopchandran KG. Ag@Au core–shell nanoparticles synthesized by pulsed laser ablation in water: Effect of plasmon coupling and their SERS performance. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015 Oct;149:913–9.
  • 13. Philip D. Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2009 Jul;73(2):374–81.
  • 14. Shankar SS, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science. 2004 Jul;275(2):496–502.
  • 15. Kalaiarasi R, Jayallakshmi N, Venkatachalam P. Phytosynthesis of nanoparticles and its applications. Plant Cell Biotechnology and Molecular Biology. 2010;11(1/4):1–16.
  • 16. Dwivedi AD, Gopal K. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010 Oct;369(1–3):27–33.
  • 17. Song JY, Kim BS. Biological synthesis of bimetallic Au/Ag nanoparticles using Persimmon (Diopyros kaki) leaf extract. Korean J Chem Eng. 2008 Jul;25(4):808–11.
  • 18. Sheny DS, Mathew J, Philip D. Phytosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2011 Jun;79(1):254–62.
  • 19. Mondal S, Roy N, Laskar RA, Sk I, Basu S, Mandal D, et al. Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves. Colloids and Surfaces B: Biointerfaces. 2011 Feb;82(2):497–504.
  • 20. Zhan G, Huang J, Du M, Abdul-Rauf I, Ma Y, Li Q. Green synthesis of Au–Pd bimetallic nanoparticles: Single-step bioreduction method with plant extract. Materials Letters. 2011 Oct;65(19–20):2989–91.
  • 21. Jacob J, Mukherjee T, Kapoor S. A simple approach for facile synthesis of Ag, anisotropic Au and bimetallic (Ag/Au) nanoparticles using cruciferous vegetable extracts. Materials Science and Engineering: C. 2012 Oct;32(7):1827–34.
  • 22. Tamuly C, Hazarika M, Borah SCh, Das MR, Boruah MP. In situ biosynthesis of Ag, Au and bimetallic nanoparticles using Piper pedicellatum C.DC: Green chemistry approach. Colloids and Surfaces B: Biointerfaces. 2013 Feb;102:627–34.
  • 23. AbdelHamid AA, Al-Ghobashy MA, Fawzy M, Mohamed MB, Abdel-Mottaleb MMSA. Phytosynthesis of Au, Ag, and Au–Ag Bimetallic Nanoparticles Using Aqueous Extract of Sago Pondweed ( Potamogeton pectinatus L.). ACS Sustainable Chem Eng. 2013 Dec 2;1(12):1520–9.
  • 24. Kasthuri J, Veerapandian S, Rajendiran N. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids and Surfaces B: Biointerfaces. 2009 Jan;68(1):55–60.
  • 25. Boote BW, Byun H, Kim J-H. Silver–Gold Bimetallic Nanoparticles and Their Applications as Optical Materials. J Nanosci Nanotech. 2014 Feb 1;14(2):1563–77.
  • 26. Hamidi-Asl E, Dardenne F, Pilehvar S, Blust R, De Wael K. Unique Properties of Core Shell Ag@Au Nanoparticles for the Aptasensing of Bacterial Cells. Chemosensors. 2016 Aug 29;4(3):16.
  • 27. Nagaonkar D. Sequentially Reduced Biogenic Silver-Gold Nanoparticles With Enhanced Antimicrobial Potential Over Silver And Gold Monometallic Nanoparticles. AML. 2015 Apr 10;6(4):334–41.
  • 28. Di Leo Lira P, Retta D, Tkacik E, Ringuelet J, Coussio JD, van Baren C, et al. Essential oil and by-products of distillation of bay leaves (Laurus nobilis L.) from Argentina. Industrial Crops and Products. 2009 Sep;30(2):259–64.
  • 29. Sellami IH, Wannes WA, Bettaieb I, Berrima S, Chahed T, Marzouk B, et al. Qualitative and quantitative changes in the essential oil of Laurus nobilis L. leaves as affected by different drying methods. Food Chemistry. 2011 May;126(2):691–7.
  • 30. Gómez-Coronado DJM, Barbas C. Optimized and Validated HPLC Method for α- and γ-Tocopherol Measurement in Laurus nobilis Leaves. New Data on Tocopherol Content. J Agric Food Chem. 2003 Aug;51(18):5196–201.
  • 31. Dall’Acqua S, Viola G, Giorgetti M, Loi MC, Innocenti G. Two New Sesquiterpene Lactones from the Leaves of Laurus nobilis. Chem Pharm Bull. 2006;54(8):1187–9.
  • 32. De Marino S, Borbone N, Zollo F, Ianaro A, Di Meglio P, Iorizzi M. Megastigmane and Phenolic Components from Laurus nobilis L. Leaves and Their Inhibitory Effects on Nitric Oxide Production. J Agric Food Chem. 2004 Dec;52(25):7525–31.
  • 33. Fiorini C, David B, Fourasté I, Vercauteren J. Acylated kaempferol glycosides from Laurus nobilis leaves. Phytochemistry. 1998 Mar;47(5):821–4.
  • 34. Sakar M, Engelshowe R. Monomere und dimere Gerbstoffvorstufen in Lorbeerblättern (Laurus nobilis L.). Z Für Lebensm-Unters Forsch. 1985;180(6):494–5.
  • 35. Baytop T. Therapy with medicinal plants in Turkey (past and present). Istanbul: Nobel Tıp Kitabevi; 2000.
  • 36. Jha A, Prasad K. Understanding the involved mechanism in plant-mediated synthesis of nanoparticles. In: Rai M, Posten C, editors. Green biosynthesis of nanoparticles: mechanisms and applications. Wallingford, Oxfordshire ; Boston, Massachusetts: CABI; 2013. p. 122–31. ISBN: 978-1-78064-223-9.
  • 37. Dias MI, Barros L, Dueñas M, Alves RC, Oliveira MBPP, Santos-Buelga C, et al. Nutritional and antioxidant contributions of Laurus nobilis L. leaves: Would be more suitable a wild or a cultivated sample? Food Chemistry. 2014 Aug;156:339–46.
  • 38. Sinha SN, Paul D. Eco-friendly green synthesis and spectrophotometric characterization of silver nanoparticles synthesized using some common Indian spices. Int J Green Herbal Chem. 2014;3:401–8.
  • 39. Vijayakumar S, Vaseeharan B, Malaikozhundan B, Shobiya M. Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: Characterization and biomedical applications. Biomedicine & Pharmacotherapy. 2016 Dec;84:1213–22.
  • 40. Khalil M, Mahmoud I, Hamed M. Green synthesis of gold nanoparticles using Laurus nobilis L. leaf extract and its antimicrobial activity. Int J Green Herbal Chem. 2015;4(3):265–79.
  • 41. Mulvaney P. Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir. 1996 Jan;12(3):788–800.
  • 42. Yang Y, Shi J, Kawamura G, Nogami M. Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced Raman scattering. Scripta Materialia. 2008 May;58(10):862–5.
  • 43. Gopinath K, Kumaraguru S, Bhakyaraj K, Mohan S, Venkatesh KS, Esakkirajan M, et al. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microbial Pathogenesis. 2016 Dec;101:1–11.
  • 44. Chavez K, Rosas G. Green Synthesis and Characterization of Ag@Au Core-shell Bimetallic Nanoparticles using the Extract of Hamelia patens Plant. Microsc Microanal. 2019 Aug;25(S2):1102–3.
  • 45. Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, et al. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology. 2008 Feb 20;19(7):075103.
  • 46. Dubey SP, Lahtinen M, Sillanpää M. Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010 Jul;364(1–3):34–41.
  • 47. Kumar VA, Ammani K, Jobina R, Subhaswaraj P, Siddhardha B. Photo-induced and phytomediated synthesis of silver nanoparticles using Derris trifoliata leaf extract and its larvicidal activity against Aedes aegypti. Journal of Photochemistry and Photobiology B: Biology. 2017 Jun;171:1–8.
  • 48. Groiss S, Selvaraj R, Varadavenkatesan T, Vinayagam R. Structural characterization, antibacterial and catalytic effect of iron oxide nanoparticles synthesised using the leaf extract of Cynometra ramiflora. Journal of Molecular Structure. 2017 Jan;1128:572–8.
  • 49. Nezamdoost T, Bagherieh-Najjar MB, Aghdasi M. Biogenic synthesis of stable bioactive silver chloride nanoparticles using Onosma dichroantha Boiss. root extract. Materials Letters. 2014 Dec;137:225–8.

Details

Primary Language English
Subjects Chemistry, Analytical, Chemistry, Applied
Journal Section Articles
Authors

Numan HODA (Primary Author)
Akdeniz Üniversitesi
0000-0001-8692-7971
Türkiye


Leyla BUDAMA AKPOLAT This is me
AKDENİZ ÜNİVERSİTESİ
0000-0002-2271-1116
Türkiye


Firdevs MERT SİVRİ
SÜLEYMAN DEMİREL ÜNİVERSİTESİ
0000-0002-0545-0268
Türkiye


Duygu KURTULUŞ This is me
GEBZE TEKNİK ÜNİVERSİTESİ
0000-0002-9763-5912
Türkiye

Supporting Institution Akdeniz University
Project Number FDK-2015-757 and FBA-2014-83.
Thanks Scientific Research Projects Unit of Akdeniz University
Publication Date November 30, 2021
Application Date February 23, 2021
Acceptance Date August 27, 2021
Published in Issue Year 2021, Volume 8, Issue 4

Cite

Vancouver Hoda N. , Budama Akpolat L. , Mert Sivri F. , Kurtuluş D. Biosynthesis of Bimetallic Ag-Au (core-shell) Nanoparticles Using Aqueous Extract of Bay Leaves (Laurus nobilis L.). Journal of the Turkish Chemical Society Section A: Chemistry. 2021; 8(4): 1035-1044.