Research Article
BibTex RIS Cite

Characterization of Paper-Like Material Prepared from Chitosan/Graphene Oxide Composite

Year 2022, Volume: 9 Issue: 3, 699 - 708, 31.08.2022
https://doi.org/10.18596/jotcsa.1060472

Abstract

Chitosan (CTS) is considered to be a common biomacromolecule/poly-cationic compound containing the potential functional groups that can be utilized as a feedstock for novel materials. In this study, CTS/graphene oxide (CTS/GO, CG) mixtures were prepared at different conditions to confirm a suitable hydrogel formation, then applied to produce paper-like materials with various thickness via a simple casting method. As a result, the morphological structure of finally yielded the paper-like materials (CG2 papers with the various number of casting times) obtained the layer-by-layer structures instead of the tightly-sticky paper-like structure (GO paper). Basing on the possible interactions between the CTS molecules and GO nanosheets occurred in the CG mixtures could be also determined by FTIR and Raman analysis; concomitantly, its thermal property reaches higher than that of the pure GO. Notably, the strong interactions and compatibility of the CTS molecules and GO nanosheets revealed a good dispersion and interfacial adhesion leading to significantly enhancing the mechanical properties of the CG2 paper-like materials with increasing number of casting times or comparing to GO paper. Therefore, the CG2 paper-like materials with the various number of casting times fabricated in the present study can expose new approaches for the design and application of future foil/paper-like materials, as well as the desired thickness of these foil/paper-like materials can be controlled easily.

Supporting Institution

No

Project Number

No

References

  • 1. Vo TS, Vo TTBC. Preparation and Characterization of Bis-Propargyl-Succinate, and its Application in Preliminary Healing Ability of Crosslinked Polyurethane using" Azide-Alkyne" Click. Journal of Engineering Science & Technology Review. 2020;13(4).
  • 2. Vo TS, Vo TTBC, Ti̇En TT, Si̇Nh NT. Enhancement of mechanical property of modified polyurethane with bis-butyl succinate. JOTCSA. 2021 Mar 30;8(2):519–26.
  • 3. Vo TS, Vo TTBC. A Self-Healing Material Based on Microcapsules of Poly(Urea-Formaldehyde)/Bis-Propargyl-Succinate Containing in Polyurethane Matrix. JOTCSA. 2021 Jul 26;8(3):787–802.
  • 4. Vo TS, Vo TTTN, Chau TTB. Preparation and Characterization of Microcapsules Containing Canola Oil with Poly (urea-formaldehyde) Shell and its Stability. Journal of Engineering Science & Technology Review. 2021;14(4):21–36.
  • 5. Vo TS, Vo TTBC, Nguyen TS, Ti̇En TT. Fabrication and Characterization of Gelatin/Chitosan Hydrogel Utilizing as Membranes. Journal of the Turkish Chemical Society Section A: Chemistry. 2021 Oct 1;8(4): 1045–56.
  • 6. Pitkethly MJ. Nanomaterials – the driving force. Materials Today. 2004 Dec;7(12):20–9.
  • 7. Reynolds R, Greinke R. Influence of expansion volume of intercalated graphite on tensile properties of flexible graphite. Carbon. 2001;3(39):479–81.
  • 8. Hennrich F, Lebedkin S, Malik S, Tracy J, Barczewski M, Rösner H, et al. Preparation, characterization and applications of free-standing single walled carbon nanotube thin films. Phys Chem Chem Phys. 2002 May 20;4(11):2273–7.
  • 9. Coleman JN, Blau WJ, Dalton AB, Muñoz E, Collins S, Kim BG, et al. Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives. Appl Phys Lett. 2003 Mar 17;82(11):1682–4.
  • 10. Berhan L, Yi YB, Sastry AM, Munoz E, Selvidge M, Baughman R. Mechanical properties of nanotube sheets: Alterations in joint morphology and achievable moduli in manufacturable materials. Journal of Applied Physics. 2004 Apr 15;95(8):4335–45.
  • 11. Vo TS. Progresses and expansions of chitosan-graphene oxide hybrid networks utilizing as adsorbents and their organic dye removal performances: A short review. Journal of the Turkish Chemical Society Section A: Chemistry. 2021 Oct 18;8(4):1121–36.
  • 12. Velmurugan N, Kumar GG, Han SS, Nahm KS, Lee YS. Synthesis and characterization of potential fungicidal silver nano-sized particles and chitosan membrane containing silver particles. Iranian Polymer Journal. 2009;18(5(107)):383–92.
  • 13. Jiao TF, Zhou J, Zhou J, Gao L, Xing Y, Li X. Synthesis and characterization of chitosan-based Schiff base compounds with aromatic substituent groups. Iranian Polymer Journal. 2011;20(2):123–36.
  • 14. Rao KK, Rao KM, Kumar PN, Chung ID. Novel chitosan-based pH sensitive micro-networks for the controlled release of 5-fluorouracil. Iranian Polymer Journal. 2010;19(4):265–76.
  • 15. Xu Y, Wu Q, Sun Y, Bai H, Shi G. Three-Dimensional Self-Assembly of Graphene Oxide and DNA into Multifunctional Hydrogels. ACS Nano. 2010 Dec 28;4(12):7358–62.
  • 16. Tung VC, Kim J, Cote LJ, Huang J. Sticky Interconnect for Solution-Processed Tandem Solar Cells. J Am Chem Soc. 2011 Jun 22;133(24):9262–5.
  • 17. Bai H, Li C, Wang X, Shi G. On the Gelation of Graphene Oxide. J Phys Chem C. 2011 Apr 7;115(13):5545–51.
  • 18. Singh N, Riyajuddin S, Ghosh K, Mehta SK, Dan A. Chitosan-Graphene Oxide Hydrogels with Embedded Magnetic Iron Oxide Nanoparticles for Dye Removal. ACS Appl Nano Mater. 2019 Nov 22;2(11):7379–92.
  • 19. Han Lyn F, Tan CP, Zawawi RM, Nur Hanani ZA. Physicochemical properties of chitosan/ graphene oxide composite films and their effects on storage stability of palm-oil based margarine. Food Hydrocolloids. 2021 Aug;117:106707.
  • 20. Menazea AA, Ezzat HA, Omara W, Basyouni OH, Ibrahim SA, Mohamed AA, et al. Chitosan/graphene oxide composite as an effective removal of Ni, Cu, As, Cd and Pb from wastewater. Computational and Theoretical Chemistry. 2020 Nov;1189:112980.
  • 21. Januário EFD, Vidovix TB, Beluci N de CL, Paixão RM, Silva LHBR da, Homem NC, et al. Advanced graphene oxide-based membranes as a potential alternative for dyes removal: A review. Science of The Total Environment. 2021 Oct;789:147957.
  • 22. Sharma P, Das MR. Removal of a Cationic Dye from Aqueous Solution Using Graphene Oxide Nanosheets: Investigation of Adsorption Parameters. J Chem Eng Data. 2013 Jan 10;58(1):151–8.
  • 23. Kahya N, Erim FB. Graphene oxide/chitosan-based composite materials as adsorbents in dye removal. Chemical Engineering Communications. 2021 Oct 6;1–16.
  • 24. Sabzevari M, Cree DE, Wilson LD. Graphene Oxide–Chitosan Composite Material for Treatment of a Model Dye Effluent. ACS Omega. 2018 Oct 31;3(10):13045–54.
  • 25. Zhang H ping, Yang B, Wang ZM, Xie C, Tang P, Bian L, et al. Porous graphene oxide/chitosan nanocomposites based on interfacial chemical interactions. European Polymer Journal. 2019 Oct;119:114–9.
  • 26. Yang X, Tu Y, Li L, Shang S, Tao X ming. Well-Dispersed Chitosan/Graphene Oxide Nanocomposites. ACS Appl Mater Interfaces. 2010 Jun 23;2(6):1707–13.
  • 27. Mansur HS, Mansur AAP, Curti E, De Almeida MV. Functionalized-chitosan/quantum dot nano-hybrids for nanomedicine applications: towards biolabeling and biosorbing phosphate metabolites. J Mater Chem B. 2013;1(12):1696.
  • 28. El Ichi S, Zebda A, Alcaraz JP, Laaroussi A, Boucher F, Boutonnat J, et al. Bioelectrodes modified with chitosan for long-term energy supply from the body. Energy Environ Sci. 2015;8(3):1017–26.
  • 29. Vo TS, Vo TTBC, Nguyen TS, Pham ND. Incorporation of hydroxyapatite in crosslinked gelatin/chitosan/poly(vinyl alcohol) hybrids utilizing as reinforced composite sponges, and their water absorption ability. Progress in Natural Science: Materials International. 2021 Oct;31(5):664–71.
  • 30. Vo TS, Vo TTBC, Tran TT, Pham ND. Enhancement of water absorption capacity and compressibility of hydrogel sponges prepared from gelatin/chitosan matrix with different polyols. Progress in Natural Science: Materials International. 2022 Feb;32(1):54–62.
  • 31. Bano S, Mahmood A, Kim SJ, Lee KH. Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties. J Mater Chem A. 2015;3(5):2065–71.
  • 32. Shen L, Xiong S, Wang Y. Graphene oxide incorporated thin-film composite membranes for forward osmosis applications. Chemical Engineering Science. 2016 Apr;143:194–205.
  • 33. He D, Peng Z, Gong W, Luo Y, Zhao P, Kong L. Mechanism of a green graphene oxide reduction with reusable potassium carbonate. RSC Adv. 2015;5(16):11966–72.
  • 34. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, et al. Preparation and characterization of graphene oxide paper. Nature. 2007 Jul;448(7152):457–60.
  • 35. Wool RP, Statton WO. Dynamic polarized infrared studies of stress relaxation and creep in polypropylene. J Polym Sci Polym Phys Ed. 1974 Aug;12(8):1575–86.
  • 36. Wool RP. Mechanisms of frequency shifting in the infrared spectrum of stressed polymer. J Polym Sci Polym Phys Ed. 1975 Sep;13(9):1795–808.
  • 37. Wool RP. Infrared studies of deformation in semicrystalline polymers. Polym Eng Sci. 1980 Aug;20(12):805–15.
  • 38. Ward IM, Hadley DW. An introduction to the mechanical properties of solid polymers. 1993. ISBN: 0-471-93874-2.
  • 39. Coleman JN, Khan U, Gun’ko YK. Mechanical Reinforcement of Polymers Using Carbon Nanotubes. Adv Mater. 2006 Mar 17;18(6):689–706.
Year 2022, Volume: 9 Issue: 3, 699 - 708, 31.08.2022
https://doi.org/10.18596/jotcsa.1060472

Abstract

Project Number

No

References

  • 1. Vo TS, Vo TTBC. Preparation and Characterization of Bis-Propargyl-Succinate, and its Application in Preliminary Healing Ability of Crosslinked Polyurethane using" Azide-Alkyne" Click. Journal of Engineering Science & Technology Review. 2020;13(4).
  • 2. Vo TS, Vo TTBC, Ti̇En TT, Si̇Nh NT. Enhancement of mechanical property of modified polyurethane with bis-butyl succinate. JOTCSA. 2021 Mar 30;8(2):519–26.
  • 3. Vo TS, Vo TTBC. A Self-Healing Material Based on Microcapsules of Poly(Urea-Formaldehyde)/Bis-Propargyl-Succinate Containing in Polyurethane Matrix. JOTCSA. 2021 Jul 26;8(3):787–802.
  • 4. Vo TS, Vo TTTN, Chau TTB. Preparation and Characterization of Microcapsules Containing Canola Oil with Poly (urea-formaldehyde) Shell and its Stability. Journal of Engineering Science & Technology Review. 2021;14(4):21–36.
  • 5. Vo TS, Vo TTBC, Nguyen TS, Ti̇En TT. Fabrication and Characterization of Gelatin/Chitosan Hydrogel Utilizing as Membranes. Journal of the Turkish Chemical Society Section A: Chemistry. 2021 Oct 1;8(4): 1045–56.
  • 6. Pitkethly MJ. Nanomaterials – the driving force. Materials Today. 2004 Dec;7(12):20–9.
  • 7. Reynolds R, Greinke R. Influence of expansion volume of intercalated graphite on tensile properties of flexible graphite. Carbon. 2001;3(39):479–81.
  • 8. Hennrich F, Lebedkin S, Malik S, Tracy J, Barczewski M, Rösner H, et al. Preparation, characterization and applications of free-standing single walled carbon nanotube thin films. Phys Chem Chem Phys. 2002 May 20;4(11):2273–7.
  • 9. Coleman JN, Blau WJ, Dalton AB, Muñoz E, Collins S, Kim BG, et al. Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives. Appl Phys Lett. 2003 Mar 17;82(11):1682–4.
  • 10. Berhan L, Yi YB, Sastry AM, Munoz E, Selvidge M, Baughman R. Mechanical properties of nanotube sheets: Alterations in joint morphology and achievable moduli in manufacturable materials. Journal of Applied Physics. 2004 Apr 15;95(8):4335–45.
  • 11. Vo TS. Progresses and expansions of chitosan-graphene oxide hybrid networks utilizing as adsorbents and their organic dye removal performances: A short review. Journal of the Turkish Chemical Society Section A: Chemistry. 2021 Oct 18;8(4):1121–36.
  • 12. Velmurugan N, Kumar GG, Han SS, Nahm KS, Lee YS. Synthesis and characterization of potential fungicidal silver nano-sized particles and chitosan membrane containing silver particles. Iranian Polymer Journal. 2009;18(5(107)):383–92.
  • 13. Jiao TF, Zhou J, Zhou J, Gao L, Xing Y, Li X. Synthesis and characterization of chitosan-based Schiff base compounds with aromatic substituent groups. Iranian Polymer Journal. 2011;20(2):123–36.
  • 14. Rao KK, Rao KM, Kumar PN, Chung ID. Novel chitosan-based pH sensitive micro-networks for the controlled release of 5-fluorouracil. Iranian Polymer Journal. 2010;19(4):265–76.
  • 15. Xu Y, Wu Q, Sun Y, Bai H, Shi G. Three-Dimensional Self-Assembly of Graphene Oxide and DNA into Multifunctional Hydrogels. ACS Nano. 2010 Dec 28;4(12):7358–62.
  • 16. Tung VC, Kim J, Cote LJ, Huang J. Sticky Interconnect for Solution-Processed Tandem Solar Cells. J Am Chem Soc. 2011 Jun 22;133(24):9262–5.
  • 17. Bai H, Li C, Wang X, Shi G. On the Gelation of Graphene Oxide. J Phys Chem C. 2011 Apr 7;115(13):5545–51.
  • 18. Singh N, Riyajuddin S, Ghosh K, Mehta SK, Dan A. Chitosan-Graphene Oxide Hydrogels with Embedded Magnetic Iron Oxide Nanoparticles for Dye Removal. ACS Appl Nano Mater. 2019 Nov 22;2(11):7379–92.
  • 19. Han Lyn F, Tan CP, Zawawi RM, Nur Hanani ZA. Physicochemical properties of chitosan/ graphene oxide composite films and their effects on storage stability of palm-oil based margarine. Food Hydrocolloids. 2021 Aug;117:106707.
  • 20. Menazea AA, Ezzat HA, Omara W, Basyouni OH, Ibrahim SA, Mohamed AA, et al. Chitosan/graphene oxide composite as an effective removal of Ni, Cu, As, Cd and Pb from wastewater. Computational and Theoretical Chemistry. 2020 Nov;1189:112980.
  • 21. Januário EFD, Vidovix TB, Beluci N de CL, Paixão RM, Silva LHBR da, Homem NC, et al. Advanced graphene oxide-based membranes as a potential alternative for dyes removal: A review. Science of The Total Environment. 2021 Oct;789:147957.
  • 22. Sharma P, Das MR. Removal of a Cationic Dye from Aqueous Solution Using Graphene Oxide Nanosheets: Investigation of Adsorption Parameters. J Chem Eng Data. 2013 Jan 10;58(1):151–8.
  • 23. Kahya N, Erim FB. Graphene oxide/chitosan-based composite materials as adsorbents in dye removal. Chemical Engineering Communications. 2021 Oct 6;1–16.
  • 24. Sabzevari M, Cree DE, Wilson LD. Graphene Oxide–Chitosan Composite Material for Treatment of a Model Dye Effluent. ACS Omega. 2018 Oct 31;3(10):13045–54.
  • 25. Zhang H ping, Yang B, Wang ZM, Xie C, Tang P, Bian L, et al. Porous graphene oxide/chitosan nanocomposites based on interfacial chemical interactions. European Polymer Journal. 2019 Oct;119:114–9.
  • 26. Yang X, Tu Y, Li L, Shang S, Tao X ming. Well-Dispersed Chitosan/Graphene Oxide Nanocomposites. ACS Appl Mater Interfaces. 2010 Jun 23;2(6):1707–13.
  • 27. Mansur HS, Mansur AAP, Curti E, De Almeida MV. Functionalized-chitosan/quantum dot nano-hybrids for nanomedicine applications: towards biolabeling and biosorbing phosphate metabolites. J Mater Chem B. 2013;1(12):1696.
  • 28. El Ichi S, Zebda A, Alcaraz JP, Laaroussi A, Boucher F, Boutonnat J, et al. Bioelectrodes modified with chitosan for long-term energy supply from the body. Energy Environ Sci. 2015;8(3):1017–26.
  • 29. Vo TS, Vo TTBC, Nguyen TS, Pham ND. Incorporation of hydroxyapatite in crosslinked gelatin/chitosan/poly(vinyl alcohol) hybrids utilizing as reinforced composite sponges, and their water absorption ability. Progress in Natural Science: Materials International. 2021 Oct;31(5):664–71.
  • 30. Vo TS, Vo TTBC, Tran TT, Pham ND. Enhancement of water absorption capacity and compressibility of hydrogel sponges prepared from gelatin/chitosan matrix with different polyols. Progress in Natural Science: Materials International. 2022 Feb;32(1):54–62.
  • 31. Bano S, Mahmood A, Kim SJ, Lee KH. Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties. J Mater Chem A. 2015;3(5):2065–71.
  • 32. Shen L, Xiong S, Wang Y. Graphene oxide incorporated thin-film composite membranes for forward osmosis applications. Chemical Engineering Science. 2016 Apr;143:194–205.
  • 33. He D, Peng Z, Gong W, Luo Y, Zhao P, Kong L. Mechanism of a green graphene oxide reduction with reusable potassium carbonate. RSC Adv. 2015;5(16):11966–72.
  • 34. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, et al. Preparation and characterization of graphene oxide paper. Nature. 2007 Jul;448(7152):457–60.
  • 35. Wool RP, Statton WO. Dynamic polarized infrared studies of stress relaxation and creep in polypropylene. J Polym Sci Polym Phys Ed. 1974 Aug;12(8):1575–86.
  • 36. Wool RP. Mechanisms of frequency shifting in the infrared spectrum of stressed polymer. J Polym Sci Polym Phys Ed. 1975 Sep;13(9):1795–808.
  • 37. Wool RP. Infrared studies of deformation in semicrystalline polymers. Polym Eng Sci. 1980 Aug;20(12):805–15.
  • 38. Ward IM, Hadley DW. An introduction to the mechanical properties of solid polymers. 1993. ISBN: 0-471-93874-2.
  • 39. Coleman JN, Khan U, Gun’ko YK. Mechanical Reinforcement of Polymers Using Carbon Nanotubes. Adv Mater. 2006 Mar 17;18(6):689–706.
There are 39 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies
Journal Section Articles
Authors

Thi Sinh Vo 0000-0003-3830-0474

Tran Thi Bich Chau Vo 0000-0002-3049-2080

Project Number No
Publication Date August 31, 2022
Submission Date January 20, 2022
Acceptance Date April 11, 2022
Published in Issue Year 2022 Volume: 9 Issue: 3

Cite

Vancouver Vo TS, Vo TTBC. Characterization of Paper-Like Material Prepared from Chitosan/Graphene Oxide Composite. JOTCSA. 2022;9(3):699-708.