Research Article
BibTex RIS Cite

EPR-based study to monitor Free Radicals in Treated Silk Fibroin with Anthocyanins

Year 2022, Volume: 9 Issue: 4, 1055 - 1062, 30.11.2022
https://doi.org/10.18596/jotcsa.1011273

Abstract

Bioactive materials of natural origin have great demand in industry and medicine due to their versatility and useful properties. The main purpose of this work is to prepare biocomposites for the dual purpose of modified silk fibroin (Bombyx mori L.), which protects against the destructive effects of bioactive, antioxidant and ultraviolet rays. For this purpose, an aqueous extract of autumn leaves of the anthocyanin-rich smoke tree plant (Cotinus coggygria L.) was applied. 2% thiourea solution was used to increase the durability of the modified SF to external influences and for use in textiles. The intensity of free radicals in silk fibroin-anthocyanin (SFA) and silk fibroin-anthocyanin-thiourea (SFAT) biocomposites modified by the Electron Paramagnetic Resonance (EPR) method was studied. Maximum adsorption time was determined 20 minutes and the intensity of free radicals in SFA bio-composite was 80-85% and in SFAT biocomposite 50-55% in relation to silk fibroin untreated. For biomedical use of SFA, the radical scavenger activity kinetics were studied on a UV-2700 spectrophotometer and radical capture activity was calculated: RSA% (bioextract) = 73.52 ± 0.5, RSA% (SF) = 6.42 ± 0.4, RSA% (SFA) = 45.23 ± 0.8

Supporting Institution

Institute of Biophysics, Azerbaijan National Academy of Sciences

References

  • 1. Hou TC, Jeng SC. Application of Bombyx mori Silk Fibroin Films for Liquid-Crystal Devices. ACS Appl Bio Mater [Internet]. 2020 Dec 21 [cited 2022 Sep 18];3(12):8575–80.
  • 2. Li G, Liu H, Li T, Wang J. Surface modification and functionalization of silk fibroin fibers/fabric toward high performance applications. Materials Science and Engineering: C [Internet]. 2012 May [cited 2022 Sep 18];32(4):627–36.
  • 3. Sun W, Gregory DA, Tomeh MA, Zhao X. Silk Fibroin as a Functional Biomaterial for Tissue Engineering. IJMS [Internet]. 2021 Feb 2 [cited 2022 Sep 18];22(3):1499.
  • 4. Patil PP, Reagan MR, Bohara RA. Silk fibroin and silk-based biomaterial derivatives for ideal wound dressings. International Journal of Biological Macromolecules [Internet]. 2020 Dec [cited 2022 Sep 18];164:4613–27.
  • 5. Murugesh Babu K, Sahana N, Anitha DV, Kavya BS. Silk fibroin coated antimicrobial textile medical products. The Journal of The Textile Institute [Internet]. 2021 Aug 3 [cited 2022 Sep 18];112(8):1199–207.
  • 6. Cilurzo F, Gennari CGM, Selmin F, Marotta LA, Minghetti P, Montanari L. An investigation into silk fibroin conformation in composite materials intended for drug delivery. International Journal of Pharmaceutics [Internet]. 2011 Jul [cited 2022 Sep 18];414(1–2):218–24.
  • 7. Fu C, Shao Z, Fritz V. Animal silks: their structures, properties and artificial production. Chem Commun [Internet]. 2009 [cited 2022 Sep 18];(43):6515.
  • 8. Shera SS, Kulhar N, Banik RM. Silk and silk fibroin-based biopolymeric composites and their biomedical applications. In: Materials for Biomedical Engineering [Internet]. Elsevier; 2019 [cited 2022 Sep 18]. p. 339–74.
  • 9. Huseynova E, Hetemzade N, Aslanov R, Qasımov O. Polimerlerin mexaniki mohkemlik xasselerini olcmek ucun universal qurgu. Azerbaijan journal of Physics. 2016;
  • 10. Wang F, Xing S, Ji Y, Yan L, Liu F, Dong Y, et al. Leaf structural reddening in smoke tree and its significance. Urban Forestry & Urban Greening [Internet]. 2015 [cited 2022 Sep 18];14(1):80–8.
  • 11. Wang LS, Stoner GD. Anthocyanins and their role in cancer prevention. Cancer Letters [Internet]. 2008 Oct [cited 2022 Sep 18];269(2):281–90.
  • 12. Kähkönen MP, Heinonen M. Antioxidant Activity of Anthocyanins and Their Aglycons. J Agric Food Chem [Internet]. 2003 Jan 1 [cited 2022 Sep 18];51(3):628–33.
  • 13. Selvaraj S, Fathima NN. Fenugreek Incorporated Silk Fibroin Nanofibers—A Potential Antioxidant Scaffold for Enhanced Wound Healing. ACS Appl Mater Interfaces [Internet]. 2017 Feb 22 [cited 2022 Sep 18];9(7):5916–26.
  • 14. Altıok E, Bayçın D, Bayraktar O, Ülkü S. Isolation of polyphenols from the extracts of olive leaves (Olea europaea L.) by adsorption on silk fibroin. Separation and Purification Technology [Internet]. 2008 Sep 1 [cited 2022 Sep 18];62(2):342–8.
  • 15. Bayçın D, Altıok E, Ülkü S, Bayraktar O. Adsorption of Olive Leaf ( Olea europaea L.) Antioxidants on Silk Fibroin. J Agric Food Chem [Internet]. 2007 Feb 1 [cited 2022 Sep 18];55(4):1227–36.
  • 16. Giannelli M, Lacivita V, Posati T, Aluigi, Conte A, Zamboni R, et al. Silk Fibroin and Pomegranate By-Products to Develop Sustainable Active Pad for Food Packaging Applications. Foods. 2021;10:2921.
  • 17. Iliev I, Ivanov I, Todorova K, Dimitrova M. Effects of a Cotinus coggygria ethyl acetate extract on two human normal cell lines. Acta morphol anthropol. 2020;27(3–4):25–9.
  • 18. Aksoy H, Sen A, Sancar M, Sekerler T, Akakin D, Bitis L, et al. Ethanol extract of Cotinus coggygria leaves accelerates wound healing process in diabetic rats. Pharmaceutical Biology [Internet]. 2016 Nov [cited 2022 Sep 18];54(11):2732–6.
  • 19. Poustka F, Irani NG, Feller A, Lu Y, Pourcel L, Frame K, et al. A Trafficking Pathway for Anthocyanins Overlaps with the Endoplasmic Reticulum-to-Vacuole Protein-Sorting Route in Arabidopsis and Contributes to the Formation of Vacuolar Inclusions. Plant Physiology [Internet]. 2007 Dec 4 [cited 2022 Sep 18];145(4):1323–35.
  • 20. Aslanov RB, Dashdemirova LM, Alekperov OZ, Abdurahimov AR, Gasymov OK. Dynamics of Proteins by Thermal Decay of Free Radicals Induced by Ultraviolet Irradiation. Journal of Spectroscopy [Internet]. 2018 Jun 28 [cited 2022 Sep 18];2018:1–6.
  • 21. Chandrasekhar J, Madhusudhan MC, Raghavarao KSMS. Extraction of anthocyanins from red cabbage and purification using adsorption. Food and Bioproducts Processing [Internet]. 2012 Oct [cited 2022 Sep 18];90(4):615–23.
  • 22. Tena N, Martín J, Asuero AG. State of the art of anthocyanins: Antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants. 2020;9(5):451.
  • 23. Zhao P. EPR - Interpretation [Internet]. Libretexts, Chemistry; 2022.
  • 24. Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc [Internet]. 2011 Oct [cited 2022 Sep 18];6(10):1612–31.
  • 25. Davies MJ. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods. Methods [Internet]. 2016 Oct [cited 2022 Sep 18];109:21–30.
  • 26. Deng YB, Cai JH, Zhou P. Naturally Stable Free Radical in the Silk Fibroin and Its Structure Environment Studied by EPR and DFT. Spectroscopy Letters [Internet]. 2012 May [cited 2022 Sep 18];45(4):285–95.
  • 27. Rastogi S, Kandasubramanian B. Progressive trends in heavy metal ions and dyes adsorption using silk fibroin composites. Environ Sci Pollut Res [Internet]. 2020 Jan [cited 2022 Sep 18];27(1):210–37.
  • 28. Hu H, Xu K. Physicochemical technologies for HRPs and risk control. In: High-Risk Pollutants in Wastewater [Internet]. Elsevier; 2020 [cited 2022 Sep 18]. p. 169–207.
  • 29. Bedelbeyli-Agdamski T. Fiziki ve kolloid kimya. Baku, Azerbaijan; 2017.
  • 30. Steppeler F, Iwan D, Wojaczyńska E, Wojaczyński J. Chiral Thioureas—Preparation and Significance in Asymmetric Synthesis and Medicinal Chemistry. Molecules [Internet]. 2020 Jan 18 [cited 2022 Sep 18];25(2):401.
  • 31. Prabhu K, Bhute AS. Plant based natural dyes and mordants: A Review. J Nat Prod Plant Resour. 2012;2(6):649–64.
  • 32. Sanna D, Delogu G, Mulas M, Schirra M, Fadda A. Determination of Free Radical Scavenging Activity of Plant Extracts Through DPPH Assay: An EPR and UV–Vis Study. Food Anal Methods [Internet]. 2012 Aug [cited 2022 Sep 18];5(4):759–66.
Year 2022, Volume: 9 Issue: 4, 1055 - 1062, 30.11.2022
https://doi.org/10.18596/jotcsa.1011273

Abstract

References

  • 1. Hou TC, Jeng SC. Application of Bombyx mori Silk Fibroin Films for Liquid-Crystal Devices. ACS Appl Bio Mater [Internet]. 2020 Dec 21 [cited 2022 Sep 18];3(12):8575–80.
  • 2. Li G, Liu H, Li T, Wang J. Surface modification and functionalization of silk fibroin fibers/fabric toward high performance applications. Materials Science and Engineering: C [Internet]. 2012 May [cited 2022 Sep 18];32(4):627–36.
  • 3. Sun W, Gregory DA, Tomeh MA, Zhao X. Silk Fibroin as a Functional Biomaterial for Tissue Engineering. IJMS [Internet]. 2021 Feb 2 [cited 2022 Sep 18];22(3):1499.
  • 4. Patil PP, Reagan MR, Bohara RA. Silk fibroin and silk-based biomaterial derivatives for ideal wound dressings. International Journal of Biological Macromolecules [Internet]. 2020 Dec [cited 2022 Sep 18];164:4613–27.
  • 5. Murugesh Babu K, Sahana N, Anitha DV, Kavya BS. Silk fibroin coated antimicrobial textile medical products. The Journal of The Textile Institute [Internet]. 2021 Aug 3 [cited 2022 Sep 18];112(8):1199–207.
  • 6. Cilurzo F, Gennari CGM, Selmin F, Marotta LA, Minghetti P, Montanari L. An investigation into silk fibroin conformation in composite materials intended for drug delivery. International Journal of Pharmaceutics [Internet]. 2011 Jul [cited 2022 Sep 18];414(1–2):218–24.
  • 7. Fu C, Shao Z, Fritz V. Animal silks: their structures, properties and artificial production. Chem Commun [Internet]. 2009 [cited 2022 Sep 18];(43):6515.
  • 8. Shera SS, Kulhar N, Banik RM. Silk and silk fibroin-based biopolymeric composites and their biomedical applications. In: Materials for Biomedical Engineering [Internet]. Elsevier; 2019 [cited 2022 Sep 18]. p. 339–74.
  • 9. Huseynova E, Hetemzade N, Aslanov R, Qasımov O. Polimerlerin mexaniki mohkemlik xasselerini olcmek ucun universal qurgu. Azerbaijan journal of Physics. 2016;
  • 10. Wang F, Xing S, Ji Y, Yan L, Liu F, Dong Y, et al. Leaf structural reddening in smoke tree and its significance. Urban Forestry & Urban Greening [Internet]. 2015 [cited 2022 Sep 18];14(1):80–8.
  • 11. Wang LS, Stoner GD. Anthocyanins and their role in cancer prevention. Cancer Letters [Internet]. 2008 Oct [cited 2022 Sep 18];269(2):281–90.
  • 12. Kähkönen MP, Heinonen M. Antioxidant Activity of Anthocyanins and Their Aglycons. J Agric Food Chem [Internet]. 2003 Jan 1 [cited 2022 Sep 18];51(3):628–33.
  • 13. Selvaraj S, Fathima NN. Fenugreek Incorporated Silk Fibroin Nanofibers—A Potential Antioxidant Scaffold for Enhanced Wound Healing. ACS Appl Mater Interfaces [Internet]. 2017 Feb 22 [cited 2022 Sep 18];9(7):5916–26.
  • 14. Altıok E, Bayçın D, Bayraktar O, Ülkü S. Isolation of polyphenols from the extracts of olive leaves (Olea europaea L.) by adsorption on silk fibroin. Separation and Purification Technology [Internet]. 2008 Sep 1 [cited 2022 Sep 18];62(2):342–8.
  • 15. Bayçın D, Altıok E, Ülkü S, Bayraktar O. Adsorption of Olive Leaf ( Olea europaea L.) Antioxidants on Silk Fibroin. J Agric Food Chem [Internet]. 2007 Feb 1 [cited 2022 Sep 18];55(4):1227–36.
  • 16. Giannelli M, Lacivita V, Posati T, Aluigi, Conte A, Zamboni R, et al. Silk Fibroin and Pomegranate By-Products to Develop Sustainable Active Pad for Food Packaging Applications. Foods. 2021;10:2921.
  • 17. Iliev I, Ivanov I, Todorova K, Dimitrova M. Effects of a Cotinus coggygria ethyl acetate extract on two human normal cell lines. Acta morphol anthropol. 2020;27(3–4):25–9.
  • 18. Aksoy H, Sen A, Sancar M, Sekerler T, Akakin D, Bitis L, et al. Ethanol extract of Cotinus coggygria leaves accelerates wound healing process in diabetic rats. Pharmaceutical Biology [Internet]. 2016 Nov [cited 2022 Sep 18];54(11):2732–6.
  • 19. Poustka F, Irani NG, Feller A, Lu Y, Pourcel L, Frame K, et al. A Trafficking Pathway for Anthocyanins Overlaps with the Endoplasmic Reticulum-to-Vacuole Protein-Sorting Route in Arabidopsis and Contributes to the Formation of Vacuolar Inclusions. Plant Physiology [Internet]. 2007 Dec 4 [cited 2022 Sep 18];145(4):1323–35.
  • 20. Aslanov RB, Dashdemirova LM, Alekperov OZ, Abdurahimov AR, Gasymov OK. Dynamics of Proteins by Thermal Decay of Free Radicals Induced by Ultraviolet Irradiation. Journal of Spectroscopy [Internet]. 2018 Jun 28 [cited 2022 Sep 18];2018:1–6.
  • 21. Chandrasekhar J, Madhusudhan MC, Raghavarao KSMS. Extraction of anthocyanins from red cabbage and purification using adsorption. Food and Bioproducts Processing [Internet]. 2012 Oct [cited 2022 Sep 18];90(4):615–23.
  • 22. Tena N, Martín J, Asuero AG. State of the art of anthocyanins: Antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants. 2020;9(5):451.
  • 23. Zhao P. EPR - Interpretation [Internet]. Libretexts, Chemistry; 2022.
  • 24. Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc [Internet]. 2011 Oct [cited 2022 Sep 18];6(10):1612–31.
  • 25. Davies MJ. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods. Methods [Internet]. 2016 Oct [cited 2022 Sep 18];109:21–30.
  • 26. Deng YB, Cai JH, Zhou P. Naturally Stable Free Radical in the Silk Fibroin and Its Structure Environment Studied by EPR and DFT. Spectroscopy Letters [Internet]. 2012 May [cited 2022 Sep 18];45(4):285–95.
  • 27. Rastogi S, Kandasubramanian B. Progressive trends in heavy metal ions and dyes adsorption using silk fibroin composites. Environ Sci Pollut Res [Internet]. 2020 Jan [cited 2022 Sep 18];27(1):210–37.
  • 28. Hu H, Xu K. Physicochemical technologies for HRPs and risk control. In: High-Risk Pollutants in Wastewater [Internet]. Elsevier; 2020 [cited 2022 Sep 18]. p. 169–207.
  • 29. Bedelbeyli-Agdamski T. Fiziki ve kolloid kimya. Baku, Azerbaijan; 2017.
  • 30. Steppeler F, Iwan D, Wojaczyńska E, Wojaczyński J. Chiral Thioureas—Preparation and Significance in Asymmetric Synthesis and Medicinal Chemistry. Molecules [Internet]. 2020 Jan 18 [cited 2022 Sep 18];25(2):401.
  • 31. Prabhu K, Bhute AS. Plant based natural dyes and mordants: A Review. J Nat Prod Plant Resour. 2012;2(6):649–64.
  • 32. Sanna D, Delogu G, Mulas M, Schirra M, Fadda A. Determination of Free Radical Scavenging Activity of Plant Extracts Through DPPH Assay: An EPR and UV–Vis Study. Food Anal Methods [Internet]. 2012 Aug [cited 2022 Sep 18];5(4):759–66.
There are 32 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Vafa Atayeva 0000-0002-9886-2500

Rasim Aslanov 0000-0002-6853-715X

Publication Date November 30, 2022
Submission Date October 18, 2021
Acceptance Date February 17, 2022
Published in Issue Year 2022 Volume: 9 Issue: 4

Cite

Vancouver Atayeva V, Aslanov R. EPR-based study to monitor Free Radicals in Treated Silk Fibroin with Anthocyanins. JOTCSA. 2022;9(4):1055-62.