Research Article
BibTex RIS Cite
Year 2023, Volume: 10 Issue: 2, 453 - 464, 31.05.2023
https://doi.org/10.18596/jotcsa.1216564

Abstract

References

  • 1. Yerpude MM, Nair GB, Dhoble SJ. Green‐light emission through energy transfer from Ce3+ to Tb3+ ions in the Li2SO4–Al2(SO4)3 system. Luminescence 2019;34:382-386.
  • 2. Yao S, Lv S, Feng Z. Synthesis and photoluminescent properties of Dy3+: CaYAlO4 phosphors. Appl. Phys. A: Mater. Sci. Process. 2021;127:773.
  • 3. Xue F, Hu Y, Ju G, Chen L, He M, Wang T, Jin Y, Zhang S, Lin J. Photoluminescence and long persistent luminescence properties of a novel green emitting phosphor Sr3TaAl3Si2O14:Tb3+. Appl. Phys. A: Mater. Sci. Process. 2016;22:612.
  • 4. Ekmekçi MK. Influence of europium doping on the crystallization, morphology, and cathodoluminescent properties of PbNb2O6:Eu3+ phosphors. J. Turk. Chem. Soc. A: Chem. 2022;1129–1140.
  • 5. Song R, Li H, Zhang H, Tang H, Tang X, Yang J, Zhao H, Zhu J. Tunable luminescence and improved thermostability via Tm–Dy energy transfer in a tellurooxyphosphate phosphor. Appl. Mater. Today 2023;30:101712.
  • 6. İlhan M, Güleryüz LF. Cathodoluminescence and photoluminescence of BaTa2O6:Sm3+ phosphor depending on the sintering temperature. Chem. Pap. 2022;76:6963-6974.
  • 7. Shrivastava R, Khaparde S. Luminescence studies of diopside doped with various concentrations of Dysprosium (III). Res. Chem. Intermed. 2022;48:969-982.
  • 8. Parganiha M, Dubey V, Shrivastava R, Kaur J. Green light emission in terbium Doped lanthanum zirconate powders. Anal. Chem. Lett. 2022;12:233–243.
  • 9. Meejitpaisan P, Kaewjaeng S, Ruangthaweep Y, Sangwarantee N, Kaewkhao J. White light emission of gadolinium calcium phosphate oxide and oxyfluoride glasses doped with Dy3+. Mater. Today: Proc. 2021;43:2574–2587.
  • 10. Luewarasirikul N, Sarachai S, Kim HJ, Kaewkhao J. Enhanced photoluminescence and radioluminescence of Dy3+-doped Ba-Na-B glasses. Radiat. Phys. Chem. 2023;202:110559.
  • 11. Liu N, Si JY, Cai GM, Tao Y. Crystal structure, luminescence properties and energy transfer of Eu3+/Dy3+ doped GdNbTiO6 broad band excited phosphors. RSC Adv. 2016;6:50797.
  • 12. Li HY, Shen LF, Pun EYB, Lin H. Dy3+-doped germanate glasses for waveguide-typed irradiation light sources. J. Alloys Compd. 2015;646:586-591.
  • 13. Kavitha V, Rani MP. The influence of Tm3+ on the structural, morphological, lifetime, haemocompatibility, and optical properties of sol–gel‑synthesized CaS phosphors. Appl. Phys. A: Mater. Sci. Process. 2022;128:1053.
  • 14. Ding Z, Ding G, Fang L, Peng Z. Luminescent property of CaWO4:Eu3+ nanophosphors prepared by molten salt synthesis. Inorg. Nano-Met. Chem. 2022;52:647–652.
  • 15. İlhan M, Ekmekçi MK, Keskin İÇ. Judd–Ofelt parameters and X-ray irradiation results of MNb2O6:Eu3+ (M = Sr, Cd, Ni) phosphors synthesized via a molten salt method. RSC Adv. 2021;11:10451.
  • 16. Gupta SK, Modak B, Tyagi M, Rawat NS, Modak P, Sudarshan K. Harvesting Light from BaHfO3/Eu3+ through ultraviolet, X‑ray, and heat stimulation: an optically multifunctional perovskite. ACS Omega 2022:7;5311-5323.
  • 17. İlhan M, Ekmekçi MK, Demir A, Demirer H. Synthesis and optical properties of novel red–emitting PbNb2O6:Eu3+ phosphors. J. Fluoresc. 2016;26:1637–1643.
  • 18. Bruncková H, Medvecký Ľ, Múdra E, Kovalčiková A, Ďurišin J, Šebek M, Girman V. Phase composition of samarium niobate and tantalate thin fims prepared by sol-gel method. Powder Metall. Prog. 2017;17:10–20.
  • 19. Ekmekçi MK, İlhan M, Güleryüz LF, Mergen A. Study on molten salt synthesis, microstructural determination and white light emitting properties of CoNb2O6:Dy3+ phosphor. Optik 2017;128:26-33.
  • 20. He X, Fang B, Zhang S, Lu X, Ding J. Preparation of nanoscale [(Ba0.85Ca0.15)0.995Nd0.005](Ti0.9Hf0.1)O3 ceramics via hydrothermal method and effect of grain size on multifunctional performance. J. Alloys Compd. 2022;925:166249.
  • 21. Wang X, Zhao H, Li A, Tian K, Brambilla G, Wang P. Near-infrared luminescence and single-mode laser emission from Nd3+ doped compound glass and glass microsphere. Front. Mater. Sci. 2019;6:237.
  • 22. İlhan M, Keskin İÇ, Çatalgöl Z, Samur R. NIR photoluminescence and radioluminescence characteristics of Nd3+ doped BaTa2O6 phosphor. Int. J. Appl. Ceram. Technol. 2018;15:1594–1601.
  • 23. Ekmekçi MK, İlhan M, Ege A, Ayvacıklı M. Microstructural and radioluminescence characteristics of Nd3+ doped columbite-type SrNb2O6 phosphor. J. Fluoresc. 2017;27:973–979.
  • 24. İlhan M, Ekmekçi MK, Oraltay RG, Başak AS. Structural and near-infrared properties of Nd3+ activated Lu3NbO7 Phosphor. J. Fluoresc. 2017;27:199–203.
  • 25. Prasad RNA, Vijaya N, Babu P, Mohan NK, Praveena R. Optical absorption and NIR photoluminescence of Nd3+-activated strontium phosphate glasses. J. Electron. Mater. 2020;49:6358-6368.
  • 26. He X, Fang B, Zhang S, Lu X, Ding J. Preparation and properties of Nd-doped BCTH lead-free ceramics by solid-phase twin crystal method. Curr. Appl. Phys. 2022;38:30-39.
  • 27. Golyeva EV, Vaishlia EI, Kurochkin MA, Kolesnikov EY, Lähderanta E, Semencha AV, Kolesnikov IE. Nd3+ concentration effect on luminescent properties of MgAl2O4 nanopowders synthesized by modified Pechini method. J. Solid State Chem. 2020:289;121486.
  • 28. Ekmekçi MK, Erdem M, Başak AS, İlhan M, Mergen A. Molten salt synthesis and optical properties of Eu3+, Dy3+ or Nd3+ doped NiNb2O6 columbite-type phosphors. Ceram. Int. 2015;41:9680–9685.
  • 29. Mahamuda Sk, Swapna K, Rao AS, Jayasimhadri M, Sasikala T, Pavani K, Moorthy LR. Spectroscopic properties and luminescence behavior of Nd3+ doped zinc alumino bismuth borate glasses. J. Phys. Chem. 2013;74;1308–1315.
  • 30. İlhan M, Katı Mİ, Keskin İÇ, Güleryüz LF. Evaluation of structural and spectroscopic results of tetragonal tungsten bronze MTa2O6:Eu3+ (M = Sr, Ba, Pb) phosphors and comparison on the basis of Judd-Ofelt parameters. J. Alloy. Comp. 2022;901:163626.
  • 31. İlhan M, Güleryüz LF, Keskin İÇ, Katı Mİ. A comparison of spectroscopic properties of Dy3+-doped tetragonal tungsten bronze MTa2O6 (M = Sr, Ba, Pb) phosphors based on Judd–Ofelt parameters. Mater. Sci: Mater. Electron 2022;33:16606–16620.
  • 32. İlhan M, Keskin İÇ, Gültekin S. Assessing of photoluminescence and thermoluminescence properties of Dy3+ doped white light emitter TTB-lead metatantalate phosphor. J. Electron. Mater. 2020;49:2436-2449.
  • 33. Nakauchi D, Okada G, Koshimizu M, Yanagida T. Optical and scintillation properties of Nd-doped SrAl2O4 crystals. J. Rare Earths 2016;34:757–762.
  • 34. Kamada K, Kurosawa S, Yamaji A, Shoji Y, Pejchal J, Ohashi Y, Yokota Y, Yoshikawa A. Growth of Nd doped (Lu, Gd)3(Ga, Al)5O12 single crystal by the micro pulling down method and their scintillation properties. Opt. Mater. 2015;41:32-35.
  • 35. Sugiyama M, Fujimoto Y, Yanagida T, Yamaji A, Yokota Y, Yoshikawa A. Growth and scintillation properties of Nd-doped Lu3Al5O12 single crystals by Czochralski and micro-pulling-down methods. J. Cryst. Growth 2013;362:178–181.
  • 36. Yanagida T, Fujimoto Y, Ishizu S, Fukuda K. Spectrochim. Optical and scintillation properties of Nd differently doped YLiF4 from VUV to NIR wavelengths. Opt. Mater. 2015;41:36–40.
  • 37. Francombe MH, Lewis B. Structural, dielectric and optical properties of ferroelectric lead metaniobate. Acta Cryst. 1958;11:696.
  • 38. Subbarao EC, Shirane G, Jona F. X-ray, dielectric, and optical study of ferroelectric lead metatantalate and related compounds. Acta Cryst. 1960;13:226.
  • 39. Simon A, Jean R. Solid-state chemistry and non-linear properties of tetragonal tungsten bronzes materials. C. R. Chim. 2006;9:1268–1276.
  • 40. İlhan M. Synthesis, structural characterization, and photoluminescence properties of TTB-type PbTa2O6:Eu3+ phosphor. Int. J. Appl. Ceram. Technol. 2017;14:1144–1150.
  • 41. İlhan M, Keskin İÇ. Evaluation of structural behaviour, radioluminescence, Judd-Ofelt analysis and thermoluminescence kinetic parameters of Eu3+ doped TTB–type lead metaniobate phosphor. Phys. B: Condens. Matter 2020;585:412106.
  • 42. Wang BX, Krogstad MJ,  Zheng H,  Osborn R,  Rosenkranz S,  Phelan D. Active and passive defects in tetragonal tungsten bronze relaxor ferroelectrics. J. Phys. Condens. Matter 2022;34:405401.
  • 43. Kato H, Kudo A. New tantalate photocatalysts for water decomposition into H2 and O2. Chem. Phys. Lett. 1998;487:492.
  • 44. Zhang W, Kumada N, Takei T, Yamanaka J, Kinomura N. Preparation and crystal structure of H-BaTa2O6-type K1.83Ba4.17Nb12.18O36 and dielectric properties of the related compounds. Mater. Res. Bull. 2005;40:1177−1186.
  • 45. Li G, Cheng L, Liao F, Tian S, Jing X, Lin J. Luminescent and structural properties of the series Ba6-xEuxTi2+xTa8-xO30 and Ba4-yKyEu2Ti4-yTa6+yO30. J. Solid State Chem. 2004;177:875–882.
  • 46. Tauc J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968;3(1):37-46.
  • 47. Boltersdorf J, Wong T, Maggard PA. Synthesis and optical properties of Ag(I), Pb(II), and Bi(III) tantalate-based photocatalysts. ACS Catal. 2013;3:2943–2953.
  • 48. Keskin İÇ, Türemiş M, Katı Mİ, Gültekin S, Arslanlar YT, Çetin A, Kibar R. Detailed luminescence (RL, PL, CL, TL) behaviors of Tb3+ and Dy3+ doped LiMgPO4 synthesized by sol-gel method. J. Lumin. 2020;225:117276.
  • 49. Ahmed AS, Muhamed SM, Singla ML, Tabassum S, Naqvi AH, Azam A. Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles. J. Lumin. 2011;131:1–6.
  • 50. Keskin İÇ. Radioluminescence results, thermoluminescence analysis and kinetic parameters of Y2O3:Ln3+ (Ln: Dy, Nd, Sm) nanophosphors obtained by sol-gel method. Ceram. Int. 2022;48(14):20579–20590.
  • 51. Burstein E. Anomalous Optical Absorption Limit in InSb. Phys. Rev. 1954;93:632.
  • 52. Blasse G. Energy transfer between inequivalent Eu2+ ions. J. Solid State Chem. 1986;62:207–211.
  • 53. Blasse G. Energy transfer in oxidic phosphors. Philips Res. Rep. 1969;24:131.
  • 54. Ayvacıkli M, Kotan Z, Ekdal E, Karabulut Y, Canimoglu A, Guinea JG, Khatab A, Henini M, Can N. Solid state synthesis of SrAl2O4:Mn2+ co-doped with Nd3+ phosphor and its optical properties. J. Lumin. 2013;144:128–132.

Evaluation of the Structural, Near-Infrared Luminescence, and Radioluminescence Properties of Nd3+ Activated TTB-Lead Metatantalate Phosphors

Year 2023, Volume: 10 Issue: 2, 453 - 464, 31.05.2023
https://doi.org/10.18596/jotcsa.1216564

Abstract

The study reports the structural and spectroscopic properties of Nd3+ doped lead metatantalate phosphor series fabricated by conventional solid state method. XRD results of the PbTa2O6 phase confirm the tungsten bronze symmetry and single-phase structure between 0.5 and 10 mol% Nd3+ concentrations. The lead decrease in the structure can be associated with maintaining the charge balance and single phase due to evaporation during sintering. In SEM micrographs, the grains exhibited shapeless morphology, and the grain sizes varied from 0.5 to 7 m. In EDS results, the increase of Ta/Pb ratio in grain surfaces indicated some lead evaporation, as reported in previous studies. The absorption spectrum of PbTa2O6 host peaked around 275-280 nm, and the band gap was found to be 3.7±0.2 eV. The absorptions of Nd3+ doped phophors shifted the high wavelenght or the low band gap, where the band gaps were found between 3.1±0.2 and 3.3±0.2 eV. The PL emissions of the phosphors in near-inrared region were observed with the transitions of 4F3/2→4I9/2 (at 875 nm) and 4F3/2→4I11/2 (at 1060 nm) of Nd3+. The RL emissions or X-ray excited luminescence were monitored with the transitions of 4F3/2→4I9/2 (at 875 nm), 4F3/2→4I11/2 (at 1065 nm) in the infrared region, and the transitions of 2F(2)5/2→4F9/2, 2F(2)5/2→2H(2)11/2, 2F(2)5/2→4G5/2, 2F(2)5/2→4G7/2, 2F(2)5/2→4G9/2 in the visible region corresponding to at around 430, 455, 490, 525, and 570 nm, respectively. PL and RL emissions of the phosphors exhibited the decreasing emission intensity over 5 mol% due to the concentration quenching which may be associated with cross-relaxing mechanism. In the PL and RL spectral profiles, the similarity of splitting levels was attributed to the similarity of the local symmetry of the ligand ions surrounding the Nd3+ ion. The CIE coordinates obtained using RL emissions were found close to the blue region due to visible region transitions.

References

  • 1. Yerpude MM, Nair GB, Dhoble SJ. Green‐light emission through energy transfer from Ce3+ to Tb3+ ions in the Li2SO4–Al2(SO4)3 system. Luminescence 2019;34:382-386.
  • 2. Yao S, Lv S, Feng Z. Synthesis and photoluminescent properties of Dy3+: CaYAlO4 phosphors. Appl. Phys. A: Mater. Sci. Process. 2021;127:773.
  • 3. Xue F, Hu Y, Ju G, Chen L, He M, Wang T, Jin Y, Zhang S, Lin J. Photoluminescence and long persistent luminescence properties of a novel green emitting phosphor Sr3TaAl3Si2O14:Tb3+. Appl. Phys. A: Mater. Sci. Process. 2016;22:612.
  • 4. Ekmekçi MK. Influence of europium doping on the crystallization, morphology, and cathodoluminescent properties of PbNb2O6:Eu3+ phosphors. J. Turk. Chem. Soc. A: Chem. 2022;1129–1140.
  • 5. Song R, Li H, Zhang H, Tang H, Tang X, Yang J, Zhao H, Zhu J. Tunable luminescence and improved thermostability via Tm–Dy energy transfer in a tellurooxyphosphate phosphor. Appl. Mater. Today 2023;30:101712.
  • 6. İlhan M, Güleryüz LF. Cathodoluminescence and photoluminescence of BaTa2O6:Sm3+ phosphor depending on the sintering temperature. Chem. Pap. 2022;76:6963-6974.
  • 7. Shrivastava R, Khaparde S. Luminescence studies of diopside doped with various concentrations of Dysprosium (III). Res. Chem. Intermed. 2022;48:969-982.
  • 8. Parganiha M, Dubey V, Shrivastava R, Kaur J. Green light emission in terbium Doped lanthanum zirconate powders. Anal. Chem. Lett. 2022;12:233–243.
  • 9. Meejitpaisan P, Kaewjaeng S, Ruangthaweep Y, Sangwarantee N, Kaewkhao J. White light emission of gadolinium calcium phosphate oxide and oxyfluoride glasses doped with Dy3+. Mater. Today: Proc. 2021;43:2574–2587.
  • 10. Luewarasirikul N, Sarachai S, Kim HJ, Kaewkhao J. Enhanced photoluminescence and radioluminescence of Dy3+-doped Ba-Na-B glasses. Radiat. Phys. Chem. 2023;202:110559.
  • 11. Liu N, Si JY, Cai GM, Tao Y. Crystal structure, luminescence properties and energy transfer of Eu3+/Dy3+ doped GdNbTiO6 broad band excited phosphors. RSC Adv. 2016;6:50797.
  • 12. Li HY, Shen LF, Pun EYB, Lin H. Dy3+-doped germanate glasses for waveguide-typed irradiation light sources. J. Alloys Compd. 2015;646:586-591.
  • 13. Kavitha V, Rani MP. The influence of Tm3+ on the structural, morphological, lifetime, haemocompatibility, and optical properties of sol–gel‑synthesized CaS phosphors. Appl. Phys. A: Mater. Sci. Process. 2022;128:1053.
  • 14. Ding Z, Ding G, Fang L, Peng Z. Luminescent property of CaWO4:Eu3+ nanophosphors prepared by molten salt synthesis. Inorg. Nano-Met. Chem. 2022;52:647–652.
  • 15. İlhan M, Ekmekçi MK, Keskin İÇ. Judd–Ofelt parameters and X-ray irradiation results of MNb2O6:Eu3+ (M = Sr, Cd, Ni) phosphors synthesized via a molten salt method. RSC Adv. 2021;11:10451.
  • 16. Gupta SK, Modak B, Tyagi M, Rawat NS, Modak P, Sudarshan K. Harvesting Light from BaHfO3/Eu3+ through ultraviolet, X‑ray, and heat stimulation: an optically multifunctional perovskite. ACS Omega 2022:7;5311-5323.
  • 17. İlhan M, Ekmekçi MK, Demir A, Demirer H. Synthesis and optical properties of novel red–emitting PbNb2O6:Eu3+ phosphors. J. Fluoresc. 2016;26:1637–1643.
  • 18. Bruncková H, Medvecký Ľ, Múdra E, Kovalčiková A, Ďurišin J, Šebek M, Girman V. Phase composition of samarium niobate and tantalate thin fims prepared by sol-gel method. Powder Metall. Prog. 2017;17:10–20.
  • 19. Ekmekçi MK, İlhan M, Güleryüz LF, Mergen A. Study on molten salt synthesis, microstructural determination and white light emitting properties of CoNb2O6:Dy3+ phosphor. Optik 2017;128:26-33.
  • 20. He X, Fang B, Zhang S, Lu X, Ding J. Preparation of nanoscale [(Ba0.85Ca0.15)0.995Nd0.005](Ti0.9Hf0.1)O3 ceramics via hydrothermal method and effect of grain size on multifunctional performance. J. Alloys Compd. 2022;925:166249.
  • 21. Wang X, Zhao H, Li A, Tian K, Brambilla G, Wang P. Near-infrared luminescence and single-mode laser emission from Nd3+ doped compound glass and glass microsphere. Front. Mater. Sci. 2019;6:237.
  • 22. İlhan M, Keskin İÇ, Çatalgöl Z, Samur R. NIR photoluminescence and radioluminescence characteristics of Nd3+ doped BaTa2O6 phosphor. Int. J. Appl. Ceram. Technol. 2018;15:1594–1601.
  • 23. Ekmekçi MK, İlhan M, Ege A, Ayvacıklı M. Microstructural and radioluminescence characteristics of Nd3+ doped columbite-type SrNb2O6 phosphor. J. Fluoresc. 2017;27:973–979.
  • 24. İlhan M, Ekmekçi MK, Oraltay RG, Başak AS. Structural and near-infrared properties of Nd3+ activated Lu3NbO7 Phosphor. J. Fluoresc. 2017;27:199–203.
  • 25. Prasad RNA, Vijaya N, Babu P, Mohan NK, Praveena R. Optical absorption and NIR photoluminescence of Nd3+-activated strontium phosphate glasses. J. Electron. Mater. 2020;49:6358-6368.
  • 26. He X, Fang B, Zhang S, Lu X, Ding J. Preparation and properties of Nd-doped BCTH lead-free ceramics by solid-phase twin crystal method. Curr. Appl. Phys. 2022;38:30-39.
  • 27. Golyeva EV, Vaishlia EI, Kurochkin MA, Kolesnikov EY, Lähderanta E, Semencha AV, Kolesnikov IE. Nd3+ concentration effect on luminescent properties of MgAl2O4 nanopowders synthesized by modified Pechini method. J. Solid State Chem. 2020:289;121486.
  • 28. Ekmekçi MK, Erdem M, Başak AS, İlhan M, Mergen A. Molten salt synthesis and optical properties of Eu3+, Dy3+ or Nd3+ doped NiNb2O6 columbite-type phosphors. Ceram. Int. 2015;41:9680–9685.
  • 29. Mahamuda Sk, Swapna K, Rao AS, Jayasimhadri M, Sasikala T, Pavani K, Moorthy LR. Spectroscopic properties and luminescence behavior of Nd3+ doped zinc alumino bismuth borate glasses. J. Phys. Chem. 2013;74;1308–1315.
  • 30. İlhan M, Katı Mİ, Keskin İÇ, Güleryüz LF. Evaluation of structural and spectroscopic results of tetragonal tungsten bronze MTa2O6:Eu3+ (M = Sr, Ba, Pb) phosphors and comparison on the basis of Judd-Ofelt parameters. J. Alloy. Comp. 2022;901:163626.
  • 31. İlhan M, Güleryüz LF, Keskin İÇ, Katı Mİ. A comparison of spectroscopic properties of Dy3+-doped tetragonal tungsten bronze MTa2O6 (M = Sr, Ba, Pb) phosphors based on Judd–Ofelt parameters. Mater. Sci: Mater. Electron 2022;33:16606–16620.
  • 32. İlhan M, Keskin İÇ, Gültekin S. Assessing of photoluminescence and thermoluminescence properties of Dy3+ doped white light emitter TTB-lead metatantalate phosphor. J. Electron. Mater. 2020;49:2436-2449.
  • 33. Nakauchi D, Okada G, Koshimizu M, Yanagida T. Optical and scintillation properties of Nd-doped SrAl2O4 crystals. J. Rare Earths 2016;34:757–762.
  • 34. Kamada K, Kurosawa S, Yamaji A, Shoji Y, Pejchal J, Ohashi Y, Yokota Y, Yoshikawa A. Growth of Nd doped (Lu, Gd)3(Ga, Al)5O12 single crystal by the micro pulling down method and their scintillation properties. Opt. Mater. 2015;41:32-35.
  • 35. Sugiyama M, Fujimoto Y, Yanagida T, Yamaji A, Yokota Y, Yoshikawa A. Growth and scintillation properties of Nd-doped Lu3Al5O12 single crystals by Czochralski and micro-pulling-down methods. J. Cryst. Growth 2013;362:178–181.
  • 36. Yanagida T, Fujimoto Y, Ishizu S, Fukuda K. Spectrochim. Optical and scintillation properties of Nd differently doped YLiF4 from VUV to NIR wavelengths. Opt. Mater. 2015;41:36–40.
  • 37. Francombe MH, Lewis B. Structural, dielectric and optical properties of ferroelectric lead metaniobate. Acta Cryst. 1958;11:696.
  • 38. Subbarao EC, Shirane G, Jona F. X-ray, dielectric, and optical study of ferroelectric lead metatantalate and related compounds. Acta Cryst. 1960;13:226.
  • 39. Simon A, Jean R. Solid-state chemistry and non-linear properties of tetragonal tungsten bronzes materials. C. R. Chim. 2006;9:1268–1276.
  • 40. İlhan M. Synthesis, structural characterization, and photoluminescence properties of TTB-type PbTa2O6:Eu3+ phosphor. Int. J. Appl. Ceram. Technol. 2017;14:1144–1150.
  • 41. İlhan M, Keskin İÇ. Evaluation of structural behaviour, radioluminescence, Judd-Ofelt analysis and thermoluminescence kinetic parameters of Eu3+ doped TTB–type lead metaniobate phosphor. Phys. B: Condens. Matter 2020;585:412106.
  • 42. Wang BX, Krogstad MJ,  Zheng H,  Osborn R,  Rosenkranz S,  Phelan D. Active and passive defects in tetragonal tungsten bronze relaxor ferroelectrics. J. Phys. Condens. Matter 2022;34:405401.
  • 43. Kato H, Kudo A. New tantalate photocatalysts for water decomposition into H2 and O2. Chem. Phys. Lett. 1998;487:492.
  • 44. Zhang W, Kumada N, Takei T, Yamanaka J, Kinomura N. Preparation and crystal structure of H-BaTa2O6-type K1.83Ba4.17Nb12.18O36 and dielectric properties of the related compounds. Mater. Res. Bull. 2005;40:1177−1186.
  • 45. Li G, Cheng L, Liao F, Tian S, Jing X, Lin J. Luminescent and structural properties of the series Ba6-xEuxTi2+xTa8-xO30 and Ba4-yKyEu2Ti4-yTa6+yO30. J. Solid State Chem. 2004;177:875–882.
  • 46. Tauc J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968;3(1):37-46.
  • 47. Boltersdorf J, Wong T, Maggard PA. Synthesis and optical properties of Ag(I), Pb(II), and Bi(III) tantalate-based photocatalysts. ACS Catal. 2013;3:2943–2953.
  • 48. Keskin İÇ, Türemiş M, Katı Mİ, Gültekin S, Arslanlar YT, Çetin A, Kibar R. Detailed luminescence (RL, PL, CL, TL) behaviors of Tb3+ and Dy3+ doped LiMgPO4 synthesized by sol-gel method. J. Lumin. 2020;225:117276.
  • 49. Ahmed AS, Muhamed SM, Singla ML, Tabassum S, Naqvi AH, Azam A. Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles. J. Lumin. 2011;131:1–6.
  • 50. Keskin İÇ. Radioluminescence results, thermoluminescence analysis and kinetic parameters of Y2O3:Ln3+ (Ln: Dy, Nd, Sm) nanophosphors obtained by sol-gel method. Ceram. Int. 2022;48(14):20579–20590.
  • 51. Burstein E. Anomalous Optical Absorption Limit in InSb. Phys. Rev. 1954;93:632.
  • 52. Blasse G. Energy transfer between inequivalent Eu2+ ions. J. Solid State Chem. 1986;62:207–211.
  • 53. Blasse G. Energy transfer in oxidic phosphors. Philips Res. Rep. 1969;24:131.
  • 54. Ayvacıkli M, Kotan Z, Ekdal E, Karabulut Y, Canimoglu A, Guinea JG, Khatab A, Henini M, Can N. Solid state synthesis of SrAl2O4:Mn2+ co-doped with Nd3+ phosphor and its optical properties. J. Lumin. 2013;144:128–132.
There are 54 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry
Journal Section RESEARCH ARTICLES
Authors

Mustafa İlhan 0000-0001-7826-9614

İlker Çetin Keskin 0000-0003-2743-766X

Publication Date May 31, 2023
Submission Date December 9, 2022
Acceptance Date March 22, 2023
Published in Issue Year 2023 Volume: 10 Issue: 2

Cite

Vancouver İlhan M, Keskin İÇ. Evaluation of the Structural, Near-Infrared Luminescence, and Radioluminescence Properties of Nd3+ Activated TTB-Lead Metatantalate Phosphors. JOTCSA. 2023;10(2):453-64.