Research Article
BibTex RIS Cite
Year 2023, Volume: 10 Issue: 3, 641 - 652, 30.08.2023
https://doi.org/10.18596/jotcsa.1224193

Abstract

References

  • 1. Kosiur DR. Porphyrin Adsorption by Clay Minerals. Clays Clay Miner. 1977 Oct;25:365-71.
  • 2. Canesson P, Cruz MI, Van Damme H. X.P.S. study of the interaction of some porphyrins and metalloporphyrins with montmorillonite. Dev Sedimentol. 1979; 27; 217-25.
  • 3. Hassen JH. Spectroscopic analysis of adsorbed macrocyclic complexes on ceramic and related materials [PhD. Thesis]. [Colchester, England]: University of Essex; 1988.
  • 4. Dias PM, de Faria DL, Constantino VR. Clay-porphyrin systems: Spectroscopic evidence of TMPyP protonation, non-planar distortion and meso substituent rotation. Clays Clay Miner. 2005 Aug; 53:361-71.
  • 5. Hassen J, Silver J. Stability of Fe(III) and Sn(IV) metalloporphyrins adsorbed on cation-exchanged montmorillonite. Trends Sci. 2022 Apr; 19(8):3426.
  • 6. Fujimura T, Shimada T, Hamatani S, Onodera S, Sasai R, Inoue H, et al. High density intercalation of porphyrin into transparent clay membrane without aggregation. Langmuir. 2013 Mar; 29(16):5060-65.
  • 7. Van Damme H, Crespin M, Obrecht F, Cruz MI, Fripiat JJ. Acid-base and complexation behavior of porphyrins on the intracrystal surface of swelling clays: meso-tetraphenylporphyrin and meso- tetra(4-pyridyl)porphyrin on montmorillonites. J Colloid Interface Sci. 1978 Aug;66(1):43-54.
  • 8. Nishina H, Hoshino S, Ohtani Y, Ishida T, Shimada T, Takagi S. Anisotropic energy transfer in a clay–porphyrin layered system with environment-responsiveness. Phys Chem Chem Phys. 2020 Jun;22(25):14261-67.
  • 9. Auwarter W, Ecija D, Klappenberger F, Barth JV. Porphyrins at interfaces. Nat Chem. 2015 Jan;7:105-20.
  • 10. Takagi S, Eguchi M, Tryk DA, Inoue H. Light-harvesting energy transfer and subsequent electron transfer of cationic porphyrin complexes on clay surfaces. Langmuir. 2006 Jan;22(4):1406-8.
  • 11. Ishida Y, Shimada T, Masui D, Tachibana H, Inoue H, Takagi S. Efficient excited energy transfer reaction in clay/porphyrin complex toward an artificial light-harvesting system. J Am Chem Soc. 2011 Aug;133(36):14280-86.
  • 12. Ishida Y, Masui D, Tachibana H, Inoue H, Shimada T, Takagi S. Controlling the microadsorption structure of porphyrin dye assembly on clay surfaces using the "size-matching rule" for constructing an efficient energy transfer system. ACS Appl Mater Interfaces. 2012 Jan; 4(2):811-16.
  • 13. Ishida Y, Shimada T, Tachibana H, Inoue H, Takagi S. Regulation of the collisional self-quenching of fluorescence in clay/porphyrin complex by strong host-guest interaction. J Phys Chem. A. 2012 Nov;116(49):12065-72.
  • 14. Egawa T, Watanabe H, Fujimura T, Ishida Y, Yamato M, Masui D, et al. Novel methodology to control the adsorption structure of cationic porphyrins on the clay surface using the "size-matching rule". Langmuir. 2011 Jul;27(17):10722-29.
  • 15. Takagi S, Eguchi M, Yui T, Inoue H. Photochemical Electron Transfer Reactions in Clay-porphyrin Complexes. Clay Sci. 2006; 12(2): 82-7.
  • 16. Takagi S, Konno S, Ishida Y, Ceklovsky A, Masui D, Shimada T, et al. A unique "Flattening effect" of clay on the photochemical properties of metalloporphyrins. Clay Sci. 2010; 14(6):235-39.
  • 17. Ishida Y, Fujimura, T, Masui D, Shimada T, Tachibana H, Inoue H, et al. What lowers the efficiency of an energy transfer reaction between porphyrin dyes on clay surface? Clay Sci. 2011; 15(4):169-74.
  • 18. Carrado KA, Wasserman SR. Stability of Cu(II)− and Fe(III)−porphyrins on montmorillonite clay:  An x-ray absorption study. Chem. Mater. 1996 Jan;8(1):219-25.
  • 19. Bergaya F, Van Damme H. Stability of metalloporphyrins adsorbed on clays: A comparative study. Geochim Cosmochim Acta. 1982 Mar;46(3):349-60.
  • 20. Abdo S, Cruz MI, Fripiat JJ. Metallation-demetallation reaction of tin tetra(4-pyridyl) porphyrin in Na-hectorite. Clays Clay Miner. 1980 Apr; 28: 125-29.
  • 21. Crestini C, Pastorini A, Tagliatesta P, Metalloporphyrins immobilized on motmorillonite as biomimetic catalysts in the oxidation of lignin model compounds. J Mol Catal A Chem. 2004 Feb;208(1-2):195-202.
  • 22. Machado AM, Wypych F, Drechsel SM, Nakagaki S (2002) Study of the catalytic behavior of montmorillonite/iron (III) and Mn(III) cationic porphyrins. J Colloid Interface Sci. 2002 Oct; 254:158–64.
  • 23. Zyoud A, Jondi W, Mansour W, Majeed Khan MA, Hilal HS. Modes of tetra(4-pyridyl)porphyrinatomanganese(III) ion intercalation inside natural clays. Chem Cent J. 2016 Mar;10:12.
  • 24. Hassen JH, Silver J. Stability of Fe(III) and Sn(IV) Metalloporphyrins Adsorbed on Cation-Exchanged Montmorillonite. Trends Sci. 2022 Mar;19(8):3426-34.
  • 25. Adler AD, Lengo FR, Finarelli JD, Goldmacher J, Assour J, Korsakoff L. A simplified synthesis for meso-tetraphenylporphine. J Org Chem. 1967 Feb; 32(2):476.
  • 26. Noskov AV, Alekseeva OV, Shibaeva VD, Agafonov AV. (2020). Synthesis, structure and thermal properties of montmorillonite/ionic liquid ionogels. RSC Adv. 2020 Sep; 10(57):34885- 94.
  • 27. Rozenson I, Heller-Kallai L. Reduction and oxidation of Fe3+ in dioctahedral smectites-III. Oxidation of octahedral iron in montmorillonite. Clays Clay Miner. 1978 Apr;26:88-92.
  • 28. Holtzer M, Bobrowski A, Grabowska B. Montmorillonite: A comparison of methods for its determination in foundry bentonites. Metalurgija. 2011 Apr; 50(2):119-22.
  • 29. Jeong D, Kang D-g, Joo T, Kim SK. Femtosecond-resolved excited state relaxation dynamics of copper (II) tetraphenylporphyrin (CuTPP) after soret band excitation. Sci Rep. 2017 Des;7:16865.
  • 30. Hassen J, Silver J. Montmorillonite surface as a catalyst for the formation of SAT metal tetra(p-sulphophenyl)porphyrins. J Teknol. 2020 Nov;82(6):1-9.
  • 31. Falk JE. Porphyrins and metalloporphyrins. Amsterdam; Elsevier; 1964. 266 p.

Adsorption of the Meso-Tetra-p-Tolylporphyrin (TTPH2) and Meso-Tetra-Naphthylporphyrin (TNPH2) onto Montmorillonite

Year 2023, Volume: 10 Issue: 3, 641 - 652, 30.08.2023
https://doi.org/10.18596/jotcsa.1224193

Abstract

The behavior of two porphyrin compounds, meso-tetra-p-tolylporphyrin (TTPH2) and meso-tetra-naphthylporphyrin (TNPH2) was studied and monitored during their adsorption on cation-exchanged montmorillonite clay (MMT). When these two compounds were reacted with MMT, the visible absorption spectra showed a clear shift of 10 nm higher than that found in the acetic acid solution. This suggests that the two compounds prefer to be more planar on the clay surface and, in the case of TTPH2, in the MMT interlamellar layers. The basal spacing of the MMT was increased by 4.4 Å when the TTPH42+ cations entered the spacers. The metal-exchanged ion in the clay is incorporated into the porphyrin rings when the TTPH2 and TNPH2 molecules react with MMT saturated with the metal ion of an appropriate size to fit in the porphyrin ring, such as Cu(II). The process occurred when executed in a solvent miscible with water that allowed the penetration of the hydrated sphere of the metal ion. Metalloporphyrin complexes are formed as a result of this process. The reactions were monitored using visible absorption spectra, diffuse reflectance spectra, x-ray diffraction, infrared spectra, and electron microscopy.

References

  • 1. Kosiur DR. Porphyrin Adsorption by Clay Minerals. Clays Clay Miner. 1977 Oct;25:365-71.
  • 2. Canesson P, Cruz MI, Van Damme H. X.P.S. study of the interaction of some porphyrins and metalloporphyrins with montmorillonite. Dev Sedimentol. 1979; 27; 217-25.
  • 3. Hassen JH. Spectroscopic analysis of adsorbed macrocyclic complexes on ceramic and related materials [PhD. Thesis]. [Colchester, England]: University of Essex; 1988.
  • 4. Dias PM, de Faria DL, Constantino VR. Clay-porphyrin systems: Spectroscopic evidence of TMPyP protonation, non-planar distortion and meso substituent rotation. Clays Clay Miner. 2005 Aug; 53:361-71.
  • 5. Hassen J, Silver J. Stability of Fe(III) and Sn(IV) metalloporphyrins adsorbed on cation-exchanged montmorillonite. Trends Sci. 2022 Apr; 19(8):3426.
  • 6. Fujimura T, Shimada T, Hamatani S, Onodera S, Sasai R, Inoue H, et al. High density intercalation of porphyrin into transparent clay membrane without aggregation. Langmuir. 2013 Mar; 29(16):5060-65.
  • 7. Van Damme H, Crespin M, Obrecht F, Cruz MI, Fripiat JJ. Acid-base and complexation behavior of porphyrins on the intracrystal surface of swelling clays: meso-tetraphenylporphyrin and meso- tetra(4-pyridyl)porphyrin on montmorillonites. J Colloid Interface Sci. 1978 Aug;66(1):43-54.
  • 8. Nishina H, Hoshino S, Ohtani Y, Ishida T, Shimada T, Takagi S. Anisotropic energy transfer in a clay–porphyrin layered system with environment-responsiveness. Phys Chem Chem Phys. 2020 Jun;22(25):14261-67.
  • 9. Auwarter W, Ecija D, Klappenberger F, Barth JV. Porphyrins at interfaces. Nat Chem. 2015 Jan;7:105-20.
  • 10. Takagi S, Eguchi M, Tryk DA, Inoue H. Light-harvesting energy transfer and subsequent electron transfer of cationic porphyrin complexes on clay surfaces. Langmuir. 2006 Jan;22(4):1406-8.
  • 11. Ishida Y, Shimada T, Masui D, Tachibana H, Inoue H, Takagi S. Efficient excited energy transfer reaction in clay/porphyrin complex toward an artificial light-harvesting system. J Am Chem Soc. 2011 Aug;133(36):14280-86.
  • 12. Ishida Y, Masui D, Tachibana H, Inoue H, Shimada T, Takagi S. Controlling the microadsorption structure of porphyrin dye assembly on clay surfaces using the "size-matching rule" for constructing an efficient energy transfer system. ACS Appl Mater Interfaces. 2012 Jan; 4(2):811-16.
  • 13. Ishida Y, Shimada T, Tachibana H, Inoue H, Takagi S. Regulation of the collisional self-quenching of fluorescence in clay/porphyrin complex by strong host-guest interaction. J Phys Chem. A. 2012 Nov;116(49):12065-72.
  • 14. Egawa T, Watanabe H, Fujimura T, Ishida Y, Yamato M, Masui D, et al. Novel methodology to control the adsorption structure of cationic porphyrins on the clay surface using the "size-matching rule". Langmuir. 2011 Jul;27(17):10722-29.
  • 15. Takagi S, Eguchi M, Yui T, Inoue H. Photochemical Electron Transfer Reactions in Clay-porphyrin Complexes. Clay Sci. 2006; 12(2): 82-7.
  • 16. Takagi S, Konno S, Ishida Y, Ceklovsky A, Masui D, Shimada T, et al. A unique "Flattening effect" of clay on the photochemical properties of metalloporphyrins. Clay Sci. 2010; 14(6):235-39.
  • 17. Ishida Y, Fujimura, T, Masui D, Shimada T, Tachibana H, Inoue H, et al. What lowers the efficiency of an energy transfer reaction between porphyrin dyes on clay surface? Clay Sci. 2011; 15(4):169-74.
  • 18. Carrado KA, Wasserman SR. Stability of Cu(II)− and Fe(III)−porphyrins on montmorillonite clay:  An x-ray absorption study. Chem. Mater. 1996 Jan;8(1):219-25.
  • 19. Bergaya F, Van Damme H. Stability of metalloporphyrins adsorbed on clays: A comparative study. Geochim Cosmochim Acta. 1982 Mar;46(3):349-60.
  • 20. Abdo S, Cruz MI, Fripiat JJ. Metallation-demetallation reaction of tin tetra(4-pyridyl) porphyrin in Na-hectorite. Clays Clay Miner. 1980 Apr; 28: 125-29.
  • 21. Crestini C, Pastorini A, Tagliatesta P, Metalloporphyrins immobilized on motmorillonite as biomimetic catalysts in the oxidation of lignin model compounds. J Mol Catal A Chem. 2004 Feb;208(1-2):195-202.
  • 22. Machado AM, Wypych F, Drechsel SM, Nakagaki S (2002) Study of the catalytic behavior of montmorillonite/iron (III) and Mn(III) cationic porphyrins. J Colloid Interface Sci. 2002 Oct; 254:158–64.
  • 23. Zyoud A, Jondi W, Mansour W, Majeed Khan MA, Hilal HS. Modes of tetra(4-pyridyl)porphyrinatomanganese(III) ion intercalation inside natural clays. Chem Cent J. 2016 Mar;10:12.
  • 24. Hassen JH, Silver J. Stability of Fe(III) and Sn(IV) Metalloporphyrins Adsorbed on Cation-Exchanged Montmorillonite. Trends Sci. 2022 Mar;19(8):3426-34.
  • 25. Adler AD, Lengo FR, Finarelli JD, Goldmacher J, Assour J, Korsakoff L. A simplified synthesis for meso-tetraphenylporphine. J Org Chem. 1967 Feb; 32(2):476.
  • 26. Noskov AV, Alekseeva OV, Shibaeva VD, Agafonov AV. (2020). Synthesis, structure and thermal properties of montmorillonite/ionic liquid ionogels. RSC Adv. 2020 Sep; 10(57):34885- 94.
  • 27. Rozenson I, Heller-Kallai L. Reduction and oxidation of Fe3+ in dioctahedral smectites-III. Oxidation of octahedral iron in montmorillonite. Clays Clay Miner. 1978 Apr;26:88-92.
  • 28. Holtzer M, Bobrowski A, Grabowska B. Montmorillonite: A comparison of methods for its determination in foundry bentonites. Metalurgija. 2011 Apr; 50(2):119-22.
  • 29. Jeong D, Kang D-g, Joo T, Kim SK. Femtosecond-resolved excited state relaxation dynamics of copper (II) tetraphenylporphyrin (CuTPP) after soret band excitation. Sci Rep. 2017 Des;7:16865.
  • 30. Hassen J, Silver J. Montmorillonite surface as a catalyst for the formation of SAT metal tetra(p-sulphophenyl)porphyrins. J Teknol. 2020 Nov;82(6):1-9.
  • 31. Falk JE. Porphyrins and metalloporphyrins. Amsterdam; Elsevier; 1964. 266 p.
There are 31 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry, Physical Chemistry (Other)
Journal Section RESEARCH ARTICLES
Authors

Jasim Hassen 0000-0002-5250-9891

Jack Sılver 0000-0001-8669-9673

Publication Date August 30, 2023
Submission Date December 25, 2022
Acceptance Date May 9, 2023
Published in Issue Year 2023 Volume: 10 Issue: 3

Cite

Vancouver Hassen J, Sılver J. Adsorption of the Meso-Tetra-p-Tolylporphyrin (TTPH2) and Meso-Tetra-Naphthylporphyrin (TNPH2) onto Montmorillonite. JOTCSA. 2023;10(3):641-52.