Review
BibTex RIS Cite
Year 2023, Volume: 10 Issue: 4, 1107 - 1122, 11.11.2023
https://doi.org/10.18596/jotcsa.1320655

Abstract

References

  • 1. Meenu PC, Roy S, Chakraborty C, Roy S. Electro catalytic oxidation reactions for harvesting alternative energy over non noble metal oxides: Are we a step closer to sustainable energy solution? Adv Powder Technol [Internet]. 2021 Aug;32(8):2663–89. Available from: <URL>.
  • 2. Adetokun BB, Oghorada O, Abubakar SJ. Superconducting magnetic energy storage systems: Prospects and challenges for renewable energy applications. J Energy Storage [Internet]. 2022 Nov;55(Part C):105663. Available from: <URL>.
  • 3. Niu D, Fang J, Yau W, Goetz SM. Comprehensive evaluation of energy storage systems for inertia emulation and frequency regulation improvement. Energy Reports [Internet]. 2023 Dec;9:2566–76. Available from: <URL>.
  • 4. Dascalu A, Sharkh S, Cruden A, Stevenson P. Performance of a hybrid battery energy storage system. Energy Reports [Internet]. 2022 Nov;8:1–7. Available from: <URL>.
  • 5. Muzaffar N, Afzal AM, Hegazy HH, Iqbal MW. Recent advances in two-dimensional metal-organic frameworks as an exotic candidate for the evaluation of redox-active sites in energy storage devices. J Energy Storage [Internet]. 2023 Aug;64:107142. Available from: <URL>.
  • 6. Ren G, Wang J, Li Y, Zhang G. Power distribution optimization of a fully active hybrid energy storage system configuration for vehicular applications. J Ind Inf Integr [Internet]. 2023 Jun;33:100459. Available from: <URL>.
  • 7. Jiang W, Zhu X, Liu Y, Zhao S, Huang R, Ling M, et al. Design of composite cathodes for sulfide-based all-solid-state batteries. eTransportation [Internet]. 2023 Jul;17:100246. Available from: <URL>.
  • 8. Hu B, Li H, Fan H, Song J. A long-lifetime aqueous organic redox flow battery utilizing multi-redox anolyte. Energy Storage Mater [Internet]. 2023 May;59:102789. Available from: <URL>.
  • 9. Muralee Gopi CVV, Vinodh R, Sambasivam S, Obaidat IM, Kim H-J. Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: From design and development to applications. J Energy Storage [Internet]. 2020 Feb;27:101035. Available from: <URL>.
  • 10. Ghadi BM, Hekmatnia B, Fu Q, Ardebili H. Stretchable fabric-based lithium-ion battery. Extrem Mech Lett [Internet]. 2023 Jun;61:102026. Available from: <URL>.
  • 11. Abdalla AM, Abdullah MF, Dawood MK, Wei B, Subramanian Y, Azad AT, et al. Innovative lithium-ion battery recycling: Sustainable process for recovery of critical materials from lithium-ion batteries. J Energy Storage [Internet]. 2023 Sep;67:107551. Available from: <URL>.
  • 12. Ji C, Cui H, Mi H, Yang S. Applications of 2D MXenes for Electrochemical Energy Conversion and Storage. Energies [Internet]. 2021 Dec 6;14(23):8183. Available from: <URL>.
  • 13. Inagaki M, Konno H, Tanaike O. Carbon materials for electrochemical capacitors. J Power Sources [Internet]. 2010 Dec 15;195(24):7880–903. Available from: <URL>.
  • 14. Kraiwattanawong K. A review on the development of a porous carbon-based as modeling materials for electric double layer capacitors. Arab J Chem [Internet]. 2022 Feb;15(2):103625. Available from: <URL>.
  • 15. Haldorai Y, Voit W, Shim J-J. Nano ZnO@reduced graphene oxide composite for high performance supercapacitor: Green synthesis in supercritical fluid. Electrochim Acta [Internet]. 2014 Feb;120:65–72. Available from: <URL>.
  • 16. Sivakumar S, Robinson Y, Mala NA. Studies on photocatalytic performance and supercapacitor applications of undoped and Cu-doped ZnO nanoparticles. Appl Surf Sci Adv [Internet]. 2022 Dec;12:100344. Available from: <URL>.
  • 17. Kambale S V., Lokhande BJ. Morphologically modified CuO nanorod structure @ stainless steel as high performing supercapacitor electrode prepared by spray pyrolysis. Mater Chem Phys [Internet]. 2023 Feb;295:127166. Available from: <URL>.
  • 18. Yaghi OM, Li H. Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. J Am Chem Soc [Internet]. 1995 Oct 1;117(41):10401–2. Available from: <URL>.
  • 19. Wang L, Han Y, Feng X, Zhou J, Qi P, Wang B. Metal–organic frameworks for energy storage: Batteries and supercapacitors. Coord Chem Rev [Internet]. 2016 Jan;307:361–81. Available from: <URL>.
  • 20. Wechsler SC, Amir FZ. Superior electrochemical performance of pristine nickel hexaaminobenzene mof supercapacitors fabricated by electrophoretic deposition. ChemSusChem [Internet]. 2020 Mar 20;13(6):1491–5. Available from: <URL>.
  • 21. Nguyen DK, Schepisi IM, Amir FZ. Extraordinary cycling stability of Ni3(HITP)2 supercapacitors fabricated by electrophoretic deposition: Cycling at 100,000 cycles. Chem Eng J [Internet]. 2019 Dec;378:122150. Available from: <URL>.
  • 22. Zheng S, Sun Y, Xue H, Braunstein P, Huang W, Pang H. Dual-ligand and hard-soft-acid-base strategies to optimize metal-organic framework nanocrystals for stable electrochemical cycling performance. Natl Sci Rev [Internet]. 2022 Aug 9;9(7):nwab197. Available from: <URL>.
  • 23. Sanati S, Abazari R, Morsali A, Kirillov AM, Junk PC, Wang J. An asymmetric supercapacitor based on a non-calcined 3D pillared cobalt(II) metal–organic framework with long cyclic stability. Inorg Chem [Internet]. 2019 Dec 2;58(23):16100–11. Available from: <URL>.
  • 24. Xia H, Zhang J, Yang Z, Guo S, Guo S, Xu Q. 2D MOF Nanoflake-Assembled Spherical Microstructures for Enhanced Supercapacitor and Electrocatalysis Performances. Nano-Micro Lett [Internet]. 2017 Oct 28;9(4):43. Available from: <URL>.
  • 25. Wang Y, Liu Y, Wang H, Liu W, Li Y, Zhang J, et al. Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes. ACS Appl Energy Mater [Internet]. 2019 Mar 25;2(3):2063–71. Available from: <URL>.
  • 26. Li H, Wang X, Dai L, Guo F, Mi H, Ji C, et al. Kinetics-favorable ultrathin NiCo-MOF nanosheets with boosted pseudocapacitive charge storage for quasi-solid-state hybrid supercapacitors. Inorg Chem [Internet]. 2022 Mar 7;61(9):3866–74. Available from: <URL>.
  • 27. Zhang B, Song S, Li W, Zheng L, Ma X. Asymmetric supercapacitors with high energy density and high specific capacitance based on Ni-Co-Mn multiphase metal structure MOF. Ionics (Kiel) [Internet]. 2021 Aug 27;27(8):3553–66. Available from: <URL>.
  • 28. Liu J, Wang Z, Bi R, Mao F, Wang K, Wu H, et al. A polythreaded MnII-MOF and its super-performances for dye adsorption and supercapacitors. Inorg Chem Front [Internet]. 2020;7(3):718–30. Available from: <URL>.
  • 29. Yang F, Li W, Tang B. Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application. J Alloys Compd [Internet]. 2018 Feb;733:8–14. Available from: <URL>.
  • 30. Deng T, Shi X, Zhang W, Wang Z, Zheng W. In-plane Assembly of Distinctive 2D MOFs with Optimum Supercapacitive Performance. iScience [Internet]. 2020 Jun;23(6):101220. Available from: <URL>.
  • 31. Cui L, Yu K, Lv J, Guo C, Zhou B. A 3D POMOF based on a {AsW12} cluster and a Ag-MOF with interpenetrating channels for large-capacity aqueous asymmetric supercapacitors and highly selective biosensors for the detection of hydrogen peroxide. J Mater Chem A [Internet]. 2020;8(43):22918–28. Available from: <URL>.
  • 32. Xu J, Wang Y, Cao S, Zhang J, Zhang G, Xue H, et al. Ultrathin Cu-MOF@δ-MnO2 nanosheets for aqueous electrolyte-based high-voltage electrochemical capacitors. J Mater Chem A [Internet]. 2018;6(36):17329–36. Available from: <URL>.
  • 33. Cao X, Cui L, Liu B, Liu Y, Jia D, Yang W, et al. Reverse synthesis of star anise-like cobalt doped Cu-MOF/Cu2+1O hybrid materials based on a Cu(OH)2 precursor for high performance supercapacitors. J Mater Chem A [Internet]. 2019;7(8):3815–27. Available from: <URL>.
  • 34. Madgula K, Pattathil SD, Puli VS, Venkataraman A. Materials and Chemistry of Conducting Polymers. In: Gupta RK, editor. Conducting Polymers for Advanced Energy Applications [Internet]. 1st ed. Boca Raton: CRC Press; 2021. Available from: <URL>.
  • 35. Snook GA, Kao P, Best AS. Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources [Internet]. 2011 Jan;196(1):1–12. Available from: <URL>.
  • 36. Meng Q, Cai K, Chen Y, Chen L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy [Internet]. 2017 Jun;36:268–85. Available from: <URL>.
  • 37. Sivakkumar SR, Kim WJ, Choi J-A, MacFarlane DR, Forsyth M, Kim D-W. Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. J Power Sources [Internet]. 2007 Sep;171(2):1062–8. Available from: <URL>.
  • 38. Li H, Wang J, Chu Q, Wang Z, Zhang F, Wang S. Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J Power Sources [Internet]. 2009 May;190(2):578–86. Available from: <URL>.
  • 39. Yang Q, Hou Z, Huang T. Self-assembled polypyrrole film by interfacial polymerization for supercapacitor applications. J Appl Polym Sci [Internet]. 2015 Mar 15;132(11):4–8. Available from: <URL>.
  • 40. Rajesh M, Raj CJ, Kim BC, Cho B-B, Ko JM, Yu KH. Supercapacitive studies on electropolymerized natural organic phosphate doped polypyrrole thin films. Electrochim Acta [Internet]. 2016 Dec;220:373–83. Available from: <URL>.
  • 41. Gnanakan SRP, Murugananthem N, Subramania A. Organic acid doped polythiophene nanoparticles as electrode material for redox supercapacitors. Polym Adv Technol [Internet]. 2011 Jun 15;22(6):788–93. Available from: <URL>.
  • 42. Raj CJ, Kim BC, Cho W-J, Lee W, Jung S-D, Kim YH, et al. Highly Flexible and Planar Supercapacitors Using Graphite Flakes/Polypyrrole in Polymer Lapping Film. ACS Appl Mater Interfaces [Internet]. 2015 Jun 24;7(24):13405–14. Available from: <URL>.
  • 43. Gómez H, Ram MK, Alvi F, Villalba P, Stefanakos E (Lee), Kumar A. Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. J Power Sources [Internet]. 2011 Apr;196(8):4102–8. Available from: <URL>.
  • 44. Sun H, She P, Xu K, Shang Y, Yin S, Liu Z. A self-standing nanocomposite foam of polyaniline@reduced graphene oxide for flexible super-capacitors. Synth Met [Internet]. 2015 Nov;209:68–73. Available from: <URL>.
  • 45. Imani A, Farzi G. Facile route for multi-walled carbon nanotube coating with polyaniline: tubular morphology nanocomposites for supercapacitor applications. J Mater Sci Mater Electron [Internet]. 2015 Oct 9;26(10):7438–44. Available from: <URL>.
  • 46. Tran C, Singhal R, Lawrence D, Kalra V. Polyaniline-coated freestanding porous carbon nanofibers as efficient hybrid electrodes for supercapacitors. J Power Sources [Internet]. 2015 Oct;293:373–9. Available from: <URL>.
  • 47. Shen K, Ran F, Zhang X, Liu C, Wang N, Niu X, et al. Supercapacitor electrodes based on nano-polyaniline deposited on hollow carbon spheres derived from cross-linked co-polymers. Synth Met [Internet]. 2015 Nov;209:369–76. Available from: <URL>.
  • 48. Cai J, Niu H, Li Z, Du Y, Cizek P, Xie Z, et al. High-Performance Supercapacitor Electrode Materials from Cellulose-Derived Carbon Nanofibers. ACS Appl Mater Interfaces [Internet]. 2015 Jul 15;7(27):14946–53. Available from: <URL>.
  • 49. Keskinen J, Tuurala S, Sjödin M, Kiri K, Nyholm L, Flyktman T, et al. Asymmetric and symmetric supercapacitors based on polypyrrole and activated carbon electrodes. Synth Met [Internet]. 2015 May;203:192–9. Available from: <URL>.
  • 50. Niu Z, Luan P, Shao Q, Dong H, Li J, Chen J, et al. A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energy Environ Sci [Internet]. 2012;5(9):8726–33. Available from: <URL>.
  • 51. Ates M, Serin MA, Ekmen I, Ertas YN. Supercapacitor behaviors of polyaniline/CuO, polypyrrole/CuO and PEDOT/CuO nanocomposites. Polym Bull [Internet]. 2015 Oct 7;72(10):2573–89. Available from: <URL>.
  • 52. Zhang J, Shi L, Liu H, Deng Z, Huang L, Mai W, et al. Utilizing polyaniline to dominate the crystal phase of Ni(OH)2 and its effect on the electrochemical property of polyaniline/Ni(OH)2 composite. J Alloys Compd [Internet]. 2015 Dec;651:126–34. Available from: <URL>.
  • 53. Tang Q, Chen M, Yang C, Wang W, Bao H, Wang G. Enhancing the energy density of asymmetric stretchable supercapacitor based on wrinkled CNT@MnO2 cathode and CNT@polypyrrole anode. ACS Appl Mater Interfaces [Internet]. 2015 Jul 22;7(28):15303–13. Available from: <URL>.
  • 54. Song H, Cai K, Wang J, Shen S. Influence of polymerization method on the thermoelectric properties of multi-walled carbon nanotubes/polypyrrole composites. Synth Met [Internet]. 2016 Jan;211:58–65. Available from: <URL>.
  • 55. Islam MM, Sheikh MSI, Susan MABH, Islam MM. Conjugated Polymers as the Materials for Supercapacitor Electrodes. In: Gupta RK, editor. Organic Electrodes [Internet]. Cham: Springer International Publishing; 2022. p. 265–88. (Engineering Materials). Available from: <URL>.
  • 56. Zhu J, Xu Y, Wang J, Wang J, Bai Y, Du X. Morphology controllable nano-sheet polypyrrole–graphene composites for high-rate supercapacitor. Phys Chem Chem Phys [Internet]. 2015;17(30):19885–94. Available from: <URL>.
  • 57. Du Y, Shen SZ, Yang W, Donelson R, Cai K, Casey PS. Simultaneous increase in conductivity and Seebeck coefficient in a polyaniline/graphene nanosheets thermoelectric nanocomposite. Synth Met [Internet]. 2012 Jan;161(23–24):2688–92. Available from: <URL>.
  • 58. Wang J, Cai K, Shen S, Yin J. Preparation and thermoelectric properties of multi-walled carbon nanotubes/polypyrrole composites. Synth Met [Internet]. 2014 Sep;195:132–6. Available from: <URL>.
  • 59. Wang H, Hao Q, Yang X, Lu L, Wang X. Graphene oxide doped polyaniline for supercapacitors. Electrochem commun [Internet]. 2009 Jun;11(6):1158–61. Available from: <URL>.
  • 60. Zhang J, Zhao XS. Conducting Polymers Directly Coated on Reduced Graphene Oxide Sheets as High-Performance Supercapacitor Electrodes. J Phys Chem C [Internet]. 2012 Mar 8;116(9):5420–6. Available from: <URL>.
  • 61. Hür E, Varol GA, Arslan A. The study of polythiophene, poly(3-methylthiophene) and poly(3,4-ethylenedioxythiophene) on pencil graphite electrode as an electrode active material for supercapacitor applications. Synth Met [Internet]. 2013 Nov;184:16–22. Available from: <URL>.
  • 62. Wang X, Liu J, Wang Y, Zhao C, Zheng W. Ni(OH)2 nanoflakes electrodeposited on Ni foam-supported vertically oriented graphene nanosheets for application in asymmetric supercapacitors. Mater Res Bull [Internet]. 2014 Apr;52:89–95. Available from: <URL>.
  • 63. Zhang X, Ji L, Zhang S, Yang W. Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite as electrode material for electrochemical capacitor. J Power Sources [Internet]. 2007 Nov;173(2):1017–23. Available from: <URL>.
  • 64. Chen L, Sun L-J, Luan F, Liang Y, Li Y, Liu X-X. Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles. J Power Sources [Internet]. 2010 Jun 1;195(11):3742–7. Available from: <URL>.
  • 65. Anu Prathap MU, Satpati B, Srivastava R. Facile preparation of polyaniline/MnO2 nanofibers and its electrochemical application in the simultaneous determination of catechol, hydroquinone, and resorcinol. Sensors Actuators B Chem [Internet]. 2013 Sep;186:67–77. Available from: <URL>.
  • 66. Zhou C, Zhang Y, Li Y, Liu J. Construction of High-Capacitance 3D CoO@Polypyrrole Nanowire Array Electrode for Aqueous Asymmetric Supercapacitor. Nano Lett [Internet]. 2013 May 8;13(5):2078–85. Available from: <URL>.
  • 67. Wang F, Zhan X, Cheng Z, Wang Z, Wang Q, Xu K, et al. Tungsten Oxide@Polypyrrole Core-Shell Nanowire Arrays as Novel Negative Electrodes for Asymmetric Supercapacitors. Small [Internet]. 2015 Feb;11(6):749–55. Available from: <URL>.
  • 68. Ji J, Zhang X, Liu J, Peng L, Chen C, Huang Z, et al. Assembly of polypyrrole nanotube@MnO2 composites with an improved electrochemical capacitance. Mater Sci Eng B [Internet]. 2015 Aug;198:51–6. Available from: <URL>.
  • 69. Sun X, Li Q, Mao Y. Understanding the influence of polypyrrole coating over V2O5 nanofibers on electrochemical properties. Electrochim Acta [Internet]. 2015 Aug;174:563–73. Available from: <URL>.
  • 70. Chen C, Fan W, Zhang Q, Ma T, Fu X, Wang Z. In situ synthesis of cabbage like polyaniline@hydroquinone nanocomposites and electrochemical capacitance investigations. J Appl Polym Sci [Internet]. 2015 Aug 5;132(29):42290. Available from: <URL>.
  • 71. Zhu J, Sun W, Yang D, Zhang Y, Hoon HH, Zhang H, et al. Multifunctional architectures constructing of PANI nanoneedle arrays on MoS2 thin nanosheets for high-energy supercapacitors. Small [Internet]. 2015 Sep;11(33):4123–9. Available from: <URL>.
  • 72. Wang J, Wang Z, Li Z, Liu N, Luo Y, Chu Y, et al. High-energy-density flexible graphene-based supercapacitors enabled by atypical hydroquinone dimethyl ether. J Colloid Interface Sci [Internet]. 2023 Oct 15;648:231–41. Available from: <URL>.
  • 73. Kerli S, Bhardwaj S, Lın W, Gupta RK. Silver-doped reduced graphene oxide/Pani composite synthesis and their supercapacitor applications. J Organomet Chem [Internet]. 2023 Aug 15;995:122725. Available from: <URL>.
  • 74. Zong S, Du J, Chen A, Gao X, Otun KO, Liu X, et al. N-doped crumpled carbon nanotubes as advanced electrode material for supercapacitor. J Alloys Compd [Internet]. 2022 Dec 20;928:167222. Available from: <URL>.
  • 75. Isacfranklin M, Yuvakkumar R, Ravi G, Thambidurai M, Nguyen HD, Velauthapillai D. SmNiO3/SWCNT perovskite composite for hybrid supercapacitor. J Energy Storage [Internet]. 2023 Sep 15;68:107786. Available from: <URL>.
  • 76. Bhagwan J, In Han J. Construction of high performance aqueous asymmetric supercapacitor based on multi walled carbon nanotube/MgMn2O4 composite. J Energy Storage [Internet]. 2023 Nov 20;72:108350. Available from: <URL>.
  • 77. Wu H, Li S, Liu Y, Shi Y. Self-assembled Zn-Co MOF nanospheres/rGO as cathode material for an asymmetric supercapacitor with high energy density. Electrochim Acta [Internet]. 2023 Sep 10;462:142740. Available from: <URL>.
  • 78. Zhao J, Wang M, Wang S, Zhang S, Wang J, Qiao X, et al. MOF-derived NiS2@carbon microspheres wrapped with carbon nanotubes for high cycle performance supercapacitors. Electrochim Acta [Internet]. 2023 Oct 1;464:142920. Available from: <URL>.
  • 79. Salunkhe AD, Pawar PS, Pagare PK, Kadam AN, Katkar PK, Torane AP. MOF derived NiCo2O4 nanosheets for high performance asymmetric supercapacitor. J Electroanal Chem [Internet]. 2023 Jun 15;939:117475. Available from: <URL>.
  • 80. Shi C, Liu Z, Tian Z, Li D, Chen Y, Guo L, et al. Fabrication of 3D MXene@graphene hydrogel with high ion accessibility via Al-induced self-assembly and reduction for high-performance supercapacitors. Electrochim Acta [Internet]. 2023 Oct 1;464:142892. Available from: <URL>.
  • 81. Bai W, Yong Z, Wang S, Wang X, Li C, Pan F, et al. Polyaniline-MXene composite electrode with excellent electrochemical properties for all-solid flexible supercapacitors. J Energy Storage [Internet]. 2023 Nov 1;71:108053. Available from: <URL>.
  • 82. Beknalkar SA, Teli AM, Khot AC, Mane SM, Shin JC. Preparation of CuMn2O4/Ti3C2 MXene composite electrodes for supercapacitors with high energy density and study on their charge transfer kinetics. Ceram Int [Internet]. 2023 Oct 1;49(19):31236–47. Available from: <URL>.
  • 83. Vigneshwaran J, Narayan RL, Ghosh D, Chakkravarthy V, Jose SP. Robust hierarchical three dimensional nickel cobalt tungstate-MXene nanocomposite for high performance symmetric coin cell supercapacitors. J Energy Storage [Internet]. 2022 Dec;56(Part C):106102. Available from: <URL>.
  • 84. Weng M, Zhou J, Ye Y, Qiu H, Zhou P, Luo Z, et al. Self-chargeable supercapacitor made with MXene-bacterial cellulose nanofiber composite for wearable devices. J Colloid Interface Sci [Internet]. 2023 Oct;647:277–86. Available from: <URL>.
  • 85. Chang Kim M, Saeed G, Alam A, Choi Y, Zhang L, Lee D, et al. Ultrafine nanoparticles of tin-cobalt-sulfide decorated over 2D MXene sheets as a cathode material for high-performance asymmetric supercapacitor. J Ind Eng Chem [Internet]. 2023 Aug;124:294–303. Available from: <URL>.
  • 86. Lai W, Wang Y, Wang X, Nairan A, Yang C. Fabrication and engineering of nanostructured supercapacitor electrodes using electromagnetic field‐based techniques. Adv Mater Technol [Internet]. 2018 Jan 25;3(1):1700168. Available from: <URL>.
  • 87. Zaccagnini P, Heß LH, Baudino L, Laurenti M, Serrapede M, Lamberti A, et al. From aluminum dissolution in supercapacitors to electroplating: A new way for Al thin film deposition? Adv Mater Interfaces [Internet]. 2023 Jul 4;10(20):2202470. Available from: <URL>.
  • 88. Dianatdar A, Mukherjee A, Bose RK. Oxidative chemical vapor deposition of polypyrrole onto carbon fabric for flexible supercapacitive electrode material. Synth Met [Internet]. 2023 Sep 1;298:117444. Available from: <URL>.
  • 89. Başlak C, Öztürk G, Demirel S, Kocyigit A, Doğu S, Yıldırım M. Green synthesis of carbon quantum dots from Sideritis vuralii and its application in supercapacitors. Inorg Chem Commun [Internet]. 2023 Jul;153:110845. Available from: <URL>.
  • 90. Zhu Y, Huang Z, Huang X, Li Y, Li H, Zhou B, et al. One-step hydrothermal synthesis of manganese oxide nanosheets with graphene quantum dots for high-performance supercapacitors. J Energy Storage [Internet]. 2023 Jun;62:106948. Available from: <URL>.
  • 91. Kim YK, Shin K-Y. Dopamine-assisted chemical vapour deposition of polypyrrole on graphene for flexible supercapacitor. Appl Surf Sci [Internet]. 2021 May;547:149141. Available from: <URL>.
  • 92. Maphiri VM, Bakhoum DT, Sarr S, Sylla NF, Rutavi G, Manyala N. Low temperature thermally reduced graphene oxide directly on Ni-Foam using atmospheric pressure-chemical vapour deposition for high performance supercapacitor application. J Energy Storage [Internet]. 2022 Aug;52(Part B):104967. Available from: <URL>.
  • 93. Ghodhbane M, Ashraf JM, Karam Z, Lonkar S, Alshaya A, Busà C. Cellulose nanofibers as a green binder for symmetric carbon nanotubes-based supercapacitors. Electrochim Acta [Internet]. 2023 Sep;461:142584. Available from: <URL>.
  • 94. Costa LH, Vicentini R, Almeida Silva T, Vilela Franco D, Morais Da Silva L, Zanin H. Identification and quantification of the distributed capacitance and ionic resistance in carbon-based supercapacitors using electrochemical techniques and the analysis of the charge-storage dynamics. J Electroanal Chem [Internet]. 2023 Jan;929:117140. Available from: <URL>.
  • 95. Pooladi M, Zerafat MM. Controlled micro/mesoporous carbon aerogel structure as a template for Bi2O3 nano-particles/rods to improve the performance of asymmetric supercapacitors. J Energy Storage [Internet]. 2021 Oct;42:102994. Available from: <URL>.
  • 96. Cheng Y, Xia K, Li H, Liu P, Zhao Z, Xu G, et al. One-pot synthesis of NiO-MnCo2O4 heterostructure hollow spheres via template-free solvothermal method for high-performance supercapacitors. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2023 Jul;669:131544. Available from: <URL>.
  • 97. Wu H, Yuan W, Yuan X, Cheng L. Atmosphere-free pyrolysis of harakeke fiber: A new chamber-induced activation methodology for porous carbon electrodes in supercapacitors. Energy Storage Mater [Internet]. 2022 Sep;50:514–24. Available from: <URL>.
  • 98. Yang W, Yang Z, Wang J, Lu W, Wang W. A bean catching double pigeons: Sonication assisted modification of Nb2C MXenes composites by O-doping porous biomass-carbons for supercapacitors and zinc-ion batteries. J Energy Storage [Internet]. 2023 Aug 15;65:107334. Available from: <URL>.
  • 99. Althubiti NA, Aman S, Taha TAM. Synthesis of MnFe2O4/MXene/NF nanosized composite for supercapacitor application. Ceram Int [Internet]. 2023 Aug 15;49(16):27496–505. Available from: <URL>.
  • 100. Ahankari S, Lasrado D, Subramaniam R. Advances in materials and fabrication of separators in supercapacitors. Mater Adv [Internet]. 2022;3(3):1472–96. Available from: <URL>.
  • 101. Yu H, Tang Q, Wu J, Lin Y, Fan L, Huang M, et al. Using eggshell membrane as a separator in supercapacitor. J Power Sources [Internet]. 2012 May;206:463–8. Available from: <URL>.
  • 102. Tan R, Wang A, Malpass-Evans R, Williams R, Zhao EW, Liu T, et al. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nat Mater [Internet]. 2020 Feb 2;19(2):195–202. Available from: <URL>.
  • 103. Abdel Maksoud MIA, Fahim RA, Shalan AE, Abd Elkodous M, Olojede SO, Osman AI, et al. Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environ Chem Lett [Internet]. 2021 Feb 28;19(1):375–439. Available from: <URL>.
  • 104. Abdelhamid ME, O’Mullane AP, Snook GA. Storing energy in plastics: A review on conducting polymers & their role in electrochemical energy storage. RSC Adv [Internet]. 2015;5(15):11611–26. Available from: <URL>.
  • 105. Su Y, Sawan M. Supercapacitors: Fabrication Challenges and Trends. In: Stevic Z, editor. Updates on Supercapacitors [Internet]. IntechOpen; 2023. Available from: <URL>.

Recent Developments in Nanostructured Materials for Supercapacitor Electrodes

Year 2023, Volume: 10 Issue: 4, 1107 - 1122, 11.11.2023
https://doi.org/10.18596/jotcsa.1320655

Abstract

This review focuses on nanostructures-based systems and aims to provide a comprehensive overview of recent advancements in energy storage technologies and modified energy storage materials. The transition towards a sustainable and carbon-free energy system hinges on the progress of efficient and safe energy storage technologies. Supercapacitors have garnered significant interest in diverse energy storage applications due to their rapid charge/discharge rates, high power density, and extended cycle life. Nanostructures have conclusively demonstrated their capability to significantly enhance supercapacitor electrodes' performance. MXene, an innovative category of 2D materials, has emerged as a promising candidate for energy storage applications due to its substantial surface area, exceptional electrical conductivity, and versatile characteristics. Supercapacitors, nanostructures, and MXene are the main topics of the research articles and reviews in this special issue, highlighting recent developments in the design, synthesis, and characterization of advanced energy storage materials and devices. Additionally, this study presents an in-depth investigation of various carbon-based nanomaterials, their synthesis techniques, and their performance in supercapacitors. It also emphasizes the potential of recycling waste materials for developing high-performance nanomaterials for energy storage applications. Finally, this review encourages further research and development of advanced energy storage technologies by giving readers a thorough overview of the current state-of-the-art and future directions in this rapidly expanding sector.

References

  • 1. Meenu PC, Roy S, Chakraborty C, Roy S. Electro catalytic oxidation reactions for harvesting alternative energy over non noble metal oxides: Are we a step closer to sustainable energy solution? Adv Powder Technol [Internet]. 2021 Aug;32(8):2663–89. Available from: <URL>.
  • 2. Adetokun BB, Oghorada O, Abubakar SJ. Superconducting magnetic energy storage systems: Prospects and challenges for renewable energy applications. J Energy Storage [Internet]. 2022 Nov;55(Part C):105663. Available from: <URL>.
  • 3. Niu D, Fang J, Yau W, Goetz SM. Comprehensive evaluation of energy storage systems for inertia emulation and frequency regulation improvement. Energy Reports [Internet]. 2023 Dec;9:2566–76. Available from: <URL>.
  • 4. Dascalu A, Sharkh S, Cruden A, Stevenson P. Performance of a hybrid battery energy storage system. Energy Reports [Internet]. 2022 Nov;8:1–7. Available from: <URL>.
  • 5. Muzaffar N, Afzal AM, Hegazy HH, Iqbal MW. Recent advances in two-dimensional metal-organic frameworks as an exotic candidate for the evaluation of redox-active sites in energy storage devices. J Energy Storage [Internet]. 2023 Aug;64:107142. Available from: <URL>.
  • 6. Ren G, Wang J, Li Y, Zhang G. Power distribution optimization of a fully active hybrid energy storage system configuration for vehicular applications. J Ind Inf Integr [Internet]. 2023 Jun;33:100459. Available from: <URL>.
  • 7. Jiang W, Zhu X, Liu Y, Zhao S, Huang R, Ling M, et al. Design of composite cathodes for sulfide-based all-solid-state batteries. eTransportation [Internet]. 2023 Jul;17:100246. Available from: <URL>.
  • 8. Hu B, Li H, Fan H, Song J. A long-lifetime aqueous organic redox flow battery utilizing multi-redox anolyte. Energy Storage Mater [Internet]. 2023 May;59:102789. Available from: <URL>.
  • 9. Muralee Gopi CVV, Vinodh R, Sambasivam S, Obaidat IM, Kim H-J. Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: From design and development to applications. J Energy Storage [Internet]. 2020 Feb;27:101035. Available from: <URL>.
  • 10. Ghadi BM, Hekmatnia B, Fu Q, Ardebili H. Stretchable fabric-based lithium-ion battery. Extrem Mech Lett [Internet]. 2023 Jun;61:102026. Available from: <URL>.
  • 11. Abdalla AM, Abdullah MF, Dawood MK, Wei B, Subramanian Y, Azad AT, et al. Innovative lithium-ion battery recycling: Sustainable process for recovery of critical materials from lithium-ion batteries. J Energy Storage [Internet]. 2023 Sep;67:107551. Available from: <URL>.
  • 12. Ji C, Cui H, Mi H, Yang S. Applications of 2D MXenes for Electrochemical Energy Conversion and Storage. Energies [Internet]. 2021 Dec 6;14(23):8183. Available from: <URL>.
  • 13. Inagaki M, Konno H, Tanaike O. Carbon materials for electrochemical capacitors. J Power Sources [Internet]. 2010 Dec 15;195(24):7880–903. Available from: <URL>.
  • 14. Kraiwattanawong K. A review on the development of a porous carbon-based as modeling materials for electric double layer capacitors. Arab J Chem [Internet]. 2022 Feb;15(2):103625. Available from: <URL>.
  • 15. Haldorai Y, Voit W, Shim J-J. Nano ZnO@reduced graphene oxide composite for high performance supercapacitor: Green synthesis in supercritical fluid. Electrochim Acta [Internet]. 2014 Feb;120:65–72. Available from: <URL>.
  • 16. Sivakumar S, Robinson Y, Mala NA. Studies on photocatalytic performance and supercapacitor applications of undoped and Cu-doped ZnO nanoparticles. Appl Surf Sci Adv [Internet]. 2022 Dec;12:100344. Available from: <URL>.
  • 17. Kambale S V., Lokhande BJ. Morphologically modified CuO nanorod structure @ stainless steel as high performing supercapacitor electrode prepared by spray pyrolysis. Mater Chem Phys [Internet]. 2023 Feb;295:127166. Available from: <URL>.
  • 18. Yaghi OM, Li H. Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. J Am Chem Soc [Internet]. 1995 Oct 1;117(41):10401–2. Available from: <URL>.
  • 19. Wang L, Han Y, Feng X, Zhou J, Qi P, Wang B. Metal–organic frameworks for energy storage: Batteries and supercapacitors. Coord Chem Rev [Internet]. 2016 Jan;307:361–81. Available from: <URL>.
  • 20. Wechsler SC, Amir FZ. Superior electrochemical performance of pristine nickel hexaaminobenzene mof supercapacitors fabricated by electrophoretic deposition. ChemSusChem [Internet]. 2020 Mar 20;13(6):1491–5. Available from: <URL>.
  • 21. Nguyen DK, Schepisi IM, Amir FZ. Extraordinary cycling stability of Ni3(HITP)2 supercapacitors fabricated by electrophoretic deposition: Cycling at 100,000 cycles. Chem Eng J [Internet]. 2019 Dec;378:122150. Available from: <URL>.
  • 22. Zheng S, Sun Y, Xue H, Braunstein P, Huang W, Pang H. Dual-ligand and hard-soft-acid-base strategies to optimize metal-organic framework nanocrystals for stable electrochemical cycling performance. Natl Sci Rev [Internet]. 2022 Aug 9;9(7):nwab197. Available from: <URL>.
  • 23. Sanati S, Abazari R, Morsali A, Kirillov AM, Junk PC, Wang J. An asymmetric supercapacitor based on a non-calcined 3D pillared cobalt(II) metal–organic framework with long cyclic stability. Inorg Chem [Internet]. 2019 Dec 2;58(23):16100–11. Available from: <URL>.
  • 24. Xia H, Zhang J, Yang Z, Guo S, Guo S, Xu Q. 2D MOF Nanoflake-Assembled Spherical Microstructures for Enhanced Supercapacitor and Electrocatalysis Performances. Nano-Micro Lett [Internet]. 2017 Oct 28;9(4):43. Available from: <URL>.
  • 25. Wang Y, Liu Y, Wang H, Liu W, Li Y, Zhang J, et al. Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes. ACS Appl Energy Mater [Internet]. 2019 Mar 25;2(3):2063–71. Available from: <URL>.
  • 26. Li H, Wang X, Dai L, Guo F, Mi H, Ji C, et al. Kinetics-favorable ultrathin NiCo-MOF nanosheets with boosted pseudocapacitive charge storage for quasi-solid-state hybrid supercapacitors. Inorg Chem [Internet]. 2022 Mar 7;61(9):3866–74. Available from: <URL>.
  • 27. Zhang B, Song S, Li W, Zheng L, Ma X. Asymmetric supercapacitors with high energy density and high specific capacitance based on Ni-Co-Mn multiphase metal structure MOF. Ionics (Kiel) [Internet]. 2021 Aug 27;27(8):3553–66. Available from: <URL>.
  • 28. Liu J, Wang Z, Bi R, Mao F, Wang K, Wu H, et al. A polythreaded MnII-MOF and its super-performances for dye adsorption and supercapacitors. Inorg Chem Front [Internet]. 2020;7(3):718–30. Available from: <URL>.
  • 29. Yang F, Li W, Tang B. Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application. J Alloys Compd [Internet]. 2018 Feb;733:8–14. Available from: <URL>.
  • 30. Deng T, Shi X, Zhang W, Wang Z, Zheng W. In-plane Assembly of Distinctive 2D MOFs with Optimum Supercapacitive Performance. iScience [Internet]. 2020 Jun;23(6):101220. Available from: <URL>.
  • 31. Cui L, Yu K, Lv J, Guo C, Zhou B. A 3D POMOF based on a {AsW12} cluster and a Ag-MOF with interpenetrating channels for large-capacity aqueous asymmetric supercapacitors and highly selective biosensors for the detection of hydrogen peroxide. J Mater Chem A [Internet]. 2020;8(43):22918–28. Available from: <URL>.
  • 32. Xu J, Wang Y, Cao S, Zhang J, Zhang G, Xue H, et al. Ultrathin Cu-MOF@δ-MnO2 nanosheets for aqueous electrolyte-based high-voltage electrochemical capacitors. J Mater Chem A [Internet]. 2018;6(36):17329–36. Available from: <URL>.
  • 33. Cao X, Cui L, Liu B, Liu Y, Jia D, Yang W, et al. Reverse synthesis of star anise-like cobalt doped Cu-MOF/Cu2+1O hybrid materials based on a Cu(OH)2 precursor for high performance supercapacitors. J Mater Chem A [Internet]. 2019;7(8):3815–27. Available from: <URL>.
  • 34. Madgula K, Pattathil SD, Puli VS, Venkataraman A. Materials and Chemistry of Conducting Polymers. In: Gupta RK, editor. Conducting Polymers for Advanced Energy Applications [Internet]. 1st ed. Boca Raton: CRC Press; 2021. Available from: <URL>.
  • 35. Snook GA, Kao P, Best AS. Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources [Internet]. 2011 Jan;196(1):1–12. Available from: <URL>.
  • 36. Meng Q, Cai K, Chen Y, Chen L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy [Internet]. 2017 Jun;36:268–85. Available from: <URL>.
  • 37. Sivakkumar SR, Kim WJ, Choi J-A, MacFarlane DR, Forsyth M, Kim D-W. Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. J Power Sources [Internet]. 2007 Sep;171(2):1062–8. Available from: <URL>.
  • 38. Li H, Wang J, Chu Q, Wang Z, Zhang F, Wang S. Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J Power Sources [Internet]. 2009 May;190(2):578–86. Available from: <URL>.
  • 39. Yang Q, Hou Z, Huang T. Self-assembled polypyrrole film by interfacial polymerization for supercapacitor applications. J Appl Polym Sci [Internet]. 2015 Mar 15;132(11):4–8. Available from: <URL>.
  • 40. Rajesh M, Raj CJ, Kim BC, Cho B-B, Ko JM, Yu KH. Supercapacitive studies on electropolymerized natural organic phosphate doped polypyrrole thin films. Electrochim Acta [Internet]. 2016 Dec;220:373–83. Available from: <URL>.
  • 41. Gnanakan SRP, Murugananthem N, Subramania A. Organic acid doped polythiophene nanoparticles as electrode material for redox supercapacitors. Polym Adv Technol [Internet]. 2011 Jun 15;22(6):788–93. Available from: <URL>.
  • 42. Raj CJ, Kim BC, Cho W-J, Lee W, Jung S-D, Kim YH, et al. Highly Flexible and Planar Supercapacitors Using Graphite Flakes/Polypyrrole in Polymer Lapping Film. ACS Appl Mater Interfaces [Internet]. 2015 Jun 24;7(24):13405–14. Available from: <URL>.
  • 43. Gómez H, Ram MK, Alvi F, Villalba P, Stefanakos E (Lee), Kumar A. Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. J Power Sources [Internet]. 2011 Apr;196(8):4102–8. Available from: <URL>.
  • 44. Sun H, She P, Xu K, Shang Y, Yin S, Liu Z. A self-standing nanocomposite foam of polyaniline@reduced graphene oxide for flexible super-capacitors. Synth Met [Internet]. 2015 Nov;209:68–73. Available from: <URL>.
  • 45. Imani A, Farzi G. Facile route for multi-walled carbon nanotube coating with polyaniline: tubular morphology nanocomposites for supercapacitor applications. J Mater Sci Mater Electron [Internet]. 2015 Oct 9;26(10):7438–44. Available from: <URL>.
  • 46. Tran C, Singhal R, Lawrence D, Kalra V. Polyaniline-coated freestanding porous carbon nanofibers as efficient hybrid electrodes for supercapacitors. J Power Sources [Internet]. 2015 Oct;293:373–9. Available from: <URL>.
  • 47. Shen K, Ran F, Zhang X, Liu C, Wang N, Niu X, et al. Supercapacitor electrodes based on nano-polyaniline deposited on hollow carbon spheres derived from cross-linked co-polymers. Synth Met [Internet]. 2015 Nov;209:369–76. Available from: <URL>.
  • 48. Cai J, Niu H, Li Z, Du Y, Cizek P, Xie Z, et al. High-Performance Supercapacitor Electrode Materials from Cellulose-Derived Carbon Nanofibers. ACS Appl Mater Interfaces [Internet]. 2015 Jul 15;7(27):14946–53. Available from: <URL>.
  • 49. Keskinen J, Tuurala S, Sjödin M, Kiri K, Nyholm L, Flyktman T, et al. Asymmetric and symmetric supercapacitors based on polypyrrole and activated carbon electrodes. Synth Met [Internet]. 2015 May;203:192–9. Available from: <URL>.
  • 50. Niu Z, Luan P, Shao Q, Dong H, Li J, Chen J, et al. A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energy Environ Sci [Internet]. 2012;5(9):8726–33. Available from: <URL>.
  • 51. Ates M, Serin MA, Ekmen I, Ertas YN. Supercapacitor behaviors of polyaniline/CuO, polypyrrole/CuO and PEDOT/CuO nanocomposites. Polym Bull [Internet]. 2015 Oct 7;72(10):2573–89. Available from: <URL>.
  • 52. Zhang J, Shi L, Liu H, Deng Z, Huang L, Mai W, et al. Utilizing polyaniline to dominate the crystal phase of Ni(OH)2 and its effect on the electrochemical property of polyaniline/Ni(OH)2 composite. J Alloys Compd [Internet]. 2015 Dec;651:126–34. Available from: <URL>.
  • 53. Tang Q, Chen M, Yang C, Wang W, Bao H, Wang G. Enhancing the energy density of asymmetric stretchable supercapacitor based on wrinkled CNT@MnO2 cathode and CNT@polypyrrole anode. ACS Appl Mater Interfaces [Internet]. 2015 Jul 22;7(28):15303–13. Available from: <URL>.
  • 54. Song H, Cai K, Wang J, Shen S. Influence of polymerization method on the thermoelectric properties of multi-walled carbon nanotubes/polypyrrole composites. Synth Met [Internet]. 2016 Jan;211:58–65. Available from: <URL>.
  • 55. Islam MM, Sheikh MSI, Susan MABH, Islam MM. Conjugated Polymers as the Materials for Supercapacitor Electrodes. In: Gupta RK, editor. Organic Electrodes [Internet]. Cham: Springer International Publishing; 2022. p. 265–88. (Engineering Materials). Available from: <URL>.
  • 56. Zhu J, Xu Y, Wang J, Wang J, Bai Y, Du X. Morphology controllable nano-sheet polypyrrole–graphene composites for high-rate supercapacitor. Phys Chem Chem Phys [Internet]. 2015;17(30):19885–94. Available from: <URL>.
  • 57. Du Y, Shen SZ, Yang W, Donelson R, Cai K, Casey PS. Simultaneous increase in conductivity and Seebeck coefficient in a polyaniline/graphene nanosheets thermoelectric nanocomposite. Synth Met [Internet]. 2012 Jan;161(23–24):2688–92. Available from: <URL>.
  • 58. Wang J, Cai K, Shen S, Yin J. Preparation and thermoelectric properties of multi-walled carbon nanotubes/polypyrrole composites. Synth Met [Internet]. 2014 Sep;195:132–6. Available from: <URL>.
  • 59. Wang H, Hao Q, Yang X, Lu L, Wang X. Graphene oxide doped polyaniline for supercapacitors. Electrochem commun [Internet]. 2009 Jun;11(6):1158–61. Available from: <URL>.
  • 60. Zhang J, Zhao XS. Conducting Polymers Directly Coated on Reduced Graphene Oxide Sheets as High-Performance Supercapacitor Electrodes. J Phys Chem C [Internet]. 2012 Mar 8;116(9):5420–6. Available from: <URL>.
  • 61. Hür E, Varol GA, Arslan A. The study of polythiophene, poly(3-methylthiophene) and poly(3,4-ethylenedioxythiophene) on pencil graphite electrode as an electrode active material for supercapacitor applications. Synth Met [Internet]. 2013 Nov;184:16–22. Available from: <URL>.
  • 62. Wang X, Liu J, Wang Y, Zhao C, Zheng W. Ni(OH)2 nanoflakes electrodeposited on Ni foam-supported vertically oriented graphene nanosheets for application in asymmetric supercapacitors. Mater Res Bull [Internet]. 2014 Apr;52:89–95. Available from: <URL>.
  • 63. Zhang X, Ji L, Zhang S, Yang W. Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite as electrode material for electrochemical capacitor. J Power Sources [Internet]. 2007 Nov;173(2):1017–23. Available from: <URL>.
  • 64. Chen L, Sun L-J, Luan F, Liang Y, Li Y, Liu X-X. Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles. J Power Sources [Internet]. 2010 Jun 1;195(11):3742–7. Available from: <URL>.
  • 65. Anu Prathap MU, Satpati B, Srivastava R. Facile preparation of polyaniline/MnO2 nanofibers and its electrochemical application in the simultaneous determination of catechol, hydroquinone, and resorcinol. Sensors Actuators B Chem [Internet]. 2013 Sep;186:67–77. Available from: <URL>.
  • 66. Zhou C, Zhang Y, Li Y, Liu J. Construction of High-Capacitance 3D CoO@Polypyrrole Nanowire Array Electrode for Aqueous Asymmetric Supercapacitor. Nano Lett [Internet]. 2013 May 8;13(5):2078–85. Available from: <URL>.
  • 67. Wang F, Zhan X, Cheng Z, Wang Z, Wang Q, Xu K, et al. Tungsten Oxide@Polypyrrole Core-Shell Nanowire Arrays as Novel Negative Electrodes for Asymmetric Supercapacitors. Small [Internet]. 2015 Feb;11(6):749–55. Available from: <URL>.
  • 68. Ji J, Zhang X, Liu J, Peng L, Chen C, Huang Z, et al. Assembly of polypyrrole nanotube@MnO2 composites with an improved electrochemical capacitance. Mater Sci Eng B [Internet]. 2015 Aug;198:51–6. Available from: <URL>.
  • 69. Sun X, Li Q, Mao Y. Understanding the influence of polypyrrole coating over V2O5 nanofibers on electrochemical properties. Electrochim Acta [Internet]. 2015 Aug;174:563–73. Available from: <URL>.
  • 70. Chen C, Fan W, Zhang Q, Ma T, Fu X, Wang Z. In situ synthesis of cabbage like polyaniline@hydroquinone nanocomposites and electrochemical capacitance investigations. J Appl Polym Sci [Internet]. 2015 Aug 5;132(29):42290. Available from: <URL>.
  • 71. Zhu J, Sun W, Yang D, Zhang Y, Hoon HH, Zhang H, et al. Multifunctional architectures constructing of PANI nanoneedle arrays on MoS2 thin nanosheets for high-energy supercapacitors. Small [Internet]. 2015 Sep;11(33):4123–9. Available from: <URL>.
  • 72. Wang J, Wang Z, Li Z, Liu N, Luo Y, Chu Y, et al. High-energy-density flexible graphene-based supercapacitors enabled by atypical hydroquinone dimethyl ether. J Colloid Interface Sci [Internet]. 2023 Oct 15;648:231–41. Available from: <URL>.
  • 73. Kerli S, Bhardwaj S, Lın W, Gupta RK. Silver-doped reduced graphene oxide/Pani composite synthesis and their supercapacitor applications. J Organomet Chem [Internet]. 2023 Aug 15;995:122725. Available from: <URL>.
  • 74. Zong S, Du J, Chen A, Gao X, Otun KO, Liu X, et al. N-doped crumpled carbon nanotubes as advanced electrode material for supercapacitor. J Alloys Compd [Internet]. 2022 Dec 20;928:167222. Available from: <URL>.
  • 75. Isacfranklin M, Yuvakkumar R, Ravi G, Thambidurai M, Nguyen HD, Velauthapillai D. SmNiO3/SWCNT perovskite composite for hybrid supercapacitor. J Energy Storage [Internet]. 2023 Sep 15;68:107786. Available from: <URL>.
  • 76. Bhagwan J, In Han J. Construction of high performance aqueous asymmetric supercapacitor based on multi walled carbon nanotube/MgMn2O4 composite. J Energy Storage [Internet]. 2023 Nov 20;72:108350. Available from: <URL>.
  • 77. Wu H, Li S, Liu Y, Shi Y. Self-assembled Zn-Co MOF nanospheres/rGO as cathode material for an asymmetric supercapacitor with high energy density. Electrochim Acta [Internet]. 2023 Sep 10;462:142740. Available from: <URL>.
  • 78. Zhao J, Wang M, Wang S, Zhang S, Wang J, Qiao X, et al. MOF-derived NiS2@carbon microspheres wrapped with carbon nanotubes for high cycle performance supercapacitors. Electrochim Acta [Internet]. 2023 Oct 1;464:142920. Available from: <URL>.
  • 79. Salunkhe AD, Pawar PS, Pagare PK, Kadam AN, Katkar PK, Torane AP. MOF derived NiCo2O4 nanosheets for high performance asymmetric supercapacitor. J Electroanal Chem [Internet]. 2023 Jun 15;939:117475. Available from: <URL>.
  • 80. Shi C, Liu Z, Tian Z, Li D, Chen Y, Guo L, et al. Fabrication of 3D MXene@graphene hydrogel with high ion accessibility via Al-induced self-assembly and reduction for high-performance supercapacitors. Electrochim Acta [Internet]. 2023 Oct 1;464:142892. Available from: <URL>.
  • 81. Bai W, Yong Z, Wang S, Wang X, Li C, Pan F, et al. Polyaniline-MXene composite electrode with excellent electrochemical properties for all-solid flexible supercapacitors. J Energy Storage [Internet]. 2023 Nov 1;71:108053. Available from: <URL>.
  • 82. Beknalkar SA, Teli AM, Khot AC, Mane SM, Shin JC. Preparation of CuMn2O4/Ti3C2 MXene composite electrodes for supercapacitors with high energy density and study on their charge transfer kinetics. Ceram Int [Internet]. 2023 Oct 1;49(19):31236–47. Available from: <URL>.
  • 83. Vigneshwaran J, Narayan RL, Ghosh D, Chakkravarthy V, Jose SP. Robust hierarchical three dimensional nickel cobalt tungstate-MXene nanocomposite for high performance symmetric coin cell supercapacitors. J Energy Storage [Internet]. 2022 Dec;56(Part C):106102. Available from: <URL>.
  • 84. Weng M, Zhou J, Ye Y, Qiu H, Zhou P, Luo Z, et al. Self-chargeable supercapacitor made with MXene-bacterial cellulose nanofiber composite for wearable devices. J Colloid Interface Sci [Internet]. 2023 Oct;647:277–86. Available from: <URL>.
  • 85. Chang Kim M, Saeed G, Alam A, Choi Y, Zhang L, Lee D, et al. Ultrafine nanoparticles of tin-cobalt-sulfide decorated over 2D MXene sheets as a cathode material for high-performance asymmetric supercapacitor. J Ind Eng Chem [Internet]. 2023 Aug;124:294–303. Available from: <URL>.
  • 86. Lai W, Wang Y, Wang X, Nairan A, Yang C. Fabrication and engineering of nanostructured supercapacitor electrodes using electromagnetic field‐based techniques. Adv Mater Technol [Internet]. 2018 Jan 25;3(1):1700168. Available from: <URL>.
  • 87. Zaccagnini P, Heß LH, Baudino L, Laurenti M, Serrapede M, Lamberti A, et al. From aluminum dissolution in supercapacitors to electroplating: A new way for Al thin film deposition? Adv Mater Interfaces [Internet]. 2023 Jul 4;10(20):2202470. Available from: <URL>.
  • 88. Dianatdar A, Mukherjee A, Bose RK. Oxidative chemical vapor deposition of polypyrrole onto carbon fabric for flexible supercapacitive electrode material. Synth Met [Internet]. 2023 Sep 1;298:117444. Available from: <URL>.
  • 89. Başlak C, Öztürk G, Demirel S, Kocyigit A, Doğu S, Yıldırım M. Green synthesis of carbon quantum dots from Sideritis vuralii and its application in supercapacitors. Inorg Chem Commun [Internet]. 2023 Jul;153:110845. Available from: <URL>.
  • 90. Zhu Y, Huang Z, Huang X, Li Y, Li H, Zhou B, et al. One-step hydrothermal synthesis of manganese oxide nanosheets with graphene quantum dots for high-performance supercapacitors. J Energy Storage [Internet]. 2023 Jun;62:106948. Available from: <URL>.
  • 91. Kim YK, Shin K-Y. Dopamine-assisted chemical vapour deposition of polypyrrole on graphene for flexible supercapacitor. Appl Surf Sci [Internet]. 2021 May;547:149141. Available from: <URL>.
  • 92. Maphiri VM, Bakhoum DT, Sarr S, Sylla NF, Rutavi G, Manyala N. Low temperature thermally reduced graphene oxide directly on Ni-Foam using atmospheric pressure-chemical vapour deposition for high performance supercapacitor application. J Energy Storage [Internet]. 2022 Aug;52(Part B):104967. Available from: <URL>.
  • 93. Ghodhbane M, Ashraf JM, Karam Z, Lonkar S, Alshaya A, Busà C. Cellulose nanofibers as a green binder for symmetric carbon nanotubes-based supercapacitors. Electrochim Acta [Internet]. 2023 Sep;461:142584. Available from: <URL>.
  • 94. Costa LH, Vicentini R, Almeida Silva T, Vilela Franco D, Morais Da Silva L, Zanin H. Identification and quantification of the distributed capacitance and ionic resistance in carbon-based supercapacitors using electrochemical techniques and the analysis of the charge-storage dynamics. J Electroanal Chem [Internet]. 2023 Jan;929:117140. Available from: <URL>.
  • 95. Pooladi M, Zerafat MM. Controlled micro/mesoporous carbon aerogel structure as a template for Bi2O3 nano-particles/rods to improve the performance of asymmetric supercapacitors. J Energy Storage [Internet]. 2021 Oct;42:102994. Available from: <URL>.
  • 96. Cheng Y, Xia K, Li H, Liu P, Zhao Z, Xu G, et al. One-pot synthesis of NiO-MnCo2O4 heterostructure hollow spheres via template-free solvothermal method for high-performance supercapacitors. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2023 Jul;669:131544. Available from: <URL>.
  • 97. Wu H, Yuan W, Yuan X, Cheng L. Atmosphere-free pyrolysis of harakeke fiber: A new chamber-induced activation methodology for porous carbon electrodes in supercapacitors. Energy Storage Mater [Internet]. 2022 Sep;50:514–24. Available from: <URL>.
  • 98. Yang W, Yang Z, Wang J, Lu W, Wang W. A bean catching double pigeons: Sonication assisted modification of Nb2C MXenes composites by O-doping porous biomass-carbons for supercapacitors and zinc-ion batteries. J Energy Storage [Internet]. 2023 Aug 15;65:107334. Available from: <URL>.
  • 99. Althubiti NA, Aman S, Taha TAM. Synthesis of MnFe2O4/MXene/NF nanosized composite for supercapacitor application. Ceram Int [Internet]. 2023 Aug 15;49(16):27496–505. Available from: <URL>.
  • 100. Ahankari S, Lasrado D, Subramaniam R. Advances in materials and fabrication of separators in supercapacitors. Mater Adv [Internet]. 2022;3(3):1472–96. Available from: <URL>.
  • 101. Yu H, Tang Q, Wu J, Lin Y, Fan L, Huang M, et al. Using eggshell membrane as a separator in supercapacitor. J Power Sources [Internet]. 2012 May;206:463–8. Available from: <URL>.
  • 102. Tan R, Wang A, Malpass-Evans R, Williams R, Zhao EW, Liu T, et al. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nat Mater [Internet]. 2020 Feb 2;19(2):195–202. Available from: <URL>.
  • 103. Abdel Maksoud MIA, Fahim RA, Shalan AE, Abd Elkodous M, Olojede SO, Osman AI, et al. Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environ Chem Lett [Internet]. 2021 Feb 28;19(1):375–439. Available from: <URL>.
  • 104. Abdelhamid ME, O’Mullane AP, Snook GA. Storing energy in plastics: A review on conducting polymers & their role in electrochemical energy storage. RSC Adv [Internet]. 2015;5(15):11611–26. Available from: <URL>.
  • 105. Su Y, Sawan M. Supercapacitors: Fabrication Challenges and Trends. In: Stevic Z, editor. Updates on Supercapacitors [Internet]. IntechOpen; 2023. Available from: <URL>.
There are 105 citations in total.

Details

Primary Language English
Subjects Physical Chemistry (Other)
Journal Section REVIEW ARTICLES
Authors

Emre Yılmazoğlu 0000-0002-5800-873X

Selcan Karakuş 0000-0002-8368-4609

Publication Date November 11, 2023
Submission Date June 27, 2023
Acceptance Date September 6, 2023
Published in Issue Year 2023 Volume: 10 Issue: 4

Cite

Vancouver Yılmazoğlu E, Karakuş S. Recent Developments in Nanostructured Materials for Supercapacitor Electrodes. JOTCSA. 2023;10(4):1107-22.