Research Article
BibTex RIS Cite

Modulation of Human Acetylthiocholine Esterase Activity by Novel Fused Pyrimidine Derivatives: In vitro, Theoretical and ADMET Studies

Year 2024, Volume: 11 Issue: 3, 1197 - 1210, 30.08.2024
https://doi.org/10.18596/jotcsa.1327285

Abstract

Pyrimidine compounds have medicinal and biological activities as previously reported. In this work, two novel fused pyrimidine compounds were synthesized, fused pyrazolo–pyrimidine compound was synthesized by cyclization of 5-amino-4-cyano-1-phenyl pyrazole with propionic acid in the presence of POCl3, and the other fused pyrrole–pyrano-pyrimidine compound was synthesized by cyclization of ethyl(E)-N-(3-cyano-4-(4-(dimethylamino)phenyl)-7-methyl-4,5,6,7-tetrahydropyrano[2,3-b] pyrrole-2-yl) formimidate with hydrazine hydrate, in methanol. These fused pyrimidine compounds were characterized by FT-IR and 1H NMR. The effect of these compounds was studied on the activity of the human neurotransmission enzyme acetylthiocholine esterase AChE. Results indicated that these compounds significantly inhibited AChE activity at concentrations of 10-11 M. Michalis-Menton showed mixed noncompetitive inhibition of AChE activity. In conclusion, newly synthesized compounds could be promising derivatives for enhancing cholinergic neurotransmission. Among the other derivatives, derivative 4 formed H-bond interactions with key amino acid residues Tyr334, and Asp72, whereas the other electrostatic interactions formed with Tyr334, Phe330, Ile287, Tyr121, Arg289, Trp279, Gly335, and Phe288. In the case of derivatives 9, similar binding interactions with active pockets of 2ACE were observed due to the high homology of the binding site residues. In addition, we examined ADMET properties with the help of online databases to search for possible drug similarity of synthesized compounds 4 and 9 and revealed that both molecules were compatible with Lipinski's five rules.

Thanks

This research was registered in the annual plan of the Department of Chemistry at Mustansiriyah University, on January 11, 2021. The authors thank Mustansiriyah University for supporting this research https://uomustansiriyah.edu.iq/. The authors are also grateful to Dr. Hamed Hashim for his useful decisions regarding FT-IR.

References

  • 1. Sher N, Alkhalifah DHM, Ahmed M, Mushtaq N, Shah F, Fozia F, et al. Comparative Study of Antimicrobial Activity of Silver, Gold, and Silver/Gold Bimetallic Nanoparticles Synthesized by Green Approach. Molecules [Internet]. 2022 Nov 15;27(22):7895. Available from: <URL>.
  • 2. Sher N, Ahmed M, Mushtaq N, Khan RA. Calligonum polygonoides reduced nanosilver: A new generation of nanoproduct for medical applications. Eur J Integr Med [Internet]. 2020 Jan 1;33:101042. Available from: <URL>.
  • 3. Hussein AM, Ahmed OM. Regioselective one-pot synthesis and anti-proliferative and apoptotic effects of some novel tetrazolo[1,5-a]pyrimidine derivatives. Bioorg Med Chem [Internet]. 2010 Apr;18(7):2639–44. Available from: <URL>.
  • 4. Khobragade CN, Bodade RG, Konda SG, Dawane BS, Manwar A V. Synthesis and antimicrobial activity of novel pyrazolo[3,4-d]pyrimidin derivatives. Eur J Med Chem [Internet]. 2010 Apr;45(4):1635–8. Available from: <URL>.
  • 5. Abd El-Latif NA, Amr AEGE, Ibrahiem AA. Synthesis, Reactions, and Pharmacological Screening of Heterocyclic Derivatives Using Nicotinic Acid as a Natural Synthon. Monatshefte für Chemie - Chem Mon [Internet]. 2007 Jun 12;138(6):559–67. Available from: <URL>.
  • 6. Prakash O, Kumar R, Kumar R, tyagi P, Kuhad RC. Organoiodine(III) mediated synthesis of 3,9-diaryl- and 3,9-difuryl-bis-1,2,4-triazolo[4,3-a][4,3-c]pyrimidines as antibacterial agents. Eur J Med Chem [Internet]. 2007 Jun;42(6):868–72. Available from: <URL>.
  • 7. Guetzoyan LJ, Spooner RA, Lord JM, Roberts LM, Clarkson GJ. Simple oxidation of pyrimidinylhydrazones to triazolopyrimidines and their inhibition of Shiga toxin trafficking. Eur J Med Chem [Internet]. 2010 Jan;45(1):275–83. Available from: <URL>.
  • 8. Chen Q, Zhu XL, Jiang LL, Liu ZM, Yang GF. Synthesis, antifungal activity and CoMFA analysis of novel 1,2,4-triazolo[1,5-a]pyrimidine derivatives. Eur J Med Chem [Internet]. 2008 Mar;43(3):595–603. Available from: <URL>.
  • 9. Mahmoud MR, El-Ziaty AK, Ismail MF, Shiba SA. Synthesis of novel pyrimidine and fused pyrimidine derivatives. Eur J Chem [Internet]. 2011 Sep 30;2(3):347–55. Available from: <URL>.
  • 10. Patil SB. Recent medicinal approaches of novel pyrimidine analogs: A review. Heliyon [Internet]. 2023 Jun 1;9(6):e16773. Available from: <URL>.
  • 11. Raghunath BT, Balasaheb PP, Satish MC, Pratiksha G, Vasant MP. Synthesis and Antimicrobial Activity of Benzo[H][1,6]Naphthyridine Derivatives. J Org Inorg Chem [Internet]. 2016;2(1):2. Available from: <URL>.
  • 12. Deady LW, Rodemann T, Zhuang L, Baguley BC, Denny WA. Synthesis and Cytotoxic Activity of Carboxamide Derivatives of Benzo[ b ][1,6]naphthyridines. J Med Chem [Internet]. 2003 Mar 1;46(6):1049–54. Available from: <URL>.
  • 13. Madaan A, Verma R, Kumar V, Singh AT, Jain SK, Jaggi M. 1,8‐Naphthyridine Derivatives: A Review of Multiple Biological Activities. Arch Pharm (Weinheim) [Internet]. 2015 Dec 9;348(12):837–60. Available from: <URL>.
  • 14. Al-Qaisi ZHJ, Al-Garawi ZS, Al-Karawi AJM, Hammood AJ, Abdallah AM, Clegg W, et al. Corrigendum to “Antiureolytic activity of new water-soluble thiadiazole derivatives: Spectroscopic, DFT, and molecular docking studies” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 272 (2022) 120971. Spectrochim Acta Part A Mol Biomol Spectrosc [Internet]. 2022 Jun;274:121102. Available from: <URL>.
  • 15. Vijesh AM, Isloor AM, Shetty P, Sundershan S, Fun HK. New pyrazole derivatives containing 1,2,4-triazoles and benzoxazoles as potent antimicrobial and analgesic agents. Eur J Med Chem [Internet]. 2013 Apr;62:410–5. Available from: <URL>.
  • 16. Aggarwal R, Kumar V, Gupta GK, Kumar V. Synthesis of some new 3,5-diamino-4-(4′-fluorophenylazo)-1-aryl/heteroarylpyrazoles as antimicrobial agents. Med Chem Res [Internet]. 2013 Aug 27;22(8):3566–73. Available from: <URL>.
  • 17. Vicentini CB, Romagnoli C, Andreotti E, Mares D. Synthetic Pyrazole Derivatives as Growth Inhibitors of Some Phytopathogenic Fungi. J Agric Food Chem [Internet]. 2007 Dec 1;55(25):10331–8. Available from: <URL>.
  • 18. Nabi Mohammed M, Ahmed Mutanabbi A, Mohammed HH. Synthesis, Antibacterial Evaluation and Docking Study of Some New Fused Pyrido-Pyrimidine and Naphthyridine Cycles. J Glob Pharma Technol. 2019;11(5).
  • 19. Al Nabi MHA, Mohammed HH, Abdellah AM, Mageed ZN, Salman GA. Synthesis and Biological Evaluation of Fused Pyrrolo-Pyrano-Pyrmidine and Pyrrolo-Pyrano-Pyridine Derivatives. J Pharm Sci Res [Internet]. 2019;11(4):1589–94. Available from: <URL>.
  • 20. Huber W. 2,4-Diamino-5-(4-methyl-5-β-hydroxyethylthiazolium chloride)-methylpyrimidine Hydrochloride, a New Analog of Thiamin. J Am Chem Soc [Internet]. 1943 Nov 1;65(11):2222–6. Available from: <URL>.
  • 21. Aggarwal R, Kumar V, Singh SP. Synthesis and NMR spectral studies of some new 1-heteroaryl-5-amino- 3-alkyl/aryl-4-cyanopyrazoles. Indian J Chem [Internet]. 2006 [cited 2024 Jul 4];45B:1426–30. Available from: <URL>.
  • 22. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol [Internet]. 1961 Jul 1;7(2):88–95. Available from: <URL>.
  • 23. Zaizafoon N. Kinetics for the Inhibition of Serum Acetylthiocholin Esterase Activity by Some Prepared Phenobarbital Derivatives. Int J Biochem Res Rev [Internet]. 2015 Jan 10;7(2):100–11. Available from: <URL>.
  • 24. Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem [Internet]. 2010 Jan 30;31(2):455–61. Available from: <URL>.
  • 25. BIOVIA. Dassault Systèmes, BIOVA Discovery Studio Visualizer 2021, v21.1.0.20298, San Diego: Dassault Systèmes. 2021.
  • 26. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev [Internet]. 2001 Mar;46(1–3):3–26. Available from: <URL>.
  • 27. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep [Internet]. 2017 Mar 3;7(1):42717. Available from: <URL>.
  • 28. Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res [Internet]. 2018 Jul 2;46(W1):W257–63. Available from: <URL>.
  • 29. Sander T. Molecular Properties Prediction - OSIRIS Property Explorer [Internet]. [cited 2022 Dec 30]. Available from: <URL>.
  • 30. Anderson JD, Cottam HB, Larson SB, Dee Nord L, Revankar GR, Robins RK. Synthesis of certain pyrazolo[3,4‐ d ]pyrimidin‐3‐one nucleosides. J Heterocycl Chem [Internet]. 1990 Feb 11;27(2):439–53. Available from: <URL>.
  • 31. Karoui A, Allouche F, Deghrigue M, Agrebi A, Bouraoui A, Chabchoub F. Synthesis and pharmacological evaluation of pyrazolopyrimidopyrimidine derivatives: anti-inflammatory agents with gastroprotective effect in rats. Med Chem Res [Internet]. 2014 Mar 4;23(3):1591–8. Available from: <URL>.
  • 32. Thakurathi N, Vincenzi B, Henderson DC. Assessing the prospect of donepezil in improving cognitive impairment in patients with schizophrenia. Expert Opin Investig Drugs [Internet]. 2013 Feb 9;22(2):259–65. Available from: <URL>.
  • 33. Brown SS, Kalow W, Pilz W, Whittaker M, Woronic CL. The Plasma Cholinesterases: A New Perspective. 1981;1–123. Available from: <URL>.
  • 34. Trujillo-Ferrara J, Montoya Cano L, Espinoza-Fonseca M. Synthesis, anticholinesterase activity and structure–Activity relationships of m-Aminobenzoic acid derivatives. Bioorg Med Chem Lett [Internet]. 2003 May;13(10):1825–7. Available from: <URL>.
  • 35. Zhi H, Chen L mei, Zhang L lin, Liu S jie, Chi Cheong Wan D, Lin H quan, et al. Design, synthesis, and biological evaluation of 5H-thiazolo[3,2-a]pyrimidine derivatives as a new type of acetylcholinesterase inhibitors. ARKIVOC [Internet]. 2008;266–77. Available from: <URL>.
  • 36. Gulcan HO, Unlu S, Esiringu İ, Ercetin T, Sahin Y, Oz D, et al. Design, synthesis and biological evaluation of novel 6H-benzo[c]chromen-6-one, and 7,8,9,10-tetrahydro-benzo[c]chromen-6-one derivatives as potential cholinesterase inhibitors. Bioorg Med Chem [Internet]. 2014 Oct;22(19):5141–54. Available from: <URL>.
  • 37. Elumalai K, Ali MA, Elumalai M, Eluri K, Srinivasan S. Acetylcholinesterase enzyme inhibitor activity of some novel pyrazinamide condensed 1,2,3,4-tetrahydropyrimidines. Biotechnol Reports [Internet]. 2015 Mar;5:1–6. Available from: <URL>.
  • 38. Dgachi Y, Bautista-Aguilera O, Benchekroun M, Martin H, Bonet A, Knez D, et al. Synthesis and Biological Evaluation of Benzochromenopyrimidinones as Cholinesterase Inhibitors and Potent Antioxidant, Non-Hepatotoxic Agents for Alzheimer’s Disease. Molecules [Internet]. 2016 May 14;21(5):634. Available from: <URL>.
  • 39. Romdhane A, Said A Ben, Cherif M, Jannet H Ben. Design, synthesis and anti-acetylcholinesterase evaluation of some new pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivatives. Med Chem Res [Internet]. 2016 Jul 18;25(7):1358–68. Available from: <URL>.
  • 40. Koti Reddy E, C. R, Sajith AM, K. V. D, C. S, Anwar S. Functionalised dihydroazo pyrimidine derivatives from Morita–Baylis–Hillman acetates: synthesis and studies against acetylcholinesterase as its inhibitors. RSC Adv [Internet]. 2016;6(81):77431–9. Available from: <URL>.
Year 2024, Volume: 11 Issue: 3, 1197 - 1210, 30.08.2024
https://doi.org/10.18596/jotcsa.1327285

Abstract

References

  • 1. Sher N, Alkhalifah DHM, Ahmed M, Mushtaq N, Shah F, Fozia F, et al. Comparative Study of Antimicrobial Activity of Silver, Gold, and Silver/Gold Bimetallic Nanoparticles Synthesized by Green Approach. Molecules [Internet]. 2022 Nov 15;27(22):7895. Available from: <URL>.
  • 2. Sher N, Ahmed M, Mushtaq N, Khan RA. Calligonum polygonoides reduced nanosilver: A new generation of nanoproduct for medical applications. Eur J Integr Med [Internet]. 2020 Jan 1;33:101042. Available from: <URL>.
  • 3. Hussein AM, Ahmed OM. Regioselective one-pot synthesis and anti-proliferative and apoptotic effects of some novel tetrazolo[1,5-a]pyrimidine derivatives. Bioorg Med Chem [Internet]. 2010 Apr;18(7):2639–44. Available from: <URL>.
  • 4. Khobragade CN, Bodade RG, Konda SG, Dawane BS, Manwar A V. Synthesis and antimicrobial activity of novel pyrazolo[3,4-d]pyrimidin derivatives. Eur J Med Chem [Internet]. 2010 Apr;45(4):1635–8. Available from: <URL>.
  • 5. Abd El-Latif NA, Amr AEGE, Ibrahiem AA. Synthesis, Reactions, and Pharmacological Screening of Heterocyclic Derivatives Using Nicotinic Acid as a Natural Synthon. Monatshefte für Chemie - Chem Mon [Internet]. 2007 Jun 12;138(6):559–67. Available from: <URL>.
  • 6. Prakash O, Kumar R, Kumar R, tyagi P, Kuhad RC. Organoiodine(III) mediated synthesis of 3,9-diaryl- and 3,9-difuryl-bis-1,2,4-triazolo[4,3-a][4,3-c]pyrimidines as antibacterial agents. Eur J Med Chem [Internet]. 2007 Jun;42(6):868–72. Available from: <URL>.
  • 7. Guetzoyan LJ, Spooner RA, Lord JM, Roberts LM, Clarkson GJ. Simple oxidation of pyrimidinylhydrazones to triazolopyrimidines and their inhibition of Shiga toxin trafficking. Eur J Med Chem [Internet]. 2010 Jan;45(1):275–83. Available from: <URL>.
  • 8. Chen Q, Zhu XL, Jiang LL, Liu ZM, Yang GF. Synthesis, antifungal activity and CoMFA analysis of novel 1,2,4-triazolo[1,5-a]pyrimidine derivatives. Eur J Med Chem [Internet]. 2008 Mar;43(3):595–603. Available from: <URL>.
  • 9. Mahmoud MR, El-Ziaty AK, Ismail MF, Shiba SA. Synthesis of novel pyrimidine and fused pyrimidine derivatives. Eur J Chem [Internet]. 2011 Sep 30;2(3):347–55. Available from: <URL>.
  • 10. Patil SB. Recent medicinal approaches of novel pyrimidine analogs: A review. Heliyon [Internet]. 2023 Jun 1;9(6):e16773. Available from: <URL>.
  • 11. Raghunath BT, Balasaheb PP, Satish MC, Pratiksha G, Vasant MP. Synthesis and Antimicrobial Activity of Benzo[H][1,6]Naphthyridine Derivatives. J Org Inorg Chem [Internet]. 2016;2(1):2. Available from: <URL>.
  • 12. Deady LW, Rodemann T, Zhuang L, Baguley BC, Denny WA. Synthesis and Cytotoxic Activity of Carboxamide Derivatives of Benzo[ b ][1,6]naphthyridines. J Med Chem [Internet]. 2003 Mar 1;46(6):1049–54. Available from: <URL>.
  • 13. Madaan A, Verma R, Kumar V, Singh AT, Jain SK, Jaggi M. 1,8‐Naphthyridine Derivatives: A Review of Multiple Biological Activities. Arch Pharm (Weinheim) [Internet]. 2015 Dec 9;348(12):837–60. Available from: <URL>.
  • 14. Al-Qaisi ZHJ, Al-Garawi ZS, Al-Karawi AJM, Hammood AJ, Abdallah AM, Clegg W, et al. Corrigendum to “Antiureolytic activity of new water-soluble thiadiazole derivatives: Spectroscopic, DFT, and molecular docking studies” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 272 (2022) 120971. Spectrochim Acta Part A Mol Biomol Spectrosc [Internet]. 2022 Jun;274:121102. Available from: <URL>.
  • 15. Vijesh AM, Isloor AM, Shetty P, Sundershan S, Fun HK. New pyrazole derivatives containing 1,2,4-triazoles and benzoxazoles as potent antimicrobial and analgesic agents. Eur J Med Chem [Internet]. 2013 Apr;62:410–5. Available from: <URL>.
  • 16. Aggarwal R, Kumar V, Gupta GK, Kumar V. Synthesis of some new 3,5-diamino-4-(4′-fluorophenylazo)-1-aryl/heteroarylpyrazoles as antimicrobial agents. Med Chem Res [Internet]. 2013 Aug 27;22(8):3566–73. Available from: <URL>.
  • 17. Vicentini CB, Romagnoli C, Andreotti E, Mares D. Synthetic Pyrazole Derivatives as Growth Inhibitors of Some Phytopathogenic Fungi. J Agric Food Chem [Internet]. 2007 Dec 1;55(25):10331–8. Available from: <URL>.
  • 18. Nabi Mohammed M, Ahmed Mutanabbi A, Mohammed HH. Synthesis, Antibacterial Evaluation and Docking Study of Some New Fused Pyrido-Pyrimidine and Naphthyridine Cycles. J Glob Pharma Technol. 2019;11(5).
  • 19. Al Nabi MHA, Mohammed HH, Abdellah AM, Mageed ZN, Salman GA. Synthesis and Biological Evaluation of Fused Pyrrolo-Pyrano-Pyrmidine and Pyrrolo-Pyrano-Pyridine Derivatives. J Pharm Sci Res [Internet]. 2019;11(4):1589–94. Available from: <URL>.
  • 20. Huber W. 2,4-Diamino-5-(4-methyl-5-β-hydroxyethylthiazolium chloride)-methylpyrimidine Hydrochloride, a New Analog of Thiamin. J Am Chem Soc [Internet]. 1943 Nov 1;65(11):2222–6. Available from: <URL>.
  • 21. Aggarwal R, Kumar V, Singh SP. Synthesis and NMR spectral studies of some new 1-heteroaryl-5-amino- 3-alkyl/aryl-4-cyanopyrazoles. Indian J Chem [Internet]. 2006 [cited 2024 Jul 4];45B:1426–30. Available from: <URL>.
  • 22. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol [Internet]. 1961 Jul 1;7(2):88–95. Available from: <URL>.
  • 23. Zaizafoon N. Kinetics for the Inhibition of Serum Acetylthiocholin Esterase Activity by Some Prepared Phenobarbital Derivatives. Int J Biochem Res Rev [Internet]. 2015 Jan 10;7(2):100–11. Available from: <URL>.
  • 24. Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem [Internet]. 2010 Jan 30;31(2):455–61. Available from: <URL>.
  • 25. BIOVIA. Dassault Systèmes, BIOVA Discovery Studio Visualizer 2021, v21.1.0.20298, San Diego: Dassault Systèmes. 2021.
  • 26. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev [Internet]. 2001 Mar;46(1–3):3–26. Available from: <URL>.
  • 27. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep [Internet]. 2017 Mar 3;7(1):42717. Available from: <URL>.
  • 28. Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res [Internet]. 2018 Jul 2;46(W1):W257–63. Available from: <URL>.
  • 29. Sander T. Molecular Properties Prediction - OSIRIS Property Explorer [Internet]. [cited 2022 Dec 30]. Available from: <URL>.
  • 30. Anderson JD, Cottam HB, Larson SB, Dee Nord L, Revankar GR, Robins RK. Synthesis of certain pyrazolo[3,4‐ d ]pyrimidin‐3‐one nucleosides. J Heterocycl Chem [Internet]. 1990 Feb 11;27(2):439–53. Available from: <URL>.
  • 31. Karoui A, Allouche F, Deghrigue M, Agrebi A, Bouraoui A, Chabchoub F. Synthesis and pharmacological evaluation of pyrazolopyrimidopyrimidine derivatives: anti-inflammatory agents with gastroprotective effect in rats. Med Chem Res [Internet]. 2014 Mar 4;23(3):1591–8. Available from: <URL>.
  • 32. Thakurathi N, Vincenzi B, Henderson DC. Assessing the prospect of donepezil in improving cognitive impairment in patients with schizophrenia. Expert Opin Investig Drugs [Internet]. 2013 Feb 9;22(2):259–65. Available from: <URL>.
  • 33. Brown SS, Kalow W, Pilz W, Whittaker M, Woronic CL. The Plasma Cholinesterases: A New Perspective. 1981;1–123. Available from: <URL>.
  • 34. Trujillo-Ferrara J, Montoya Cano L, Espinoza-Fonseca M. Synthesis, anticholinesterase activity and structure–Activity relationships of m-Aminobenzoic acid derivatives. Bioorg Med Chem Lett [Internet]. 2003 May;13(10):1825–7. Available from: <URL>.
  • 35. Zhi H, Chen L mei, Zhang L lin, Liu S jie, Chi Cheong Wan D, Lin H quan, et al. Design, synthesis, and biological evaluation of 5H-thiazolo[3,2-a]pyrimidine derivatives as a new type of acetylcholinesterase inhibitors. ARKIVOC [Internet]. 2008;266–77. Available from: <URL>.
  • 36. Gulcan HO, Unlu S, Esiringu İ, Ercetin T, Sahin Y, Oz D, et al. Design, synthesis and biological evaluation of novel 6H-benzo[c]chromen-6-one, and 7,8,9,10-tetrahydro-benzo[c]chromen-6-one derivatives as potential cholinesterase inhibitors. Bioorg Med Chem [Internet]. 2014 Oct;22(19):5141–54. Available from: <URL>.
  • 37. Elumalai K, Ali MA, Elumalai M, Eluri K, Srinivasan S. Acetylcholinesterase enzyme inhibitor activity of some novel pyrazinamide condensed 1,2,3,4-tetrahydropyrimidines. Biotechnol Reports [Internet]. 2015 Mar;5:1–6. Available from: <URL>.
  • 38. Dgachi Y, Bautista-Aguilera O, Benchekroun M, Martin H, Bonet A, Knez D, et al. Synthesis and Biological Evaluation of Benzochromenopyrimidinones as Cholinesterase Inhibitors and Potent Antioxidant, Non-Hepatotoxic Agents for Alzheimer’s Disease. Molecules [Internet]. 2016 May 14;21(5):634. Available from: <URL>.
  • 39. Romdhane A, Said A Ben, Cherif M, Jannet H Ben. Design, synthesis and anti-acetylcholinesterase evaluation of some new pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivatives. Med Chem Res [Internet]. 2016 Jul 18;25(7):1358–68. Available from: <URL>.
  • 40. Koti Reddy E, C. R, Sajith AM, K. V. D, C. S, Anwar S. Functionalised dihydroazo pyrimidine derivatives from Morita–Baylis–Hillman acetates: synthesis and studies against acetylcholinesterase as its inhibitors. RSC Adv [Internet]. 2016;6(81):77431–9. Available from: <URL>.
There are 40 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section RESEARCH ARTICLES
Authors

Zaizafoon Nasif 0000-0002-1758-7851

Zahraa Salim Al-garawi 0000-0003-3816-2876

Füreya Elif Öztürkkan 0000-0001-6376-4161

Early Pub Date July 16, 2024
Publication Date August 30, 2024
Submission Date July 15, 2023
Acceptance Date June 27, 2024
Published in Issue Year 2024 Volume: 11 Issue: 3

Cite

Vancouver Nasif Z, Al-garawi ZS, Öztürkkan FE. Modulation of Human Acetylthiocholine Esterase Activity by Novel Fused Pyrimidine Derivatives: In vitro, Theoretical and ADMET Studies. JOTCSA. 2024;11(3):1197-210.