Research Article
BibTex RIS Cite

Assessment of Biochemical Changes of Four Aspergillus Species Grown on the Medium from Agricultural Wastes

Year 2024, Volume: 11 Issue: 3, 1287 - 1296, 30.08.2024
https://doi.org/10.18596/jotcsa.1378393

Abstract

Hazardous disposal of agricultural wastes (AW) has adverse environmental consequences, including water and air pollution and the potential for disease outbreaks. On the other hand, the utilization of AW represents a missed opportunity to harness a valuable economic resource. This study was conducted with the objective of utilizing a composite medium comprising agricultural waste to cultivate Aspergillus species and assessing its impact on the species' internal chemical composition compared to malt extract media (ME). Our findings demonstrate that the agricultural waste-based medium is abundant in essential nutrients, including soluble proteins and sugars, and is also enriched with a variety of secondary metabolites. Consequently, this Change in the growth medium induces changes in the physical characteristics of fungal biomass, such as color and texture, along with a high content of biomass proteins and secondary metabolites, including phenols, flavonoids, carotenoids, and antioxidants. The A. avenaceous gave the highest biomass (1.1412 ± 0.4 g), while the A. niger gave the highest value of proteins (16.06 ± 0.4 mg/g), phenols (33.37 ± 0.8 mg/g), flavonoids (4.84 ± 0.4 mg/g), carotenoids (1.131 ± 0.09 mg/g). A. carbonarius gave the highest value of antioxidants (IC50 = 0.28 ± 0.06 mg/mL). In contrast, using malt extract as a growth medium results in high carbohydrate and lipid production; A. flavus showed the highest value for fats (56.6 ± 0.9 mg/g), whereas A. carbonarius showed the highest value for sugars (167.1 ± 6.2 mg/g). Additionally, the malt extract medium contributed to low levels of secondary metabolites, which was offset by an increase in the protein bands of the fungal species. This research recommends the use of agricultural wastes to grow fungi species as an environmentally and economically important microbiological application.

Supporting Institution

Damascus university

References

  • 1. Loehr RC. Agricultural waste management: problems, processes, and approaches. London: Academic Press Inc.; 2012.
  • 2. Poltronieri P, D’Urso OF. Biotransformation of Agricultural Waste and By-Products [Internet]. Amsterdam, Netherlands: Elsevier; 2016. Available from: <URL>.
  • 3. Hussain CM, Hait S. Advanced Organic Waste Management: Sustainable Practices and Approaches [Internet]. Amsterdam, Netherlands: Elsevier; Available from: <URL>.
  • 4. Ali Nizam A, Ayed H. Efficiency of Actinobacteria Isolated from Quateena and Roman bridge Lakes in Growth in media polluted by OMWW and crude oil. Tishreen Univ Journal-Biological Sci Ser [Internet]. 2016;38(3):195–209. Available from: <URL>.
  • 5. Rathour RK, Sharma D, Sharma N, Bhatt AK, Singh SP. Engineered microorganisms for bioremediation Current Developments in Biotechnology and Bioengineering. Amsterdam, Netherlands: Elsevier; 2022.
  • 6. Cohen R, Hadar Y. The roles of fungi in agricultural waste conversion. In: Fungi in Bioremediation [Internet]. Cambridge University Press; 2001. p. 305–34. Available from: <URL>.
  • 7. Smith JE. Aspergillus [Internet]. New York: Springer; 1994. Available from: <URL>.
  • 8. Vadlapudi V, Borah N, Yellusani KR, Gade S, Reddy P, Rajamanikyam M, et al. Aspergillus Secondary Metabolite Database, a resource to understand the Secondary metabolome of Aspergillus genus. Sci Rep [Internet]. 2017 Aug 4;7(1):7325. Available from: <URL>.
  • 9. Cary JW, Gilbert MK, Lebar MD, Majumdar R, Calvo AM. Aspergillus flavus Secondary Metabolites: More than Just Aflatoxins. Food Saf [Internet]. 2018;6(1):7–32. Available from: <URL>.
  • 10. Christabel O, Dorcas E, Elizabeth U. Suitability of food crop wastes in the formulation of laboratory media used for the cultivation of soil fungi. Int J Food Sci Microbiol. 2016;4(3):137–41.
  • 11. de Oliveira RL, da Silva SP, Converti A, Porto TS. Production, Biochemical Characterization, and Kinetic/Thermodynamic Study of Inulinase from Aspergillus terreus URM4658. Molecules [Internet]. 2022 Sep 28;27(19):6418. Available from: <URL>.
  • 12. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric Method for Determination of Sugars and Related Substances. Anal Chem [Internet]. 1956 Mar 1;28(3):350–6. Available from: <URL>.
  • 13. Yadav M, Yadav A, Yadav JP. In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam. Asian Pac J Trop Med [Internet]. 2014 Sep;7:S256–61. Available from: <URL>.
  • 14. Rhoades JD. Soluble Salts. In 1982. p. 167–79. Available from: <URL>.
  • 15. Samson RA, Pitt JI. Integration of Modern Taxonomic Methods For Penicillium and Aspergillus Classification [Internet]. Samson RA, Pitt JI, editors. London: CRC Press; 2003. Available from: <URL>.
  • 16. Samson RA, Varga J, Frisvad JC. Taxonomic studies on the genus Aspergillus. Stud Mycol [Internet]. 2011 Jun;69(1). Available from: <URL>.
  • 17. Atallah OO, Mazrou YSA, Atia MM, Nehela Y, Abdelrhim AS, Nader MM. Polyphasic Characterization of Four Aspergillus Species as Potential Biocontrol Agents for White Mold Disease of Bean. J Fungi [Internet]. 2022 Jun 12;8(6):626. Available from: <URL>.
  • 18. Rodrigues JC, Lima da Silva W, Ribeiro da Silva D, Maia CR, Santos Goiabeira CV, Figueiredo Chagas HD, et al. Antimicrobial Activity of Aspergillus sp. from the Amazon Biome: Isolation of Kojic Acid. Comi G, editor. Int J Microbiol [Internet]. 2022 May 17;2022:4010018. Available from: <URL>.
  • 19. Pinheiro EAA, Carvalho JM, dos Santos DCP, Feitosa A de O, Marinho PSB, Guilhon GMSP, et al. Antibacterial activity of alkaloids produced by endophytic fungus Aspergillus sp. EJC08 isolated from medical plant Bauhinia guianensis. Nat Prod Res [Internet]. 2013 Sep;27(18):1633–8. Available from: <URL>.
  • 20. Almanaa TN, Rabie G, El-Mekkawy RM, Yassin MA, Saleh N, EL-Gazzar N. Antioxidant, antimicrobial and antiproliferative activities of fungal metabolite produced by Aspergillus flavus on in vitro study. Food Sci Technol [Internet]. 2022;42:e01421. Available from: <URL>.
  • 21. Wellburn AR. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J Plant Physiol [Internet]. 1994 Sep;144(3):307–13. Available from: <URL>.
  • 22. Cui Y, Li J, Deng D, Lu H, Tian Z, Liu Z, et al. Solid-state fermentation by Aspergillus niger and Trichoderma koningii improves the quality of tea dregs for use as feed additives. Šiler BT, editor. PLoS One [Internet]. 2021 Nov 12;16(11):e0260045. Available from: <URL>.
  • 23. Jacobs DI, Olsthoorn MMA, Maillet I, Akeroyd M, Breestraat S, Donkers S, et al. Effective lead selection for improved protein production in Aspergillus niger based on integrated genomics. Fungal Genet Biol [Internet]. 2009 Mar;46(1):S141–52. Available from: <URL>.
  • 24. Azar S, Leila S, Alireza K, Mansour B, Amir B. Determining Protein Patterns for Three Fungus Species Aspergillus fumigatus, Asp. Flavus and Asp. Niger, Obtained from Outdoor Air in Iran. Glob Vet [Internet]. 2010;4(2):130–4. Available from: <URL>.
  • 25. Halim R, Gladman B, Danquah MK, Webley PA. Oil extraction from microalgae for biodiesel production. Bioresour Technol [Internet]. 2011 Jan;102(1):178–85. Available from: <URL>.
  • 26. Abdullah N, Chin NL, Mokhtar MN, Taip FS. Effects of bulking agents, load size or starter cultures in kitchen-waste composting. Int J Recycl Org Waste Agric [Internet]. 2013 Dec 17;2(1):3. Available from: <URL>.
  • 27. Christensen M. A Synoptic Key and Evaluation of Species in the Aspergillus Flavus Group. Mycologia [Internet]. 1981 Nov 12;73(6):1056–84. Available from: <URL>.
  • 28. Meeuwse P, Tramper J, Rinzema A. Modeling lipid accumulation in oleaginous fungi in chemostat cultures: I. Development and validation of a chemostat model for Umbelopsis isabellina. Bioprocess Biosyst Eng [Internet]. 2011 Oct 3;34(8):939–49. Available from: <URL>.
  • 29. Trevithick JR, Metzenberg RL. Genetic Alteration of Pore Size and Other Properties of the Neurospora Cell Wall. J Bacteriol [Internet]. 1966 Oct;92(4):1016–20. Available from: <URL>.
  • 30. Shu CH. Fungal Fermentation for Medicinal Products. In: Bioprocessing for Value-Added Products from Renewable Resources [Internet]. Elsevier; 2007. p. 447–63. Available from: <URL>.
  • 31. Afroz Toma M, Rahman MH, Rahman MS, Arif M, Nazir KHMNH, Dufossé L. Fungal Pigments: Carotenoids, Riboflavin, and Polyketides with Diverse Applications. J Fungi [Internet]. 2023 Apr 7;9(4):454. Available from: <URL>.
  • 32. Tereshina VM, Kovtunenko A V., Memorskaya AS, Feofilova EP. Effect of Carbohydrate Composition of the Cytosol of Aspergillus niger Conidia on Their Viability During Storage. Appl Biochem Microbiol [Internet]. 2004 Sep;40(5):454–9. Available from: <URL>.
  • 33. Nemec T, Jernejc K, Cimerman A. Sterols and fatty acids of different Aspergillus species. FEMS Microbiol Lett [Internet]. 2006 Jan 17;149(2):201–5. Available from: <URL>.
  • 34. Ianutsevich EA, Danilova OA, Groza N V., Tereshina VM. Membrane lipids and cytosol carbohydrates in Aspergillus niger under osmotic, oxidative, and cold impact. Microbiology [Internet]. 2016 May 16;85(3):302–10. Available from: <URL>.
  • 35. Kim Y, Nandakumar MP, Marten MR. Proteome map of Aspergillus nidulans during osmoadaptation. Fungal Genet Biol [Internet]. 2007 Sep;44(9):886–95. Available from: <URL>.
  • 36. Anupama, Ravindra P. Studies on production of single cell protein by Aspergillus niger in solid state fermentation of rice bran. Brazilian Arch Biol Technol [Internet]. 2001 Mar;44(1):79–88. Available from: <URL>.
  • 37. Saleh A, Elrefaie H, Hashem A, EL-Menoufy H, Mansour N, El-Beih A. Chemical Investigations and Optimization Studies on Aspergillus terreus-18 Showing Antioxidant Activity. Egypt J Chem [Internet]. 2018 Sep 28;62(2):215–30. Available from: <URL>.
  • 38. Tawfik E, Alqurashi M, Aloufi S, Alyamani A, Baz L, Fayad E. Characterization of Mutant Aspergillus niger and the Impact on Certain Plants. Sustainability [Internet]. 2022 Feb 8;14(3):1936. Available from: <URL>.
  • 39. Sanjay KR, Kumaresan N, Manohar B, Kumar SU, Vijayalakshmi G. Optimization of Carotenoid Production by Aspergillus Carbonarius in Submerged Fermentation Using a Response Surface Methodology. Int J Food Eng [Internet]. 2007 Nov 3;3(5). Available from: <URL>.
  • 40. Arora DS, Chandra P. Assay of antioxidant potential of two Aspergillus isolates by different methods under various physio-chemical conditions. Brazilian J Microbiol [Internet]. 2010 Oct;41(3):765–77. Available from: <URL>.
  • 41. Kniemeyer O, Lessing F, Brakhage AA. Proteome analysis for pathogenicity and new diagnostic markers for Aspergillus fumigatus. Med Mycol [Internet]. 2009 Jan;47(s1):S248–54. Available from: <URL>.
  • 42. Miskei M, Karányi Z, Pócsi I. Annotation of stress–response proteins in the aspergilli. Fungal Genet Biol [Internet]. 2009 Mar;46(1):S105–20. Available from: <URL>.
  • 43. Fountain JC, Bajaj P, Nayak SN, Yang L, Pandey MK, Kumar V, et al. Responses of Aspergillus flavus to Oxidative Stress Are Related to Fungal Development Regulator, Antioxidant Enzyme, and Secondary Metabolite Biosynthetic Gene Expression. Front Microbiol [Internet]. 2016 Dec 21;7:2048. Available from: <URL>.
Year 2024, Volume: 11 Issue: 3, 1287 - 1296, 30.08.2024
https://doi.org/10.18596/jotcsa.1378393

Abstract

References

  • 1. Loehr RC. Agricultural waste management: problems, processes, and approaches. London: Academic Press Inc.; 2012.
  • 2. Poltronieri P, D’Urso OF. Biotransformation of Agricultural Waste and By-Products [Internet]. Amsterdam, Netherlands: Elsevier; 2016. Available from: <URL>.
  • 3. Hussain CM, Hait S. Advanced Organic Waste Management: Sustainable Practices and Approaches [Internet]. Amsterdam, Netherlands: Elsevier; Available from: <URL>.
  • 4. Ali Nizam A, Ayed H. Efficiency of Actinobacteria Isolated from Quateena and Roman bridge Lakes in Growth in media polluted by OMWW and crude oil. Tishreen Univ Journal-Biological Sci Ser [Internet]. 2016;38(3):195–209. Available from: <URL>.
  • 5. Rathour RK, Sharma D, Sharma N, Bhatt AK, Singh SP. Engineered microorganisms for bioremediation Current Developments in Biotechnology and Bioengineering. Amsterdam, Netherlands: Elsevier; 2022.
  • 6. Cohen R, Hadar Y. The roles of fungi in agricultural waste conversion. In: Fungi in Bioremediation [Internet]. Cambridge University Press; 2001. p. 305–34. Available from: <URL>.
  • 7. Smith JE. Aspergillus [Internet]. New York: Springer; 1994. Available from: <URL>.
  • 8. Vadlapudi V, Borah N, Yellusani KR, Gade S, Reddy P, Rajamanikyam M, et al. Aspergillus Secondary Metabolite Database, a resource to understand the Secondary metabolome of Aspergillus genus. Sci Rep [Internet]. 2017 Aug 4;7(1):7325. Available from: <URL>.
  • 9. Cary JW, Gilbert MK, Lebar MD, Majumdar R, Calvo AM. Aspergillus flavus Secondary Metabolites: More than Just Aflatoxins. Food Saf [Internet]. 2018;6(1):7–32. Available from: <URL>.
  • 10. Christabel O, Dorcas E, Elizabeth U. Suitability of food crop wastes in the formulation of laboratory media used for the cultivation of soil fungi. Int J Food Sci Microbiol. 2016;4(3):137–41.
  • 11. de Oliveira RL, da Silva SP, Converti A, Porto TS. Production, Biochemical Characterization, and Kinetic/Thermodynamic Study of Inulinase from Aspergillus terreus URM4658. Molecules [Internet]. 2022 Sep 28;27(19):6418. Available from: <URL>.
  • 12. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric Method for Determination of Sugars and Related Substances. Anal Chem [Internet]. 1956 Mar 1;28(3):350–6. Available from: <URL>.
  • 13. Yadav M, Yadav A, Yadav JP. In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam. Asian Pac J Trop Med [Internet]. 2014 Sep;7:S256–61. Available from: <URL>.
  • 14. Rhoades JD. Soluble Salts. In 1982. p. 167–79. Available from: <URL>.
  • 15. Samson RA, Pitt JI. Integration of Modern Taxonomic Methods For Penicillium and Aspergillus Classification [Internet]. Samson RA, Pitt JI, editors. London: CRC Press; 2003. Available from: <URL>.
  • 16. Samson RA, Varga J, Frisvad JC. Taxonomic studies on the genus Aspergillus. Stud Mycol [Internet]. 2011 Jun;69(1). Available from: <URL>.
  • 17. Atallah OO, Mazrou YSA, Atia MM, Nehela Y, Abdelrhim AS, Nader MM. Polyphasic Characterization of Four Aspergillus Species as Potential Biocontrol Agents for White Mold Disease of Bean. J Fungi [Internet]. 2022 Jun 12;8(6):626. Available from: <URL>.
  • 18. Rodrigues JC, Lima da Silva W, Ribeiro da Silva D, Maia CR, Santos Goiabeira CV, Figueiredo Chagas HD, et al. Antimicrobial Activity of Aspergillus sp. from the Amazon Biome: Isolation of Kojic Acid. Comi G, editor. Int J Microbiol [Internet]. 2022 May 17;2022:4010018. Available from: <URL>.
  • 19. Pinheiro EAA, Carvalho JM, dos Santos DCP, Feitosa A de O, Marinho PSB, Guilhon GMSP, et al. Antibacterial activity of alkaloids produced by endophytic fungus Aspergillus sp. EJC08 isolated from medical plant Bauhinia guianensis. Nat Prod Res [Internet]. 2013 Sep;27(18):1633–8. Available from: <URL>.
  • 20. Almanaa TN, Rabie G, El-Mekkawy RM, Yassin MA, Saleh N, EL-Gazzar N. Antioxidant, antimicrobial and antiproliferative activities of fungal metabolite produced by Aspergillus flavus on in vitro study. Food Sci Technol [Internet]. 2022;42:e01421. Available from: <URL>.
  • 21. Wellburn AR. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J Plant Physiol [Internet]. 1994 Sep;144(3):307–13. Available from: <URL>.
  • 22. Cui Y, Li J, Deng D, Lu H, Tian Z, Liu Z, et al. Solid-state fermentation by Aspergillus niger and Trichoderma koningii improves the quality of tea dregs for use as feed additives. Šiler BT, editor. PLoS One [Internet]. 2021 Nov 12;16(11):e0260045. Available from: <URL>.
  • 23. Jacobs DI, Olsthoorn MMA, Maillet I, Akeroyd M, Breestraat S, Donkers S, et al. Effective lead selection for improved protein production in Aspergillus niger based on integrated genomics. Fungal Genet Biol [Internet]. 2009 Mar;46(1):S141–52. Available from: <URL>.
  • 24. Azar S, Leila S, Alireza K, Mansour B, Amir B. Determining Protein Patterns for Three Fungus Species Aspergillus fumigatus, Asp. Flavus and Asp. Niger, Obtained from Outdoor Air in Iran. Glob Vet [Internet]. 2010;4(2):130–4. Available from: <URL>.
  • 25. Halim R, Gladman B, Danquah MK, Webley PA. Oil extraction from microalgae for biodiesel production. Bioresour Technol [Internet]. 2011 Jan;102(1):178–85. Available from: <URL>.
  • 26. Abdullah N, Chin NL, Mokhtar MN, Taip FS. Effects of bulking agents, load size or starter cultures in kitchen-waste composting. Int J Recycl Org Waste Agric [Internet]. 2013 Dec 17;2(1):3. Available from: <URL>.
  • 27. Christensen M. A Synoptic Key and Evaluation of Species in the Aspergillus Flavus Group. Mycologia [Internet]. 1981 Nov 12;73(6):1056–84. Available from: <URL>.
  • 28. Meeuwse P, Tramper J, Rinzema A. Modeling lipid accumulation in oleaginous fungi in chemostat cultures: I. Development and validation of a chemostat model for Umbelopsis isabellina. Bioprocess Biosyst Eng [Internet]. 2011 Oct 3;34(8):939–49. Available from: <URL>.
  • 29. Trevithick JR, Metzenberg RL. Genetic Alteration of Pore Size and Other Properties of the Neurospora Cell Wall. J Bacteriol [Internet]. 1966 Oct;92(4):1016–20. Available from: <URL>.
  • 30. Shu CH. Fungal Fermentation for Medicinal Products. In: Bioprocessing for Value-Added Products from Renewable Resources [Internet]. Elsevier; 2007. p. 447–63. Available from: <URL>.
  • 31. Afroz Toma M, Rahman MH, Rahman MS, Arif M, Nazir KHMNH, Dufossé L. Fungal Pigments: Carotenoids, Riboflavin, and Polyketides with Diverse Applications. J Fungi [Internet]. 2023 Apr 7;9(4):454. Available from: <URL>.
  • 32. Tereshina VM, Kovtunenko A V., Memorskaya AS, Feofilova EP. Effect of Carbohydrate Composition of the Cytosol of Aspergillus niger Conidia on Their Viability During Storage. Appl Biochem Microbiol [Internet]. 2004 Sep;40(5):454–9. Available from: <URL>.
  • 33. Nemec T, Jernejc K, Cimerman A. Sterols and fatty acids of different Aspergillus species. FEMS Microbiol Lett [Internet]. 2006 Jan 17;149(2):201–5. Available from: <URL>.
  • 34. Ianutsevich EA, Danilova OA, Groza N V., Tereshina VM. Membrane lipids and cytosol carbohydrates in Aspergillus niger under osmotic, oxidative, and cold impact. Microbiology [Internet]. 2016 May 16;85(3):302–10. Available from: <URL>.
  • 35. Kim Y, Nandakumar MP, Marten MR. Proteome map of Aspergillus nidulans during osmoadaptation. Fungal Genet Biol [Internet]. 2007 Sep;44(9):886–95. Available from: <URL>.
  • 36. Anupama, Ravindra P. Studies on production of single cell protein by Aspergillus niger in solid state fermentation of rice bran. Brazilian Arch Biol Technol [Internet]. 2001 Mar;44(1):79–88. Available from: <URL>.
  • 37. Saleh A, Elrefaie H, Hashem A, EL-Menoufy H, Mansour N, El-Beih A. Chemical Investigations and Optimization Studies on Aspergillus terreus-18 Showing Antioxidant Activity. Egypt J Chem [Internet]. 2018 Sep 28;62(2):215–30. Available from: <URL>.
  • 38. Tawfik E, Alqurashi M, Aloufi S, Alyamani A, Baz L, Fayad E. Characterization of Mutant Aspergillus niger and the Impact on Certain Plants. Sustainability [Internet]. 2022 Feb 8;14(3):1936. Available from: <URL>.
  • 39. Sanjay KR, Kumaresan N, Manohar B, Kumar SU, Vijayalakshmi G. Optimization of Carotenoid Production by Aspergillus Carbonarius in Submerged Fermentation Using a Response Surface Methodology. Int J Food Eng [Internet]. 2007 Nov 3;3(5). Available from: <URL>.
  • 40. Arora DS, Chandra P. Assay of antioxidant potential of two Aspergillus isolates by different methods under various physio-chemical conditions. Brazilian J Microbiol [Internet]. 2010 Oct;41(3):765–77. Available from: <URL>.
  • 41. Kniemeyer O, Lessing F, Brakhage AA. Proteome analysis for pathogenicity and new diagnostic markers for Aspergillus fumigatus. Med Mycol [Internet]. 2009 Jan;47(s1):S248–54. Available from: <URL>.
  • 42. Miskei M, Karányi Z, Pócsi I. Annotation of stress–response proteins in the aspergilli. Fungal Genet Biol [Internet]. 2009 Mar;46(1):S105–20. Available from: <URL>.
  • 43. Fountain JC, Bajaj P, Nayak SN, Yang L, Pandey MK, Kumar V, et al. Responses of Aspergillus flavus to Oxidative Stress Are Related to Fungal Development Regulator, Antioxidant Enzyme, and Secondary Metabolite Biosynthetic Gene Expression. Front Microbiol [Internet]. 2016 Dec 21;7:2048. Available from: <URL>.
There are 43 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other), Bioassays
Journal Section RESEARCH ARTICLES
Authors

Nadia Khuder 0009-0003-7807-8043

Adnan Ali Nizam 0000-0002-4866-8363

Early Pub Date August 4, 2024
Publication Date August 30, 2024
Submission Date October 19, 2023
Acceptance Date June 5, 2024
Published in Issue Year 2024 Volume: 11 Issue: 3

Cite

Vancouver Khuder N, Ali Nizam A. Assessment of Biochemical Changes of Four Aspergillus Species Grown on the Medium from Agricultural Wastes. JOTCSA. 2024;11(3):1287-96.