Research Article
BibTex RIS Cite
Year 2024, Volume: 11 Issue: 4, 1535 - 1544
https://doi.org/10.18596/jotcsa.1492945

Abstract

References

  • 1. Yang SF, Hoffman NE. Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol [Internet]. 1984 Jun;35(1):155–89. Available from: <URL>.
  • 2. Zimmermann H, Walzl R. Ethylene. In: Ullmann’s Encyclopedia of Industrial Chemistry [Internet]. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2000. Available from: <URL>.
  • 3. Dias C, Ribeiro T, Rodrigues AC, Ferrante A, Vasconcelos MW, Pintado M. Improving the ripening process after 1-MCP application: Implications and strategies. Trends Food Sci Technol [Internet]. 2021 Jul;113:382–96. Available from: <URL>.
  • 4. Magid RM, Clarke TC, Duncan CD. Efficient and convenient synthesis of 1-methylcyclopropene. J Org Chem [Internet]. 1971 May 1;36(9):1320–1. Available from: <URL>.
  • 5. Blankenship SM, Dole JM. 1-Methylcyclopropene: A review. Postharvest Biol Technol [Internet]. 2003 Apr 1;28(1):1–25. Available from: <URL>.
  • 6. Sisler EC, Serek M. Inhibitors of ethylene responses in plants at the receptor level: Recent developments. Physiol Plant [Internet]. 1997 Jul 28;100(3):577–82. Available from: <URL>.
  • 7. Watkins CB. The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnol Adv [Internet]. 2006 Jul;24(4):389–409. Available from: <URL>.
  • 8. Ekinci N, Şeker M, Aydın F, Gündoğdu MA. Possible chemical mechanism and determination of inhibitory effects of 1-MCP on superficial scald of the Granny Smith apple variety. Turkish J Agric For [Internet]. 2016;40:38–44. Available from: <URL>.
  • 9. Liu R, Lai T, Xu Y, Tian S. Changes in physiology and quality of Laiyang pear in long time storage. Sci Hortic [Internet]. 2013 Feb;150:31–6. Available from: <URL>.
  • 10. Serek M, Sisler EC, Reid MS. Effects of 1-MCP on the vase life and ethylene response of cut flowers. Plant Growth Regul [Internet]. 1995 Jan;16(1):93–7. Available from: <URL>.
  • 11. Dong M, Wen G, Li J, Wang T, Huang J, Li Y, et al. Determination of 1-methylcyclopropene residues in vegetables and fruits based on iodine derivatives. Food Chem [Internet]. 2021 Oct;358:129854. Available from: <URL>.
  • 12. Lee YS, Beaudry R, Kim JN, Harte BR. Development of a 1‐Methylcyclopropene (1‐MCP) sachet release system. J Food Sci [Internet]. 2006 Jan 31;71(1). Available from: <URL>.
  • 13. Novoselov KS, Geim AK, Morozov S V., Jiang D, Zhang Y, Dubonos S V., et al. Electric field effect in atomically thin carbon films. Science (80- ) [Internet]. 2004 Oct 22;306(5696):666–9. Available from: <URL>.
  • 14. Geim AK, Novoselov KS. The rise of graphene. Nat Mater [Internet]. 2007 Mar;6(3):183–91. Available from: <URL>.
  • 15. Rad AS. First principles study of Al-doped graphene as nanostructure adsorbent for NO2 and N2O: DFT calculations. Appl Surf Sci [Internet]. 2015 Dec;357:1217–24. Available from: <URL>.
  • 16. Sun Y, Chen L, Zhang F, Li D, Pan H, Ye J. First-principles studies of HF molecule adsorption on intrinsic graphene and Al-doped graphene. Solid State Commun [Internet]. 2010 Oct;150(39–40):1906–10. Available from: <URL>.
  • 17. Rouhani M. DFT study on adsorbing and detecting possibility of cyanogen chloride by pristine, B, Al, Ga, Si and Ge doped graphene. J Mol Struct [Internet]. 2019 Apr;1181:518–35. Available from: <URL>.
  • 18. Rad AS, Shadravan A, Soleymani AA, Motaghedi N. Lewis acid-base surface interaction of some boron compounds with N-doped graphene; first principles study. Curr Appl Phys [Internet]. 2015 Oct;15(10):1271–7. Available from: <URL>.
  • 19. Zhou X, Zhao C, Wu G, Chen J, Li Y. DFT study on the electronic structure and optical properties of N, Al, and N-Al doped graphene. Appl Surf Sci [Internet]. 2018 Nov;459:354–62. Available from: <URL>.
  • 20. Esrafili MD, Saeidi N, Nematollahi P. A DFT study on SO3 capture and activation over Si- or Al-doped graphene. Chem Phys Lett [Internet]. 2016 Aug;658:146–51. Available from: <URL>.
  • 21. Singh D, Kumar A, Kumar D. Adsorption of small gas molecules on pure and Al-doped graphene sheet: A quantum mechanical study. Bull Mater Sci [Internet]. 2017 Oct 3;40(6):1263–71. Available from: <URL>.
  • 22. Gecim G, Ozekmekci M, Fellah MF. Ga and Ge-doped graphene structures: A DFT study of sensor applications for methanol. Comput Theor Chem [Internet]. 2020 Jun;1180:112828. Available from: <URL>.
  • 23. Tian YH, Hu S, Sheng X, Duan Y, Jakowski J, Sumpter BG, et al. Non-transition-metal catalytic system for N2 reduction to NH3: A density functional theory study of Al-doped graphene. J Phys Chem Lett [Internet]. 2018 Feb 1;9(3):570–6. Available from: <URL>.
  • 24. Jappor HR, Khudair SAM. Al-doped graphene as a sensor for harmful gases (CO, CO2, NH3, NO, NO2 and SO2). Sens Lett [Internet]. 2017 Dec 1;15(12):1023–30. Available from: <URL>.
  • 25. Rad AS, Pouralijan Foukolaei V. Density functional study of Al-doped graphene nanostructure towards adsorption of CO, CO2 and H2O. Synth Met [Internet]. 2015 Dec;210:171–8. Available from: <URL>.
  • 26. Ao ZM, Yang J, Li S, Jiang Q. Enhancement of CO detection in Al doped graphene. Chem Phys Lett [Internet]. 2008 Aug;461(4–6):276–9. Available from: <URL>.
  • 27. Rad AS. Al-doped graphene as a new nanostructure adsorbent for some halomethane compounds: DFT calculations. Surf Sci [Internet]. 2016 Mar;645:6–12. Available from: <URL>.
  • 28. Zhao W, Meng QY. Adsorption of methane on pristine and Al-doped graphene: A comparative study via first-principles calculation. Adv Mater Res [Internet]. 2012 Dec;602–604:870–3. Available from: <URL>.
  • 29. Rastegar SF, Peyghan AA, Hadipour NL. Response of Si- and Al-doped graphenes toward HCN: A computational study. Appl Surf Sci [Internet]. 2013 Jan;265:412–7. Available from: <URL>.
  • 30. Chi M, Zhao YP. Adsorption of formaldehyde molecule on the intrinsic and Al-doped graphene: A first principle study. Comput Mater Sci [Internet]. 2009 Oct;46(4):1085–90. Available from: <URL>.
  • 31. Zhang T, Sun H, Wang F, Zhang W, Ma J, Tang S, et al. Electric-field controlled capture or release of phosgene molecule on graphene-based materials: First principles calculations. Appl Surf Sci [Internet]. 2018 Jan;427:1019–26. Available from: <URL>.
  • 32. Rastegar SF, Hadipour NL, Tabar MB, Soleymanabadi H. DFT studies of acrolein molecule adsorption on pristine and Al- doped graphenes. J Mol Model [Internet]. 2013 Sep 22;19(9):3733–40. Available from: <URL>.
  • 33. Rad AS, Jouibary YM, Foukolaei VP, Binaeian E. Study on the structure and electronic property of adsorbed guanine on aluminum doped graphene: First principles calculations. Curr Appl Phys [Internet]. 2016 May;16(5):527–33. Available from: <URL>.
  • 34. Rad AS, Alijantabar Aghouzi S, Motaghedi N, Maleki S, Peyravi M. Theoretical study of chemisorption of cyanuric fluoride and S-triazine on the surface of Al-doped graphene. Mol Simul [Internet]. 2016 Dec 11;42(18):1519–27. Available from: <URL>.
  • 35. Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev [Internet]. 1964 Nov 9;136(3B):B864–71. Available from: <URL>.
  • 36. Kohn W, Sham LJ. Self-consistent equationsincluding exchange and correlation effects. Phys Rev [Internet]. 1965 Nov 15;140(4A):A1133–8. Available from: <URL>.
  • 37. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, et al. Quantum espresso: A modular and open-source software project for quantum simulations of materials. J Phys Condens Matter [Internet]. 2009 Sep 30;21(39):395502. Available from: <URL>.
  • 38. Giannozzi P, Andreussi O, Brumme T, Bunau O, Buongiorno Nardelli M, Calandra M, et al. Advanced capabilities for materials modelling with quantum espresso. J Phys Condens Matter [Internet]. 2017 Nov 22;29(46):465901. Available from: <URL>.
  • 39. Giannozzi P, Baseggio O, Bonfà P, Brunato D, Car R, Carnimeo I, et al. Quantum espresso toward the exascale. J Chem Phys [Internet]. 2020 Apr 21;152(15). Available from: <URL>.
  • 40. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B [Internet]. 1990 Apr 15;41(11):7892–5. Available from: <URL>.
  • 41. Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys Rev Lett [Internet]. 1996 Oct 28;77(18):3865–8. Available from: <URL>.
  • 42. Kokalj A. Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput Mater Sci [Internet]. 2003 Oct;28(2):155–68. Available from: <URL>.
  • 43. Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr [Internet]. 2011 Dec 1;44(6):1272–6. Available from: <URL>.
  • 44. Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B [Internet]. 1976 Jun 15;13(12):5188–92. Available from: <URL>.
  • 45. Makov G. Chemical hardness in density functional theory. J Phys Chem [Internet]. 1995 Jun 1;99(23):9337–9. Available from: <URL>.
  • 46. Pearson RG. The electronic chemical potential and chemical hardness. J Mol Struct THEOCHEM [Internet]. 1992 Mar;255:261–70. Available from: <URL>.
  • 47. Chattaraj PK, Parr RG. Density functional theory of chemical hardness. In: Chemical Hardness [Internet]. Berlin/Heidelberg: Springer-Verlag; p. 11–25. Available from: <URL>.
  • 48. Coster D, Blumenfeld AL, Fripiat JJ. Lewis acid sites and surface aluminum in aluminas and zeolites: A high-resolution NMR study. J Phys Chem [Internet]. 1994 Jun 1;98(24):6201–11. Available from: <URL>.

Adsorption of ethylene and 1-methylcyclopropene (1-MCP) on Al-doped graphene structure: A DFT study for gas sensing application

Year 2024, Volume: 11 Issue: 4, 1535 - 1544
https://doi.org/10.18596/jotcsa.1492945

Abstract

Ethylene is the ripening hormone of fruits and vegetables. 1-Methylcyclopropene (1-MCP) is used as the inhibitor of the ethylene actions for extending the postharvest shelf life of the plants. To control the ripening and extending the shelf life of the plants, the adsorption characteristics of ethylene and 1-MCP on Al-doped graphene structure (AlG) were investigated as a gas sensing application by density functional theory (DFT) calculations. The geometric structures were optimized, HOMO and LUMO, energy gap, adsorption energies, the density of states (DOS), electrostatic potential (ESP) and the global reactivities were calculated for different distances between the adsorbed ethylene or 1-MCP and the adsorbent AlG. Chemisorption and physisorption interactions were analyzed. For the chemisorption process of ethylene and 1-MCP on AlG, the adsorption energies were 19.34 kJ/mol and 56.53 kJ/mol, respectively. Whereas for the physisorption process, the adsorption energies of ethylene and 1-MCP were -60.16 kJ/mol and -7.32 kJ/mol, respectively. As a result, it was presented that the AlG structure has sufficient characteristics to be a good adsorbent and a gas sensor of ethylene and 1-MCP.

Thanks

The numerical calculations reported in this paper were fully performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

References

  • 1. Yang SF, Hoffman NE. Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol [Internet]. 1984 Jun;35(1):155–89. Available from: <URL>.
  • 2. Zimmermann H, Walzl R. Ethylene. In: Ullmann’s Encyclopedia of Industrial Chemistry [Internet]. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2000. Available from: <URL>.
  • 3. Dias C, Ribeiro T, Rodrigues AC, Ferrante A, Vasconcelos MW, Pintado M. Improving the ripening process after 1-MCP application: Implications and strategies. Trends Food Sci Technol [Internet]. 2021 Jul;113:382–96. Available from: <URL>.
  • 4. Magid RM, Clarke TC, Duncan CD. Efficient and convenient synthesis of 1-methylcyclopropene. J Org Chem [Internet]. 1971 May 1;36(9):1320–1. Available from: <URL>.
  • 5. Blankenship SM, Dole JM. 1-Methylcyclopropene: A review. Postharvest Biol Technol [Internet]. 2003 Apr 1;28(1):1–25. Available from: <URL>.
  • 6. Sisler EC, Serek M. Inhibitors of ethylene responses in plants at the receptor level: Recent developments. Physiol Plant [Internet]. 1997 Jul 28;100(3):577–82. Available from: <URL>.
  • 7. Watkins CB. The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnol Adv [Internet]. 2006 Jul;24(4):389–409. Available from: <URL>.
  • 8. Ekinci N, Şeker M, Aydın F, Gündoğdu MA. Possible chemical mechanism and determination of inhibitory effects of 1-MCP on superficial scald of the Granny Smith apple variety. Turkish J Agric For [Internet]. 2016;40:38–44. Available from: <URL>.
  • 9. Liu R, Lai T, Xu Y, Tian S. Changes in physiology and quality of Laiyang pear in long time storage. Sci Hortic [Internet]. 2013 Feb;150:31–6. Available from: <URL>.
  • 10. Serek M, Sisler EC, Reid MS. Effects of 1-MCP on the vase life and ethylene response of cut flowers. Plant Growth Regul [Internet]. 1995 Jan;16(1):93–7. Available from: <URL>.
  • 11. Dong M, Wen G, Li J, Wang T, Huang J, Li Y, et al. Determination of 1-methylcyclopropene residues in vegetables and fruits based on iodine derivatives. Food Chem [Internet]. 2021 Oct;358:129854. Available from: <URL>.
  • 12. Lee YS, Beaudry R, Kim JN, Harte BR. Development of a 1‐Methylcyclopropene (1‐MCP) sachet release system. J Food Sci [Internet]. 2006 Jan 31;71(1). Available from: <URL>.
  • 13. Novoselov KS, Geim AK, Morozov S V., Jiang D, Zhang Y, Dubonos S V., et al. Electric field effect in atomically thin carbon films. Science (80- ) [Internet]. 2004 Oct 22;306(5696):666–9. Available from: <URL>.
  • 14. Geim AK, Novoselov KS. The rise of graphene. Nat Mater [Internet]. 2007 Mar;6(3):183–91. Available from: <URL>.
  • 15. Rad AS. First principles study of Al-doped graphene as nanostructure adsorbent for NO2 and N2O: DFT calculations. Appl Surf Sci [Internet]. 2015 Dec;357:1217–24. Available from: <URL>.
  • 16. Sun Y, Chen L, Zhang F, Li D, Pan H, Ye J. First-principles studies of HF molecule adsorption on intrinsic graphene and Al-doped graphene. Solid State Commun [Internet]. 2010 Oct;150(39–40):1906–10. Available from: <URL>.
  • 17. Rouhani M. DFT study on adsorbing and detecting possibility of cyanogen chloride by pristine, B, Al, Ga, Si and Ge doped graphene. J Mol Struct [Internet]. 2019 Apr;1181:518–35. Available from: <URL>.
  • 18. Rad AS, Shadravan A, Soleymani AA, Motaghedi N. Lewis acid-base surface interaction of some boron compounds with N-doped graphene; first principles study. Curr Appl Phys [Internet]. 2015 Oct;15(10):1271–7. Available from: <URL>.
  • 19. Zhou X, Zhao C, Wu G, Chen J, Li Y. DFT study on the electronic structure and optical properties of N, Al, and N-Al doped graphene. Appl Surf Sci [Internet]. 2018 Nov;459:354–62. Available from: <URL>.
  • 20. Esrafili MD, Saeidi N, Nematollahi P. A DFT study on SO3 capture and activation over Si- or Al-doped graphene. Chem Phys Lett [Internet]. 2016 Aug;658:146–51. Available from: <URL>.
  • 21. Singh D, Kumar A, Kumar D. Adsorption of small gas molecules on pure and Al-doped graphene sheet: A quantum mechanical study. Bull Mater Sci [Internet]. 2017 Oct 3;40(6):1263–71. Available from: <URL>.
  • 22. Gecim G, Ozekmekci M, Fellah MF. Ga and Ge-doped graphene structures: A DFT study of sensor applications for methanol. Comput Theor Chem [Internet]. 2020 Jun;1180:112828. Available from: <URL>.
  • 23. Tian YH, Hu S, Sheng X, Duan Y, Jakowski J, Sumpter BG, et al. Non-transition-metal catalytic system for N2 reduction to NH3: A density functional theory study of Al-doped graphene. J Phys Chem Lett [Internet]. 2018 Feb 1;9(3):570–6. Available from: <URL>.
  • 24. Jappor HR, Khudair SAM. Al-doped graphene as a sensor for harmful gases (CO, CO2, NH3, NO, NO2 and SO2). Sens Lett [Internet]. 2017 Dec 1;15(12):1023–30. Available from: <URL>.
  • 25. Rad AS, Pouralijan Foukolaei V. Density functional study of Al-doped graphene nanostructure towards adsorption of CO, CO2 and H2O. Synth Met [Internet]. 2015 Dec;210:171–8. Available from: <URL>.
  • 26. Ao ZM, Yang J, Li S, Jiang Q. Enhancement of CO detection in Al doped graphene. Chem Phys Lett [Internet]. 2008 Aug;461(4–6):276–9. Available from: <URL>.
  • 27. Rad AS. Al-doped graphene as a new nanostructure adsorbent for some halomethane compounds: DFT calculations. Surf Sci [Internet]. 2016 Mar;645:6–12. Available from: <URL>.
  • 28. Zhao W, Meng QY. Adsorption of methane on pristine and Al-doped graphene: A comparative study via first-principles calculation. Adv Mater Res [Internet]. 2012 Dec;602–604:870–3. Available from: <URL>.
  • 29. Rastegar SF, Peyghan AA, Hadipour NL. Response of Si- and Al-doped graphenes toward HCN: A computational study. Appl Surf Sci [Internet]. 2013 Jan;265:412–7. Available from: <URL>.
  • 30. Chi M, Zhao YP. Adsorption of formaldehyde molecule on the intrinsic and Al-doped graphene: A first principle study. Comput Mater Sci [Internet]. 2009 Oct;46(4):1085–90. Available from: <URL>.
  • 31. Zhang T, Sun H, Wang F, Zhang W, Ma J, Tang S, et al. Electric-field controlled capture or release of phosgene molecule on graphene-based materials: First principles calculations. Appl Surf Sci [Internet]. 2018 Jan;427:1019–26. Available from: <URL>.
  • 32. Rastegar SF, Hadipour NL, Tabar MB, Soleymanabadi H. DFT studies of acrolein molecule adsorption on pristine and Al- doped graphenes. J Mol Model [Internet]. 2013 Sep 22;19(9):3733–40. Available from: <URL>.
  • 33. Rad AS, Jouibary YM, Foukolaei VP, Binaeian E. Study on the structure and electronic property of adsorbed guanine on aluminum doped graphene: First principles calculations. Curr Appl Phys [Internet]. 2016 May;16(5):527–33. Available from: <URL>.
  • 34. Rad AS, Alijantabar Aghouzi S, Motaghedi N, Maleki S, Peyravi M. Theoretical study of chemisorption of cyanuric fluoride and S-triazine on the surface of Al-doped graphene. Mol Simul [Internet]. 2016 Dec 11;42(18):1519–27. Available from: <URL>.
  • 35. Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev [Internet]. 1964 Nov 9;136(3B):B864–71. Available from: <URL>.
  • 36. Kohn W, Sham LJ. Self-consistent equationsincluding exchange and correlation effects. Phys Rev [Internet]. 1965 Nov 15;140(4A):A1133–8. Available from: <URL>.
  • 37. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, et al. Quantum espresso: A modular and open-source software project for quantum simulations of materials. J Phys Condens Matter [Internet]. 2009 Sep 30;21(39):395502. Available from: <URL>.
  • 38. Giannozzi P, Andreussi O, Brumme T, Bunau O, Buongiorno Nardelli M, Calandra M, et al. Advanced capabilities for materials modelling with quantum espresso. J Phys Condens Matter [Internet]. 2017 Nov 22;29(46):465901. Available from: <URL>.
  • 39. Giannozzi P, Baseggio O, Bonfà P, Brunato D, Car R, Carnimeo I, et al. Quantum espresso toward the exascale. J Chem Phys [Internet]. 2020 Apr 21;152(15). Available from: <URL>.
  • 40. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B [Internet]. 1990 Apr 15;41(11):7892–5. Available from: <URL>.
  • 41. Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys Rev Lett [Internet]. 1996 Oct 28;77(18):3865–8. Available from: <URL>.
  • 42. Kokalj A. Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput Mater Sci [Internet]. 2003 Oct;28(2):155–68. Available from: <URL>.
  • 43. Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr [Internet]. 2011 Dec 1;44(6):1272–6. Available from: <URL>.
  • 44. Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B [Internet]. 1976 Jun 15;13(12):5188–92. Available from: <URL>.
  • 45. Makov G. Chemical hardness in density functional theory. J Phys Chem [Internet]. 1995 Jun 1;99(23):9337–9. Available from: <URL>.
  • 46. Pearson RG. The electronic chemical potential and chemical hardness. J Mol Struct THEOCHEM [Internet]. 1992 Mar;255:261–70. Available from: <URL>.
  • 47. Chattaraj PK, Parr RG. Density functional theory of chemical hardness. In: Chemical Hardness [Internet]. Berlin/Heidelberg: Springer-Verlag; p. 11–25. Available from: <URL>.
  • 48. Coster D, Blumenfeld AL, Fripiat JJ. Lewis acid sites and surface aluminum in aluminas and zeolites: A high-resolution NMR study. J Phys Chem [Internet]. 1994 Jun 1;98(24):6201–11. Available from: <URL>.
There are 48 citations in total.

Details

Primary Language English
Subjects Organic Chemistry (Other), Computational Chemistry
Journal Section RESEARCH ARTICLES
Authors

Fatma Aydın 0000-0002-7219-6407

Kıvanç Sel 0000-0002-4623-5206

Publication Date
Submission Date May 31, 2024
Acceptance Date September 25, 2024
Published in Issue Year 2024 Volume: 11 Issue: 4

Cite

Vancouver Aydın F, Sel K. Adsorption of ethylene and 1-methylcyclopropene (1-MCP) on Al-doped graphene structure: A DFT study for gas sensing application. JOTCSA. 11(4):1535-44.