Research Article
BibTex RIS Cite

Preparation Of Modified Surfaces Based On Tannic Acid and Carbon Nanotubes and Investigation Of Their Electrochemical Properties

Year 2024, Volume: 11 Issue: 4, 1595 - 1604, 03.12.2024
https://doi.org/10.18596/jotcsa.1528731

Abstract

This study focuses on the electrochemical investigation of modifiers and their components that can provide the easiest and most sensitive results for electrochemical sensors. For this purpose, a nanocomposite of tannic acid and carbon nanotubes with extraordinary properties was obtained. The nanocomposite and its components were immobilized on glassy carbon electrode surfaces by the drop-drying technique. The morphological and electrochemical properties of the nanocomposite and its components were examined by scanning electron microscopy and cyclic voltammetry techniques. The surfaces modified with the nanocomposite and its components exhibited different electrochemical behaviors. Tests performed in ferricyanide, ferrocene, ruthenium hexamine (III) chloride, and ferricyanide/ferrocyanide probes showed that the nanocomposite-modified surface exhibited the best voltammetric behavior. Scan rate and pH studies showed that the nanocomposite-modified surface catalyzed electron transfer more and increased the active surface area.

Supporting Institution

Nevşehir Hacı Bektaş Veli Üniversitesi

Project Number

NEÜ ABAP20F19

Thanks

We would like to thank Nevşehir Hacı Bektaş Veli University (Master's thesis project, NEÜ ABAP20F19) for their financial support.

References

  • 1. Orlowski P, Krzyzowska M, Zdanowski R, Winnicka A, Nowakowska J, Stankiewicz W, et al. Assessment of in vitro cellular responses of monocytes and keratinocytes to tannic acid modified silver nanoparticles. Toxicol Vitr [Internet]. 2013 Sep 1;27(6):1798–808. Available from: <URL>.
  • 2. Ghasemian M, Kazeminava F, Naseri A, Mohebzadeh S, Abbaszadeh M, Kafil HS, et al. Recent progress in tannic acid based approaches as a natural polyphenolic biomaterial for cancer therapy: A review. Biomed Pharmacother [Internet]. 2023 Oct 1;166:115328. Available from: <URL>.
  • 3. Ahmed GHG, Laíño RB, Calzón JAG, García MED. Fluorescent carbon nanodots for sensitive and selective detection of tannic acid in wines. Talanta [Internet]. 2015 Jan 15;132:252–7. Available from: <URL>.https://linkinghub.elsevier.com/retrieve/pii/S0039914014008030
  • 4. Ren A, Zhang W, Thomas HG, Barish A, Berry S, Kiel JS, et al. A tannic acid-based medical food, cesinex®, exhibits broad-spectrum antidiarrheal properties: A mechanistic and clinical study. Dig Dis Sci [Internet]. 2012 Jan 12;57(1):99–108. Available from: <URL>.http://link.springer.com/10.1007/s10620-011-1821-9
  • 5. Fu X, Yuan S, Yang F, Yu H, Xie Y, Guo Y, et al. Characterization of the interaction between boscalid and tannic acid and its effect on the antioxidant properties of tannic acid. J Food Sci [Internet]. 2023 Apr 14;88(4):1325–35. Available from: <URL>.
  • 6. Anderson HE, Santos IC, Hildenbrand ZL, Schug KA. A review of the analytical methods used for beer ingredient and finished product analysis and quality control. Anal Chim Acta [Internet]. 2019 Nov 28;1085:1–20. Available from: <URL>.
  • 7. Bigham A, Rahimkhoei V, Abasian P, Delfi M, Naderi J, Ghomi M, et al. Advances in tannic acid-incorporated biomaterials: Infection treatment, regenerative medicine, cancer therapy, and biosensing. Chem Eng J [Internet]. 2022 Mar 15;432:134146. Available from: <URL>.
  • 8. Baldwin A, Booth BW. Biomedical applications of tannic acid. J Biomater Appl [Internet]. 2022 Mar 7;36(8):1503–23. Available from: <URL>.
  • 9. Lee HY, Hwang CH, Kim HE, Jeong SH. Enhancement of bio-stability and mechanical properties of hyaluronic acid hydrogels by tannic acid treatment. Carbohydr Polym [Internet]. 2018 Apr 15;186:290–8. Available from: <URL>.
  • 10. Higazy A, Hashem M, ElShafei A, Shaker N, Hady MA. Development of anti-microbial jute fabrics via in situ formation of cellulose–tannic acid–metal ion complex. Carbohydr Polym [Internet]. 2010 Mar 17;79(4):890–7. Available from: <URL>.
  • 11. Oulad F, Zinadini S, Zinatizadeh AA, Derakhshan AA. Fabrication and characterization of a novel tannic acid coated boehmite/PES high performance antifouling NF membrane and application for licorice dye removal. Chem Eng J [Internet]. 2020 Oct 1;397:125105. Available from: <URL>.
  • 12. Sahiner N, Sagbas S, Aktas N, Silan C. Inherently antioxidant and antimicrobial tannic acid release from poly(tannic acid) nanoparticles with controllable degradability. Colloids Surfaces B Biointerfaces [Internet]. 2016 Jun 1;142:334–43. Available from: <URL>.
  • 13. Saylakcı R, Incebay H. An electrochemical platform of tannic acid and carbon nanotubes for the sensitive determination of the antipsychotic medication clozapine in pharmaceutical and biological samples. J Electroanal Chem [Internet]. 2021 Oct 1;898:115638. Available from: <URL>.
  • 14. Çiçek Ozkan B, Güner M, Şeker TS. Thermal and morphological properties of HDPE/ZnO and HDPE/HAp nanocomposites. Fırat Univ J Eng Sci [Internet]. 2020 Mar 3;32(1):259–66. Available from: <URL>.
  • 15. Langat J, Bellayer S, Hudrlik P, Hudrlik A, Maupin PH, Gilman JW, et al. Synthesis of imidazolium salts and their application in epoxy montmorillonite nanocomposites. Polymer (Guildf) [Internet]. 2006 Sep 7;47(19):6698–709. Available from: <URL>.
  • 16. Ali A, Rahimian Koloor SS, Alshehri AH, Arockiarajan A. Carbon nanotube characteristics and enhancement effects on the mechanical features of polymer-based materials and structures – A review. J Mater Res Technol [Internet]. 2023 May 1;24:6495–521. Available from: <URL>.
  • 17. Ben Messaoud N, Ghica ME, Dridi C, Ben Ali M, Brett CMA. Electrochemical sensor based on multiwalled carbon nanotube and gold nanoparticle modified electrode for the sensitive detection of bisphenol A. Sensors Actuators B Chem [Internet]. 2017 Dec 1;253:513–22. Available from: <URL>.
  • 18. Mehmandoust M, Khoshnavaz Y, Tuzen M, Erk N. Voltammetric sensor based on bimetallic nanocomposite for determination of favipiravir as an antiviral drug. Microchim Acta [Internet]. 2021 Dec 27;188(12):434. Available from: <URL>.
  • 19. Incebay H, Aktepe L, Leblebici Z. An electrochemical sensor based on green tea extract for detection of Cd(II) ions by differential pulse anodic stripping voltammetry. Surfaces and Interfaces [Internet]. 2020 Dec 1;21:100726. Available from: <URL>.
  • 20. Valenzuela-Muñiz AM, Alonso-Nuñez G, Miki-Yoshida M, Botte GG, Verde-Gómez Y. High electroactivity performance in Pt/MWCNT and PtNi/MWCNT electrocatalysts. Int J Hydrogen Energy [Internet]. 2013 Sep 19;38(28):12640–7. Available from: <URL>.
  • 21. Power AC, Gorey B, Chandra S, Chapman J. Carbon nanomaterials and their application to electrochemical sensors: A review. Nanotechnol Rev [Internet]. 2018 Feb 23;7(1):19–41. Available from: <URL>.
  • 22. Shahrokhian S, Rastgar S, Amini MK, Adeli M. Fabrication of a modified electrode based on Fe3O4NPs/MWCNT nanocomposite: Application to simultaneous determination of guanine and adenine in DNA. Bioelectrochemistry [Internet]. 2012 Aug 1;86:78–86. Available from: <URL>.
  • 23. Tigari G, Manjunatha JG. A surfactant enhanced novel pencil graphite and carbon nanotube composite paste material as an effective electrochemical sensor for determination of riboflavin. J Sci Adv Mater Devices [Internet]. 2020 Mar 1;5(1):56–64. Available from: <URL>.
  • 24. Ali Z, Yaqoob S, Yu J, D’Amore A. Critical review on the characterization, preparation, and enhanced mechanical, thermal, and electrical properties of carbon nanotubes and their hybrid filler polymer composites for various applications. Compos Part C Open Access [Internet]. 2024 Mar 1;13:100434. Available from: <URL>.
  • 25. Guldi DM, Rahman GMA, Zerbetto F, Prato M. Carbon nanotubes in electron donor−acceptor nanocomposites. Acc Chem Res [Internet]. 2005 Nov 1;38(11):871–8. Available from: <URL>.
  • 26. Rathinavel S, Priyadharshini K, Panda D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Mater Sci Eng B [Internet]. 2021 Jun 1;268:115095. Available from: <URL>.
  • 27. Kutluay A, Aslanoglu M. An electrochemical sensor prepared by sonochemical one-pot synthesis of multi-walled carbon nanotube-supported cobalt nanoparticles for the simultaneous determination of paracetamol and dopamine. Anal Chim Acta [Internet]. 2014 Aug 11;839:59–66. Available from: <URL>.
  • 28. Niu JJ, Wang JN, Jiang Y, Su LF, Ma J. An approach to carbon nanotubes with high surface area and large pore volume. Microporous Mesoporous Mater [Internet]. 2007 Mar 23;100(1–3):1–5. Available from: <URL>.
  • 29. Salinas-Torres D, Huerta F, Montilla F, Morallón E. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes. Electrochim Acta [Internet]. 2011 Feb 1;56(5):2464–70. Available from: <URL>.
  • 30. Moore KE, Flavel BS, Yu J, Abell AD, Shapter JG. Increased redox-active peptide loading on carbon nanotube electrodes. Electrochim Acta [Internet]. 2013 Feb 1;89:206–11. Available from: <URL>.
  • 31. Fagan-Murphy A, Kataria S, Patel BA. Electrochemical performance of multi-walled carbon nanotube composite electrodes is enhanced with larger diameters and reduced specific surface area. J Solid State Electrochem [Internet]. 2016 Mar 6;20(3):785–92. Available from: <URL>.
  • 32. Guan JF, Zou J, Liu YP, Jiang XY, Yu JG. Hybrid carbon nanotubes modified glassy carbon electrode for selective, sensitive and simultaneous detection of dopamine and uric acid. Ecotoxicol Environ Saf [Internet]. 2020 Sep 15;201:110872. Available from: <URL>.
  • 33. Krywko-Cendrowska A, Marot L, Mathys D, Boulmedais F. Ion-imprinted nanofilms based on tannic acid and silver nanoparticles for sensing of Al(III). ACS Appl Nano Mater [Internet]. 2021 May 28;4(5):5372–82. Available from: <URL>.
  • 34. Liao W, Yu C, Peng Z, Xu F, Zhang Y, Zhong W. Ultrasensitive Mg2+-modulated carbon nanotube/tannic acid aerogels for high-performance wearable pressure sensors. ACS Sustain Chem Eng [Internet]. 2023 Feb 13;11(6):2186–97. Available from: <URL>.
  • 35. Kruusenberg I, Alexeyeva N, Tammeveski K. The pH-dependence of oxygen reduction on multi-walled carbon nanotube modified glassy carbon electrodes. Carbon N Y [Internet]. 2009 Mar 1;47(3):651–8. Available from: <URL>.
  • 36. Rai P, Mehrotra S, Sharma SK. Development of a paper-based chromogenic strip and electrochemical sensor for the detection of tannic acid in beverages. LWT [Internet]. 2022 Nov 1;169:113999. Available from: <URL>.
  • 37. Xu L, He N, Du J, Deng Y, Li Z, Wang T. A detailed investigation for determination of tannic acid by anodic stripping voltammetry using porous electrochemical sensor. Anal Chim Acta [Internet]. 2009 Feb 16;634(1):49–53. Available from: <URL>.
  • 38. Lin CS, Denton EB, Gaskill HS, Putnam GL. Diffusion-controlled electrode reactions. Ind Eng Chem [Internet]. 1951 Sep 1;43(9):2136–43. Available from: <URL>.
Year 2024, Volume: 11 Issue: 4, 1595 - 1604, 03.12.2024
https://doi.org/10.18596/jotcsa.1528731

Abstract

Project Number

NEÜ ABAP20F19

References

  • 1. Orlowski P, Krzyzowska M, Zdanowski R, Winnicka A, Nowakowska J, Stankiewicz W, et al. Assessment of in vitro cellular responses of monocytes and keratinocytes to tannic acid modified silver nanoparticles. Toxicol Vitr [Internet]. 2013 Sep 1;27(6):1798–808. Available from: <URL>.
  • 2. Ghasemian M, Kazeminava F, Naseri A, Mohebzadeh S, Abbaszadeh M, Kafil HS, et al. Recent progress in tannic acid based approaches as a natural polyphenolic biomaterial for cancer therapy: A review. Biomed Pharmacother [Internet]. 2023 Oct 1;166:115328. Available from: <URL>.
  • 3. Ahmed GHG, Laíño RB, Calzón JAG, García MED. Fluorescent carbon nanodots for sensitive and selective detection of tannic acid in wines. Talanta [Internet]. 2015 Jan 15;132:252–7. Available from: <URL>.https://linkinghub.elsevier.com/retrieve/pii/S0039914014008030
  • 4. Ren A, Zhang W, Thomas HG, Barish A, Berry S, Kiel JS, et al. A tannic acid-based medical food, cesinex®, exhibits broad-spectrum antidiarrheal properties: A mechanistic and clinical study. Dig Dis Sci [Internet]. 2012 Jan 12;57(1):99–108. Available from: <URL>.http://link.springer.com/10.1007/s10620-011-1821-9
  • 5. Fu X, Yuan S, Yang F, Yu H, Xie Y, Guo Y, et al. Characterization of the interaction between boscalid and tannic acid and its effect on the antioxidant properties of tannic acid. J Food Sci [Internet]. 2023 Apr 14;88(4):1325–35. Available from: <URL>.
  • 6. Anderson HE, Santos IC, Hildenbrand ZL, Schug KA. A review of the analytical methods used for beer ingredient and finished product analysis and quality control. Anal Chim Acta [Internet]. 2019 Nov 28;1085:1–20. Available from: <URL>.
  • 7. Bigham A, Rahimkhoei V, Abasian P, Delfi M, Naderi J, Ghomi M, et al. Advances in tannic acid-incorporated biomaterials: Infection treatment, regenerative medicine, cancer therapy, and biosensing. Chem Eng J [Internet]. 2022 Mar 15;432:134146. Available from: <URL>.
  • 8. Baldwin A, Booth BW. Biomedical applications of tannic acid. J Biomater Appl [Internet]. 2022 Mar 7;36(8):1503–23. Available from: <URL>.
  • 9. Lee HY, Hwang CH, Kim HE, Jeong SH. Enhancement of bio-stability and mechanical properties of hyaluronic acid hydrogels by tannic acid treatment. Carbohydr Polym [Internet]. 2018 Apr 15;186:290–8. Available from: <URL>.
  • 10. Higazy A, Hashem M, ElShafei A, Shaker N, Hady MA. Development of anti-microbial jute fabrics via in situ formation of cellulose–tannic acid–metal ion complex. Carbohydr Polym [Internet]. 2010 Mar 17;79(4):890–7. Available from: <URL>.
  • 11. Oulad F, Zinadini S, Zinatizadeh AA, Derakhshan AA. Fabrication and characterization of a novel tannic acid coated boehmite/PES high performance antifouling NF membrane and application for licorice dye removal. Chem Eng J [Internet]. 2020 Oct 1;397:125105. Available from: <URL>.
  • 12. Sahiner N, Sagbas S, Aktas N, Silan C. Inherently antioxidant and antimicrobial tannic acid release from poly(tannic acid) nanoparticles with controllable degradability. Colloids Surfaces B Biointerfaces [Internet]. 2016 Jun 1;142:334–43. Available from: <URL>.
  • 13. Saylakcı R, Incebay H. An electrochemical platform of tannic acid and carbon nanotubes for the sensitive determination of the antipsychotic medication clozapine in pharmaceutical and biological samples. J Electroanal Chem [Internet]. 2021 Oct 1;898:115638. Available from: <URL>.
  • 14. Çiçek Ozkan B, Güner M, Şeker TS. Thermal and morphological properties of HDPE/ZnO and HDPE/HAp nanocomposites. Fırat Univ J Eng Sci [Internet]. 2020 Mar 3;32(1):259–66. Available from: <URL>.
  • 15. Langat J, Bellayer S, Hudrlik P, Hudrlik A, Maupin PH, Gilman JW, et al. Synthesis of imidazolium salts and their application in epoxy montmorillonite nanocomposites. Polymer (Guildf) [Internet]. 2006 Sep 7;47(19):6698–709. Available from: <URL>.
  • 16. Ali A, Rahimian Koloor SS, Alshehri AH, Arockiarajan A. Carbon nanotube characteristics and enhancement effects on the mechanical features of polymer-based materials and structures – A review. J Mater Res Technol [Internet]. 2023 May 1;24:6495–521. Available from: <URL>.
  • 17. Ben Messaoud N, Ghica ME, Dridi C, Ben Ali M, Brett CMA. Electrochemical sensor based on multiwalled carbon nanotube and gold nanoparticle modified electrode for the sensitive detection of bisphenol A. Sensors Actuators B Chem [Internet]. 2017 Dec 1;253:513–22. Available from: <URL>.
  • 18. Mehmandoust M, Khoshnavaz Y, Tuzen M, Erk N. Voltammetric sensor based on bimetallic nanocomposite for determination of favipiravir as an antiviral drug. Microchim Acta [Internet]. 2021 Dec 27;188(12):434. Available from: <URL>.
  • 19. Incebay H, Aktepe L, Leblebici Z. An electrochemical sensor based on green tea extract for detection of Cd(II) ions by differential pulse anodic stripping voltammetry. Surfaces and Interfaces [Internet]. 2020 Dec 1;21:100726. Available from: <URL>.
  • 20. Valenzuela-Muñiz AM, Alonso-Nuñez G, Miki-Yoshida M, Botte GG, Verde-Gómez Y. High electroactivity performance in Pt/MWCNT and PtNi/MWCNT electrocatalysts. Int J Hydrogen Energy [Internet]. 2013 Sep 19;38(28):12640–7. Available from: <URL>.
  • 21. Power AC, Gorey B, Chandra S, Chapman J. Carbon nanomaterials and their application to electrochemical sensors: A review. Nanotechnol Rev [Internet]. 2018 Feb 23;7(1):19–41. Available from: <URL>.
  • 22. Shahrokhian S, Rastgar S, Amini MK, Adeli M. Fabrication of a modified electrode based on Fe3O4NPs/MWCNT nanocomposite: Application to simultaneous determination of guanine and adenine in DNA. Bioelectrochemistry [Internet]. 2012 Aug 1;86:78–86. Available from: <URL>.
  • 23. Tigari G, Manjunatha JG. A surfactant enhanced novel pencil graphite and carbon nanotube composite paste material as an effective electrochemical sensor for determination of riboflavin. J Sci Adv Mater Devices [Internet]. 2020 Mar 1;5(1):56–64. Available from: <URL>.
  • 24. Ali Z, Yaqoob S, Yu J, D’Amore A. Critical review on the characterization, preparation, and enhanced mechanical, thermal, and electrical properties of carbon nanotubes and their hybrid filler polymer composites for various applications. Compos Part C Open Access [Internet]. 2024 Mar 1;13:100434. Available from: <URL>.
  • 25. Guldi DM, Rahman GMA, Zerbetto F, Prato M. Carbon nanotubes in electron donor−acceptor nanocomposites. Acc Chem Res [Internet]. 2005 Nov 1;38(11):871–8. Available from: <URL>.
  • 26. Rathinavel S, Priyadharshini K, Panda D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Mater Sci Eng B [Internet]. 2021 Jun 1;268:115095. Available from: <URL>.
  • 27. Kutluay A, Aslanoglu M. An electrochemical sensor prepared by sonochemical one-pot synthesis of multi-walled carbon nanotube-supported cobalt nanoparticles for the simultaneous determination of paracetamol and dopamine. Anal Chim Acta [Internet]. 2014 Aug 11;839:59–66. Available from: <URL>.
  • 28. Niu JJ, Wang JN, Jiang Y, Su LF, Ma J. An approach to carbon nanotubes with high surface area and large pore volume. Microporous Mesoporous Mater [Internet]. 2007 Mar 23;100(1–3):1–5. Available from: <URL>.
  • 29. Salinas-Torres D, Huerta F, Montilla F, Morallón E. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes. Electrochim Acta [Internet]. 2011 Feb 1;56(5):2464–70. Available from: <URL>.
  • 30. Moore KE, Flavel BS, Yu J, Abell AD, Shapter JG. Increased redox-active peptide loading on carbon nanotube electrodes. Electrochim Acta [Internet]. 2013 Feb 1;89:206–11. Available from: <URL>.
  • 31. Fagan-Murphy A, Kataria S, Patel BA. Electrochemical performance of multi-walled carbon nanotube composite electrodes is enhanced with larger diameters and reduced specific surface area. J Solid State Electrochem [Internet]. 2016 Mar 6;20(3):785–92. Available from: <URL>.
  • 32. Guan JF, Zou J, Liu YP, Jiang XY, Yu JG. Hybrid carbon nanotubes modified glassy carbon electrode for selective, sensitive and simultaneous detection of dopamine and uric acid. Ecotoxicol Environ Saf [Internet]. 2020 Sep 15;201:110872. Available from: <URL>.
  • 33. Krywko-Cendrowska A, Marot L, Mathys D, Boulmedais F. Ion-imprinted nanofilms based on tannic acid and silver nanoparticles for sensing of Al(III). ACS Appl Nano Mater [Internet]. 2021 May 28;4(5):5372–82. Available from: <URL>.
  • 34. Liao W, Yu C, Peng Z, Xu F, Zhang Y, Zhong W. Ultrasensitive Mg2+-modulated carbon nanotube/tannic acid aerogels for high-performance wearable pressure sensors. ACS Sustain Chem Eng [Internet]. 2023 Feb 13;11(6):2186–97. Available from: <URL>.
  • 35. Kruusenberg I, Alexeyeva N, Tammeveski K. The pH-dependence of oxygen reduction on multi-walled carbon nanotube modified glassy carbon electrodes. Carbon N Y [Internet]. 2009 Mar 1;47(3):651–8. Available from: <URL>.
  • 36. Rai P, Mehrotra S, Sharma SK. Development of a paper-based chromogenic strip and electrochemical sensor for the detection of tannic acid in beverages. LWT [Internet]. 2022 Nov 1;169:113999. Available from: <URL>.
  • 37. Xu L, He N, Du J, Deng Y, Li Z, Wang T. A detailed investigation for determination of tannic acid by anodic stripping voltammetry using porous electrochemical sensor. Anal Chim Acta [Internet]. 2009 Feb 16;634(1):49–53. Available from: <URL>.
  • 38. Lin CS, Denton EB, Gaskill HS, Putnam GL. Diffusion-controlled electrode reactions. Ind Eng Chem [Internet]. 1951 Sep 1;43(9):2136–43. Available from: <URL>.
There are 38 citations in total.

Details

Primary Language English
Subjects Electroanalytical Chemistry
Journal Section RESEARCH ARTICLES
Authors

Hilal İncebay 0000-0001-8161-3957

Rumeysa Saylakçi This is me 0000-0003-3423-617X

Project Number NEÜ ABAP20F19
Publication Date December 3, 2024
Submission Date August 6, 2024
Acceptance Date September 27, 2024
Published in Issue Year 2024 Volume: 11 Issue: 4

Cite

Vancouver İncebay H, Saylakçi R. Preparation Of Modified Surfaces Based On Tannic Acid and Carbon Nanotubes and Investigation Of Their Electrochemical Properties. JOTCSA. 2024;11(4):1595-604.