Review Article
BibTex RIS Cite
Year 2024, Volume: 7 Issue: 2, 227 - 235, 18.12.2024
https://doi.org/10.54565/jphcfum.1528076

Abstract

References

  • [1] Z. Zahra, Z. Habib, S. Chung and M. A. Badshah. Exposure route of TiO2 NPs from industrial applications to wastewater treatment and their impacts on the agro-environment. Nanomaterials. 2020;10(8):1469.
  • [2] L. Rassaei, F. Marken, M. Sillanpää, M. Amiri, C. M. Cirtiu and M. Sillanpää. Nanoparticles in electrochemical sensors for environmental monitoring. TrAC Trends in Analytical Chemistry. 2011;30(11):1704-1715.
  • [3] J. Chen, Y. Guo, X. Zhang, J. Liu, P. Gong, Z. Su, L. Fan and G. Li. Emerging nanoparticles in food: sources, application, and safety. Journal of Agricultural and Food Chemistry. 2023;71(8):3564-3582.
  • [4] F. Islam, S. Shohag, M. J. Uddin, M. R. Islam, M. H. Nafady, A. Akter, S. Mitra, A. Roy, T. B. Emran and S. Cavalu. Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications. Materials. 2022;15(6):2160.
  • [5] D. Guo, G. Xie and J. Luo. Mechanical properties of nanoparticles: basics and applications. Journal of physics D: applied physics. 2013;47(1):013001.
  • [6] S. Hasan. A review on nanoparticles: their synthesis and types. Res. J. Recent Sci. 2015;2277:2502.
  • [7] A. L. Vasilakes, T. D. Dziubla and P. P. Wattamwar. Polymeric nanoparticles. Engineering Polymer Systems for Improved Drug Delivery. 2013:117-161.
  • [8] K. E. Drexler. Molecular engineering: An approach to the development of general capabilities for molecular manipulation. Proceedings of the National Academy of Sciences. 1981;78(9):5275-5278.
  • [9] J. P. Rao and K. E. Geckeler. Polymer nanoparticles: Preparation techniques and size-control parameters. Progress in polymer science. 2011;36(7):887-913.
  • [10] J. Pecher and S. Mecking. Nanoparticles of conjugated polymers. Chemical reviews. 2010;110(10):6260-6279.
  • [11] N. Anton, J.-P. Benoit and P. Saulnier. Design and production of nanoparticles formulated from nano-emulsion templates—A review. Journal of controlled release. 2008;128(3):185-199.
  • [12] C. Vauthier and K. Bouchemal. Methods for the preparation and manufacture of polymeric nanoparticles. Pharmaceutical research. 2009;26:1025-1058.
  • [13] K. Landfester, A. Musyanovych and V. Mailänder. From polymeric particles to multifunctional nanocapsules for biomedical applications using the miniemulsion process. Journal of Polymer Science Part A: Polymer Chemistry. 2010;48(3):493-515.
  • [14] E. Allémann, R. Gurny and E. Doelker. Drug-loaded nanoparticles: preparation methods and drug targeting issues. European journal of pharmaceutics and biopharmaceutics. 1993;39(5):173-191.
  • [15] D. Quintanar-Guerrero, E. Allémann, H. Fessi and E. Doelker. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug development and industrial pharmacy. 1998;24(12):1113-1128.
  • [16] E. Mathiowitz. Encyclopedia of controlled drug delivery. (No Title). 1999.
  • [17] P. Couvreur, G. Barratt, E. Fattal and C. Vauthier. Nanocapsule technology: a review. Critical Reviews™ in Therapeutic Drug Carrier Systems. 2002;19(2).
  • [18] D. Tuncel and H. V. Demir. Conjugated polymer nanoparticles. Nanoscale. 2010;2(4):484-494.
  • [19] H. S. Nalwa. Encyclopedia of nanoscience and nanotechnology. (No Title). 2004.
  • [20] G. G. Wallace and P. C. Innis. Inherently conducting polymer nanostructures. Journal of Nanoscience and Nanotechnology. 2002;2(5):441-451.
  • [21] J. S. SKAL. Colloidal dispersions of conducting polymers. Journal of Polymer Materials. 2001;18:225-258.
  • [22] B. Vincent. Electrically conducting polymer colloids and composites. Polymers for Advanced Technologies. 1995;6(5):356-361.
  • [23] S. Armes. Electrically conducting polymer colloids. Polymer News. 1995;20(8):233-237.
  • [24] M. Aldissi and S. Armes. Colloidal dispersions of conducting polymers. Progress in organic coatings. 1991;19(1):21-58.
  • [25] S. Armes and B. Vincent. Post-doping of sterically-stabilized polyacetylene latexes. Synthetic metals. 1988;25(2):171-179.
  • [26] L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik and J. R. Reynolds. Poly (3, 4‐ethylenedioxythiophene) and its derivatives: past, present, and future. Advanced materials. 2000;12(7):481-494.
  • [27] I. O. Huyal, T. Ozel, D. Tuncel and H. V. Demir. Quantum efficiency enhancement in film by making nanoparticles of polyfluorene. Optics Express. 2008;16(17):13391-13397.
  • [28] I. O. Ozel, T. Ozel, H. V. Demir and D. Tuncel. Non-radiative resonance energy transfer in bi-polymer nanoparticles of fluorescent conjugated polymers. Optics Express. 2010;18(2):670-684.
  • [29] S. Grigalevicius, M. Forster, S. Ellinger, K. Landfester and U. Scherf. Excitation energy transfer from semi‐conducting polymer nanoparticles to surface‐bound fluorescent dyes. Macromolecular rapid communications. 2006;27(3):200-202.
  • [30] J. Pecher and S. Mecking. Nanoparticles from step-growth coordination polymerization. 2007.
  • [31] J. Pecher and S. Mecking. Poly (p-phenylene vinylene) nanoparticles by acyclic diene metathesis (ADMET) polycondensation in aqueous emulsion. 2008.
  • [32] N. A. A. Rahim, W. McDaniel, K. Bardon, S. Srinivasan, V. Vickerman, P. T. So and J. H. Moon. Conjugated polymer nanoparticles for two‐photon imaging of endothelial cells in a tissue model. Advanced materials. 2009;21(34):3492-3496.
  • [33] E. Hittinger, A. Kokil and C. Weder. Synthesis and characterization of cross‐linked conjugated polymer milli‐, micro‐, and nanoparticles. Angewandte Chemie International Edition. 2004;43(14):1808-1811.
  • [34] R. H. Müller, K. Mäder and S. Gohla. Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. European journal of pharmaceutics and biopharmaceutics. 2000;50(1):161-177.
  • [35] S. Pragati, S. Kuldeep, S. Ashok and M. Satheesh. Solid lipid nanoparticles: a promising drug delivery technology. Int J Pharm Sci Nanotechnol. 2009;2(2):509-16.
  • [36] B. Basu, K. Garala, R. Bhalodia, B. Joshi and K. Mehta. Solid lipid nanoparticles: A promising tool for drug delivery system. J Pharm Res. 2010;3(1):84-92.
  • [37] C. Freitas and R. Müller. Correlation between long-term stability of solid lipid nanoparticles (SLN™) and crystallinity of the lipid phase. European journal of pharmaceutics and biopharmaceutics. 1999;47(2):125-132.
  • [38] R. Müller, M. Radtke and S. Wissing. Nanostructured lipid matrices for improved microencapsulation of drugs. International journal of pharmaceutics. 2002;242(1-2):121-128.
  • [39] C. Olbrich, A. Gessner, O. Kayser and R. H. Müller. Lipid-drug-conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediaceturate. Journal of drug targeting. 2002;10(5):387-396.
  • [40] X. Li, N. Anton, C. Arpagaus, F. Belleteix and T. F. Vandamme. Nanoparticles by spray drying using innovative new technology: The Büchi Nano Spray Dryer B-90. Journal of controlled release. 2010;147(2):304-310.
  • [41] S. H. Lee, D. Heng, W. K. Ng, H.-K. Chan and R. B. Tan. Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. International journal of pharmaceutics. 2011;403(1-2):192-200.
  • [42] P. York. Strategies for particle design using supercritical fluid technologies. Pharmaceutical science & technology today. 1999;2(11):430-440.
  • [43] A. Shariati and C. J. Peters. Recent developments in particle design using supercritical fluids. Current Opinion in Solid State and Materials Science. 2003;7(4-5):371-383.
  • [44] I. K. Wright, A. Higginbotham, S. M. Baker and T. Donnelly. Generation of nanoparticles of controlled size using ultrasonic piezoelectric oscillators in solution. ACS Applied Materials & Interfaces. 2010;2(8):2360-2364.
  • [45] P. Becher. Emulsions: theory and practice. American Chemical Society Washington, DC; 2001.
  • [46] P. Becher. Encyclopedia of emulsion technology. Basic theory. 1983;1:58-125.
  • [47] K. Mittal and B. Lindman. Surfactants in Solution Plenum Press. New York and London. 1984;2.
  • [48] K. J. Ruschak and C. A. Miller. Spontaneous emulsification in ternary systems with mass transfer. Industrial & Engineering Chemistry Fundamentals. 1972;11(4):534-540.
  • [49] C. A. Miller. Spontaneous emulsification produced by diffusion—a review. Colloids and surfaces. 1988;29(1):89-102.
  • [50] M. S. El-Aasser, C. D. Lack, J. W. Vanderhoff and F. M. Fowkes. The miniemulsification process—different form of spontaneous emulsification. Colloids and surfaces. 1988;29(1):103-118.
  • [51] F. Ganachaud and J. L. Katz. Nanoparticles and nanocapsules created using the ouzo effect: spontaneous emulsification as an alternative to ultrasonic and high‐shear devices. ChemPhysChem. 2005;6(2):209-216.
  • [52] K. Bouchemal, S. Briançon, E. Perrier and H. Fessi. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. International journal of pharmaceutics. 2004;280(1-2):241-251.
  • [53] Y. Kawashima, H. Yamamoto, H. Takeuchi, T. Hino and T. Niwa. Properties of a peptide containing DL-lactide/glycolide copolymer nanospheres prepared by novel emulsion solvent diffusion methods. European journal of pharmaceutics and biopharmaceutics. 1998;45(1):41-48.
  • [54] D. Quintanar-Guerrero, E. Allémann, E. Doelker and H. Fessi. A mechanistic study of the formation of polymer nanoparticles by the emulsification-diffusion technique. Colloid and Polymer Science. 1997;275:640-647.
  • [55] D. Quintanar-Guerrero, E. Allémann, H. Fessi and E. Doelker. Pseudolatex preparation using a novel emulsion–diffusion process involving direct displacement of partially water-miscible solvents by distillation. International journal of pharmaceutics. 1999;188(2):155-164.
  • [56] D. Quintanar-Guerrero, E. Allémann, E. Doelker and H. Fessi. Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification-diffusion technique. Pharmaceutical research. 1998;15:1056-1062.
  • [57] M. Gallardo, G. Couarraze, B. Denizot, L. Treupel, P. Couvreur and F. Puisieux. Study of the mechanisms of formation of nanoparticles and nanocapsules of polyisobutyl-2-cyanoacrylate. International journal of pharmaceutics. 1993;100(1-3):55-64.
  • [58] H. Fessi, F. Puisieux, J. P. Devissaguet, N. Ammoury and S. Benita. Nanocapsule formation by interfacial polymer deposition following solvent displacement. International journal of pharmaceutics. 1989;55(1):R1-R4.
  • [59] M. V. Ostrovsky and R. J. Good. Mechanism of microemulsion formation in systems with low interfacial tension: occurrence, properties, and behavior of microemulsions. Journal of colloid and interface science. 1984;102(1):206-226.
  • [60] P. Taylor and R. Ottewill. The formation and ageing rates of oil-in-water miniemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1994;88(2-3):303-316.
  • [61] P. Taylor and R. Ottewill. Ostwald ripening in O/W miniemulsions formed by the dilution of O/W microemulsions. Trends in Colloid and Interface Science VIII. 1994:199-203.
  • [62] A. Forgiarini, J. Esquena, C. Gonzalez and C. Solans. Formation of nano-emulsions by low-energy emulsification methods at constant temperature. Langmuir. 2001;17(7):2076-2083.
  • [63] H. Wu, C. Ramachandran, N. D. Weiner and B. J. Roessler. Topical transport of hydrophilic compounds using water-in-oil nanoemulsions. International journal of pharmaceutics. 2001;220(1-2):63-75.
  • [64] M. Porras, C. Solans, C. González, A. Martínez, A. Guinart and J. M. Gutiérrez. Studies of formation of W/O nano-emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2004;249(1-3):115-118.
  • [65] N. Uson, M. J. Garcia and C. Solans. Formation of water-in-oil (W/O) nano-emulsions in a water/mixed non-ionic surfactant/oil systems prepared by a low-energy emulsification method. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2004;250(1-3):415-421.
  • [66] I. Solè, A. Maestro, C. M. Pey, C. González, C. Solans and J. M. Gutiérrez. Nano-emulsions preparation by low energy methods in an ionic surfactant system. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2006;288(1-3):138-143.
  • [67] I. Sole, A. Maestro, C. González, C. Solans and J. M. Gutiérrez. Optimization of nano-emulsion preparation by low-energy methods in an ionic surfactant system. Langmuir. 2006;22(20):8326-8332.
  • [68] K. Shinoda and H. Saito. The effect of temperature on the phase equilibria and the types of dispersions of the ternary system composed of water, cyclohexane, and nonionic surfactant. Journal of colloid and interface science. 1968;26(1):70-74.
  • [69] K. Shinoda and H. Saito. The stability of O/W type emulsions as functions of temperature and the HLB of emulsifiers: the emulsification by PIT-method. Journal of colloid and interface science. 1969;30(2):258-263.
  • [70] P. Izquierdo, J. Esquena, T. F. Tadros, C. Dederen, M. J. Garcia, N. Azemar and C. Solans. Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir. 2002;18(1):26-30.
  • [71] P. Izquierdo, J. Esquena, T. F. Tadros, J. C. Dederen, J. Feng, M. J. Garcia-Celma, N. Azemar and C. Solans. Phase behavior and nano-emulsion formation by the phase inversion temperature method. Langmuir. 2004;20(16):6594-6598.
  • [72] C. Solans, P. Izquierdo, J. Nolla, N. Azemar and M. J. Garcia-Celma. Nano-emulsions. Current opinion in colloid & interface science. 2005;10(3-4):102-110.
  • [73] T. Förster, W. Von Rybinski and A. Wadle. Influence of microemulsion phases on the preparation of fine-disperse emulsions. Advances in colloid and interface science. 1995;58(2-3):119-149.
  • [74] R. Pons, I. Carrera, J. Caelles, J. Rouch and P. Panizza. Formation and properties of miniemulsions formed by microemulsions dilution. Advances in colloid and interface science. 2003;106(1-3):129-146.
  • [75] M. Stork, R. Tousain, J. Wieringa and O. H. Bosgra. A MILP approach to the optimization of the operation procedure of a fed-batch emulsification process in a stirred vessel. Computers & chemical engineering. 2003;27(11):1681-1691.
  • [76] C. Mabille, F. Leal-Calderon, J. Bibette and V. Schmitt. Monodisperse fragmentation in emulsions: Mechanisms and kinetics. Europhysics Letters. 2003;61(5):708.
  • [77] C. Mabille, V. Schmitt, P. Gorria, F. Leal Calderon, V. Faye, B. Deminiere and J. Bibette. Rheological and shearing conditions for the preparation of monodisperse emulsions. Langmuir. 2000;16(2):422-429.
  • [78] M. Trotta, F. Pattarino and T. Ignoni. Stability of drug-carrier emulsions containing phosphatidylcholine mixtures. European journal of pharmaceutics and biopharmaceutics. 2002;53(2):203-208.
  • [79] M. Lizarraga, L. Pan, M. C. Añon and L. G. Santiago. Stability of concentrated emulsions measured by optical and rheological methods. Effect of processing conditions—I. Whey protein concentrate. Food Hydrocolloids. 2008;22(5):868-878.
  • [80] M. Corzo-Martínez, A. C. Soria, M. Villamiel, A. Olano, F. M. Harte and F. J. Moreno. Effect of glycation on sodium caseinate-stabilized emulsions obtained by ultrasound. Journal of dairy science. 2011;94(1):51-58.
  • [81] M. A. Alex, A. Chacko, S. Jose and E. Souto. Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. European journal of pharmaceutical sciences. 2011;42(1-2):11-18.
  • [82] S. Das, W. K. Ng, P. Kanaujia, S. Kim and R. B. Tan. Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: effects of process variables. Colloids and surfaces b: biointerfaces. 2011;88(1):483-489.
  • [83] R. Kumar and S. Lal. Synthesis of organic nanoparticles and their applications in drug delivery and food nanotechnology: a review. J Nanomater Mol Nanotechnol 3: 4. of. 2014;11:2.
  • [84] R. Gurny, N. Peppas, D. Harrington and G. Banker. Development of biodegradable and injectable latices for controlled release of potent drugs. Drug development and industrial pharmacy. 1981;7(1):1-25.
  • [85] R. Brayner, F. Fiévet and T. Coradin. Nanomaterials: A danger or a promise. Synthesis of Organic and Bioorganic Nanoparticles: An Overview of the Preparation Methods. Springer-Verlag Allouche J. 2013:27-74.
  • [86] H. Ibrahim, C. Bindschaedler, E. Doelker, P. Buri and R. Gurny. Aqueous nanodispersions prepared by a salting-out process. International journal of pharmaceutics. 1992;87(1-3):239-246.
  • [87] R. Arshady. Preparation of polymer nano-and microspheres by vinyl polymerization techniques. Journal of microencapsulation. 1988;5(2):101-114.
  • [88] J. Asua. Prog Polym Sci 27: 1283. doi: 10.1016. S0079-6700 (02). 2002:00010-2.
  • [89] K. Landfester. Encapsulation through (mini) emulsion polymerization. Functional coatings: by polymer microencapsulation. 2006:29-66.
  • [90] C. Chern. Emulsion polymerization mechanisms and kinetics. Progress in polymer science. 2006;31(5):443-486.
  • [91] S. C. Thickett and R. G. Gilbert. Emulsion polymerization: State of the art in kinetics and mechanisms. Polymer. 2007;48(24):6965-6991.
  • [92] K. Landfester. Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angewandte Chemie International Edition. 2009;48(25):4488-4507.
  • [93] J. Allouche. Synthesis of organic and bioorganic nanoparticles: an overview of the preparation methods. Nanomaterials: A Danger or a Promise? A Chemical and Biological Perspective. 2012:27-74.
  • [94] A. Dalpiaz, E. Vighi, B. Pavan and E. Leo. Fabrication via a nonaqueous nanoprecipitation method, characterization and in vitro biological behavior of N6-cyclopentyladenosine-loaded nanoparticles. Journal of pharmaceutical sciences. 2009;98(11):4272-4284.
  • [95] F.-Y. Cheng, S. P.-H. Wang, C.-H. Su, T.-L. Tsai, P.-C. Wu, D.-B. Shieh, J.-H. Chen, P. C.-H. Hsieh and C.-S. Yeh. Stabilizer-free poly (lactide-co-glycolide) nanoparticles for multimodal biomedical probes. Biomaterials. 2008;29(13):2104-2112.
  • [96] J. Chang, Y. Jallouli, M. Kroubi, X.-b. Yuan, W. Feng, C.-s. Kang, P.-y. Pu and D. Betbeder. Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood–brain barrier. International journal of pharmaceutics. 2009;379(2):285-292.
  • [97] T. Nassar, A. Rom, A. Nyska and S. Benita. Novel double coated nanocapsules for intestinal delivery and enhanced oral bioavailability of tacrolimus, a P-gp substrate drug. Journal of controlled release. 2009;133(1):77-84.
  • [98] D. N. de Assis, V. C. F. Mosqueira, J. M. C. Vilela, M. S. Andrade and V. N. Cardoso. Release profiles and morphological characterization by atomic force microscopy and photon correlation spectroscopy of 99mTechnetium-fluconazole nanocapsules. International journal of pharmaceutics. 2008;349(1-2):152-160.

An Overview of the Preparation Methodologies for the Synthesis of Organic and Bioorganic Nanoparticles

Year 2024, Volume: 7 Issue: 2, 227 - 235, 18.12.2024
https://doi.org/10.54565/jphcfum.1528076

Abstract

Since the development of nanotechnology in recent decades, there has been a notable increase in research on the synthesis and design of organic and bioorganic nanomaterials. These materials have many uses in sectors that impact our way of life and society, such as photonics, electronics, and biology. The discovery of new functions and the development of features are essential aims that cannot be achieved without a better grasp of the preparation processes that serve as the base for the construction of certain organic substances. In this context, this overview offers a fundamental summary of the methods employed for the production of nanoparticles, encompassing both organic and bioorganic techniques. The most often used techniques for organic nanomaterials can be categorized into two families: one-step and two-step processes. In this article, we will discuss some generic concepts of organic nanomaterials and provide descriptions of organic materials.

References

  • [1] Z. Zahra, Z. Habib, S. Chung and M. A. Badshah. Exposure route of TiO2 NPs from industrial applications to wastewater treatment and their impacts on the agro-environment. Nanomaterials. 2020;10(8):1469.
  • [2] L. Rassaei, F. Marken, M. Sillanpää, M. Amiri, C. M. Cirtiu and M. Sillanpää. Nanoparticles in electrochemical sensors for environmental monitoring. TrAC Trends in Analytical Chemistry. 2011;30(11):1704-1715.
  • [3] J. Chen, Y. Guo, X. Zhang, J. Liu, P. Gong, Z. Su, L. Fan and G. Li. Emerging nanoparticles in food: sources, application, and safety. Journal of Agricultural and Food Chemistry. 2023;71(8):3564-3582.
  • [4] F. Islam, S. Shohag, M. J. Uddin, M. R. Islam, M. H. Nafady, A. Akter, S. Mitra, A. Roy, T. B. Emran and S. Cavalu. Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications. Materials. 2022;15(6):2160.
  • [5] D. Guo, G. Xie and J. Luo. Mechanical properties of nanoparticles: basics and applications. Journal of physics D: applied physics. 2013;47(1):013001.
  • [6] S. Hasan. A review on nanoparticles: their synthesis and types. Res. J. Recent Sci. 2015;2277:2502.
  • [7] A. L. Vasilakes, T. D. Dziubla and P. P. Wattamwar. Polymeric nanoparticles. Engineering Polymer Systems for Improved Drug Delivery. 2013:117-161.
  • [8] K. E. Drexler. Molecular engineering: An approach to the development of general capabilities for molecular manipulation. Proceedings of the National Academy of Sciences. 1981;78(9):5275-5278.
  • [9] J. P. Rao and K. E. Geckeler. Polymer nanoparticles: Preparation techniques and size-control parameters. Progress in polymer science. 2011;36(7):887-913.
  • [10] J. Pecher and S. Mecking. Nanoparticles of conjugated polymers. Chemical reviews. 2010;110(10):6260-6279.
  • [11] N. Anton, J.-P. Benoit and P. Saulnier. Design and production of nanoparticles formulated from nano-emulsion templates—A review. Journal of controlled release. 2008;128(3):185-199.
  • [12] C. Vauthier and K. Bouchemal. Methods for the preparation and manufacture of polymeric nanoparticles. Pharmaceutical research. 2009;26:1025-1058.
  • [13] K. Landfester, A. Musyanovych and V. Mailänder. From polymeric particles to multifunctional nanocapsules for biomedical applications using the miniemulsion process. Journal of Polymer Science Part A: Polymer Chemistry. 2010;48(3):493-515.
  • [14] E. Allémann, R. Gurny and E. Doelker. Drug-loaded nanoparticles: preparation methods and drug targeting issues. European journal of pharmaceutics and biopharmaceutics. 1993;39(5):173-191.
  • [15] D. Quintanar-Guerrero, E. Allémann, H. Fessi and E. Doelker. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug development and industrial pharmacy. 1998;24(12):1113-1128.
  • [16] E. Mathiowitz. Encyclopedia of controlled drug delivery. (No Title). 1999.
  • [17] P. Couvreur, G. Barratt, E. Fattal and C. Vauthier. Nanocapsule technology: a review. Critical Reviews™ in Therapeutic Drug Carrier Systems. 2002;19(2).
  • [18] D. Tuncel and H. V. Demir. Conjugated polymer nanoparticles. Nanoscale. 2010;2(4):484-494.
  • [19] H. S. Nalwa. Encyclopedia of nanoscience and nanotechnology. (No Title). 2004.
  • [20] G. G. Wallace and P. C. Innis. Inherently conducting polymer nanostructures. Journal of Nanoscience and Nanotechnology. 2002;2(5):441-451.
  • [21] J. S. SKAL. Colloidal dispersions of conducting polymers. Journal of Polymer Materials. 2001;18:225-258.
  • [22] B. Vincent. Electrically conducting polymer colloids and composites. Polymers for Advanced Technologies. 1995;6(5):356-361.
  • [23] S. Armes. Electrically conducting polymer colloids. Polymer News. 1995;20(8):233-237.
  • [24] M. Aldissi and S. Armes. Colloidal dispersions of conducting polymers. Progress in organic coatings. 1991;19(1):21-58.
  • [25] S. Armes and B. Vincent. Post-doping of sterically-stabilized polyacetylene latexes. Synthetic metals. 1988;25(2):171-179.
  • [26] L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik and J. R. Reynolds. Poly (3, 4‐ethylenedioxythiophene) and its derivatives: past, present, and future. Advanced materials. 2000;12(7):481-494.
  • [27] I. O. Huyal, T. Ozel, D. Tuncel and H. V. Demir. Quantum efficiency enhancement in film by making nanoparticles of polyfluorene. Optics Express. 2008;16(17):13391-13397.
  • [28] I. O. Ozel, T. Ozel, H. V. Demir and D. Tuncel. Non-radiative resonance energy transfer in bi-polymer nanoparticles of fluorescent conjugated polymers. Optics Express. 2010;18(2):670-684.
  • [29] S. Grigalevicius, M. Forster, S. Ellinger, K. Landfester and U. Scherf. Excitation energy transfer from semi‐conducting polymer nanoparticles to surface‐bound fluorescent dyes. Macromolecular rapid communications. 2006;27(3):200-202.
  • [30] J. Pecher and S. Mecking. Nanoparticles from step-growth coordination polymerization. 2007.
  • [31] J. Pecher and S. Mecking. Poly (p-phenylene vinylene) nanoparticles by acyclic diene metathesis (ADMET) polycondensation in aqueous emulsion. 2008.
  • [32] N. A. A. Rahim, W. McDaniel, K. Bardon, S. Srinivasan, V. Vickerman, P. T. So and J. H. Moon. Conjugated polymer nanoparticles for two‐photon imaging of endothelial cells in a tissue model. Advanced materials. 2009;21(34):3492-3496.
  • [33] E. Hittinger, A. Kokil and C. Weder. Synthesis and characterization of cross‐linked conjugated polymer milli‐, micro‐, and nanoparticles. Angewandte Chemie International Edition. 2004;43(14):1808-1811.
  • [34] R. H. Müller, K. Mäder and S. Gohla. Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. European journal of pharmaceutics and biopharmaceutics. 2000;50(1):161-177.
  • [35] S. Pragati, S. Kuldeep, S. Ashok and M. Satheesh. Solid lipid nanoparticles: a promising drug delivery technology. Int J Pharm Sci Nanotechnol. 2009;2(2):509-16.
  • [36] B. Basu, K. Garala, R. Bhalodia, B. Joshi and K. Mehta. Solid lipid nanoparticles: A promising tool for drug delivery system. J Pharm Res. 2010;3(1):84-92.
  • [37] C. Freitas and R. Müller. Correlation between long-term stability of solid lipid nanoparticles (SLN™) and crystallinity of the lipid phase. European journal of pharmaceutics and biopharmaceutics. 1999;47(2):125-132.
  • [38] R. Müller, M. Radtke and S. Wissing. Nanostructured lipid matrices for improved microencapsulation of drugs. International journal of pharmaceutics. 2002;242(1-2):121-128.
  • [39] C. Olbrich, A. Gessner, O. Kayser and R. H. Müller. Lipid-drug-conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediaceturate. Journal of drug targeting. 2002;10(5):387-396.
  • [40] X. Li, N. Anton, C. Arpagaus, F. Belleteix and T. F. Vandamme. Nanoparticles by spray drying using innovative new technology: The Büchi Nano Spray Dryer B-90. Journal of controlled release. 2010;147(2):304-310.
  • [41] S. H. Lee, D. Heng, W. K. Ng, H.-K. Chan and R. B. Tan. Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. International journal of pharmaceutics. 2011;403(1-2):192-200.
  • [42] P. York. Strategies for particle design using supercritical fluid technologies. Pharmaceutical science & technology today. 1999;2(11):430-440.
  • [43] A. Shariati and C. J. Peters. Recent developments in particle design using supercritical fluids. Current Opinion in Solid State and Materials Science. 2003;7(4-5):371-383.
  • [44] I. K. Wright, A. Higginbotham, S. M. Baker and T. Donnelly. Generation of nanoparticles of controlled size using ultrasonic piezoelectric oscillators in solution. ACS Applied Materials & Interfaces. 2010;2(8):2360-2364.
  • [45] P. Becher. Emulsions: theory and practice. American Chemical Society Washington, DC; 2001.
  • [46] P. Becher. Encyclopedia of emulsion technology. Basic theory. 1983;1:58-125.
  • [47] K. Mittal and B. Lindman. Surfactants in Solution Plenum Press. New York and London. 1984;2.
  • [48] K. J. Ruschak and C. A. Miller. Spontaneous emulsification in ternary systems with mass transfer. Industrial & Engineering Chemistry Fundamentals. 1972;11(4):534-540.
  • [49] C. A. Miller. Spontaneous emulsification produced by diffusion—a review. Colloids and surfaces. 1988;29(1):89-102.
  • [50] M. S. El-Aasser, C. D. Lack, J. W. Vanderhoff and F. M. Fowkes. The miniemulsification process—different form of spontaneous emulsification. Colloids and surfaces. 1988;29(1):103-118.
  • [51] F. Ganachaud and J. L. Katz. Nanoparticles and nanocapsules created using the ouzo effect: spontaneous emulsification as an alternative to ultrasonic and high‐shear devices. ChemPhysChem. 2005;6(2):209-216.
  • [52] K. Bouchemal, S. Briançon, E. Perrier and H. Fessi. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. International journal of pharmaceutics. 2004;280(1-2):241-251.
  • [53] Y. Kawashima, H. Yamamoto, H. Takeuchi, T. Hino and T. Niwa. Properties of a peptide containing DL-lactide/glycolide copolymer nanospheres prepared by novel emulsion solvent diffusion methods. European journal of pharmaceutics and biopharmaceutics. 1998;45(1):41-48.
  • [54] D. Quintanar-Guerrero, E. Allémann, E. Doelker and H. Fessi. A mechanistic study of the formation of polymer nanoparticles by the emulsification-diffusion technique. Colloid and Polymer Science. 1997;275:640-647.
  • [55] D. Quintanar-Guerrero, E. Allémann, H. Fessi and E. Doelker. Pseudolatex preparation using a novel emulsion–diffusion process involving direct displacement of partially water-miscible solvents by distillation. International journal of pharmaceutics. 1999;188(2):155-164.
  • [56] D. Quintanar-Guerrero, E. Allémann, E. Doelker and H. Fessi. Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification-diffusion technique. Pharmaceutical research. 1998;15:1056-1062.
  • [57] M. Gallardo, G. Couarraze, B. Denizot, L. Treupel, P. Couvreur and F. Puisieux. Study of the mechanisms of formation of nanoparticles and nanocapsules of polyisobutyl-2-cyanoacrylate. International journal of pharmaceutics. 1993;100(1-3):55-64.
  • [58] H. Fessi, F. Puisieux, J. P. Devissaguet, N. Ammoury and S. Benita. Nanocapsule formation by interfacial polymer deposition following solvent displacement. International journal of pharmaceutics. 1989;55(1):R1-R4.
  • [59] M. V. Ostrovsky and R. J. Good. Mechanism of microemulsion formation in systems with low interfacial tension: occurrence, properties, and behavior of microemulsions. Journal of colloid and interface science. 1984;102(1):206-226.
  • [60] P. Taylor and R. Ottewill. The formation and ageing rates of oil-in-water miniemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1994;88(2-3):303-316.
  • [61] P. Taylor and R. Ottewill. Ostwald ripening in O/W miniemulsions formed by the dilution of O/W microemulsions. Trends in Colloid and Interface Science VIII. 1994:199-203.
  • [62] A. Forgiarini, J. Esquena, C. Gonzalez and C. Solans. Formation of nano-emulsions by low-energy emulsification methods at constant temperature. Langmuir. 2001;17(7):2076-2083.
  • [63] H. Wu, C. Ramachandran, N. D. Weiner and B. J. Roessler. Topical transport of hydrophilic compounds using water-in-oil nanoemulsions. International journal of pharmaceutics. 2001;220(1-2):63-75.
  • [64] M. Porras, C. Solans, C. González, A. Martínez, A. Guinart and J. M. Gutiérrez. Studies of formation of W/O nano-emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2004;249(1-3):115-118.
  • [65] N. Uson, M. J. Garcia and C. Solans. Formation of water-in-oil (W/O) nano-emulsions in a water/mixed non-ionic surfactant/oil systems prepared by a low-energy emulsification method. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2004;250(1-3):415-421.
  • [66] I. Solè, A. Maestro, C. M. Pey, C. González, C. Solans and J. M. Gutiérrez. Nano-emulsions preparation by low energy methods in an ionic surfactant system. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2006;288(1-3):138-143.
  • [67] I. Sole, A. Maestro, C. González, C. Solans and J. M. Gutiérrez. Optimization of nano-emulsion preparation by low-energy methods in an ionic surfactant system. Langmuir. 2006;22(20):8326-8332.
  • [68] K. Shinoda and H. Saito. The effect of temperature on the phase equilibria and the types of dispersions of the ternary system composed of water, cyclohexane, and nonionic surfactant. Journal of colloid and interface science. 1968;26(1):70-74.
  • [69] K. Shinoda and H. Saito. The stability of O/W type emulsions as functions of temperature and the HLB of emulsifiers: the emulsification by PIT-method. Journal of colloid and interface science. 1969;30(2):258-263.
  • [70] P. Izquierdo, J. Esquena, T. F. Tadros, C. Dederen, M. J. Garcia, N. Azemar and C. Solans. Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir. 2002;18(1):26-30.
  • [71] P. Izquierdo, J. Esquena, T. F. Tadros, J. C. Dederen, J. Feng, M. J. Garcia-Celma, N. Azemar and C. Solans. Phase behavior and nano-emulsion formation by the phase inversion temperature method. Langmuir. 2004;20(16):6594-6598.
  • [72] C. Solans, P. Izquierdo, J. Nolla, N. Azemar and M. J. Garcia-Celma. Nano-emulsions. Current opinion in colloid & interface science. 2005;10(3-4):102-110.
  • [73] T. Förster, W. Von Rybinski and A. Wadle. Influence of microemulsion phases on the preparation of fine-disperse emulsions. Advances in colloid and interface science. 1995;58(2-3):119-149.
  • [74] R. Pons, I. Carrera, J. Caelles, J. Rouch and P. Panizza. Formation and properties of miniemulsions formed by microemulsions dilution. Advances in colloid and interface science. 2003;106(1-3):129-146.
  • [75] M. Stork, R. Tousain, J. Wieringa and O. H. Bosgra. A MILP approach to the optimization of the operation procedure of a fed-batch emulsification process in a stirred vessel. Computers & chemical engineering. 2003;27(11):1681-1691.
  • [76] C. Mabille, F. Leal-Calderon, J. Bibette and V. Schmitt. Monodisperse fragmentation in emulsions: Mechanisms and kinetics. Europhysics Letters. 2003;61(5):708.
  • [77] C. Mabille, V. Schmitt, P. Gorria, F. Leal Calderon, V. Faye, B. Deminiere and J. Bibette. Rheological and shearing conditions for the preparation of monodisperse emulsions. Langmuir. 2000;16(2):422-429.
  • [78] M. Trotta, F. Pattarino and T. Ignoni. Stability of drug-carrier emulsions containing phosphatidylcholine mixtures. European journal of pharmaceutics and biopharmaceutics. 2002;53(2):203-208.
  • [79] M. Lizarraga, L. Pan, M. C. Añon and L. G. Santiago. Stability of concentrated emulsions measured by optical and rheological methods. Effect of processing conditions—I. Whey protein concentrate. Food Hydrocolloids. 2008;22(5):868-878.
  • [80] M. Corzo-Martínez, A. C. Soria, M. Villamiel, A. Olano, F. M. Harte and F. J. Moreno. Effect of glycation on sodium caseinate-stabilized emulsions obtained by ultrasound. Journal of dairy science. 2011;94(1):51-58.
  • [81] M. A. Alex, A. Chacko, S. Jose and E. Souto. Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. European journal of pharmaceutical sciences. 2011;42(1-2):11-18.
  • [82] S. Das, W. K. Ng, P. Kanaujia, S. Kim and R. B. Tan. Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: effects of process variables. Colloids and surfaces b: biointerfaces. 2011;88(1):483-489.
  • [83] R. Kumar and S. Lal. Synthesis of organic nanoparticles and their applications in drug delivery and food nanotechnology: a review. J Nanomater Mol Nanotechnol 3: 4. of. 2014;11:2.
  • [84] R. Gurny, N. Peppas, D. Harrington and G. Banker. Development of biodegradable and injectable latices for controlled release of potent drugs. Drug development and industrial pharmacy. 1981;7(1):1-25.
  • [85] R. Brayner, F. Fiévet and T. Coradin. Nanomaterials: A danger or a promise. Synthesis of Organic and Bioorganic Nanoparticles: An Overview of the Preparation Methods. Springer-Verlag Allouche J. 2013:27-74.
  • [86] H. Ibrahim, C. Bindschaedler, E. Doelker, P. Buri and R. Gurny. Aqueous nanodispersions prepared by a salting-out process. International journal of pharmaceutics. 1992;87(1-3):239-246.
  • [87] R. Arshady. Preparation of polymer nano-and microspheres by vinyl polymerization techniques. Journal of microencapsulation. 1988;5(2):101-114.
  • [88] J. Asua. Prog Polym Sci 27: 1283. doi: 10.1016. S0079-6700 (02). 2002:00010-2.
  • [89] K. Landfester. Encapsulation through (mini) emulsion polymerization. Functional coatings: by polymer microencapsulation. 2006:29-66.
  • [90] C. Chern. Emulsion polymerization mechanisms and kinetics. Progress in polymer science. 2006;31(5):443-486.
  • [91] S. C. Thickett and R. G. Gilbert. Emulsion polymerization: State of the art in kinetics and mechanisms. Polymer. 2007;48(24):6965-6991.
  • [92] K. Landfester. Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angewandte Chemie International Edition. 2009;48(25):4488-4507.
  • [93] J. Allouche. Synthesis of organic and bioorganic nanoparticles: an overview of the preparation methods. Nanomaterials: A Danger or a Promise? A Chemical and Biological Perspective. 2012:27-74.
  • [94] A. Dalpiaz, E. Vighi, B. Pavan and E. Leo. Fabrication via a nonaqueous nanoprecipitation method, characterization and in vitro biological behavior of N6-cyclopentyladenosine-loaded nanoparticles. Journal of pharmaceutical sciences. 2009;98(11):4272-4284.
  • [95] F.-Y. Cheng, S. P.-H. Wang, C.-H. Su, T.-L. Tsai, P.-C. Wu, D.-B. Shieh, J.-H. Chen, P. C.-H. Hsieh and C.-S. Yeh. Stabilizer-free poly (lactide-co-glycolide) nanoparticles for multimodal biomedical probes. Biomaterials. 2008;29(13):2104-2112.
  • [96] J. Chang, Y. Jallouli, M. Kroubi, X.-b. Yuan, W. Feng, C.-s. Kang, P.-y. Pu and D. Betbeder. Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood–brain barrier. International journal of pharmaceutics. 2009;379(2):285-292.
  • [97] T. Nassar, A. Rom, A. Nyska and S. Benita. Novel double coated nanocapsules for intestinal delivery and enhanced oral bioavailability of tacrolimus, a P-gp substrate drug. Journal of controlled release. 2009;133(1):77-84.
  • [98] D. N. de Assis, V. C. F. Mosqueira, J. M. C. Vilela, M. S. Andrade and V. N. Cardoso. Release profiles and morphological characterization by atomic force microscopy and photon correlation spectroscopy of 99mTechnetium-fluconazole nanocapsules. International journal of pharmaceutics. 2008;349(1-2):152-160.
There are 98 citations in total.

Details

Primary Language English
Subjects Chemical Thermodynamics and Energetics
Journal Section Articles
Authors

Karzan Mahmood 0000-0001-9338-6341

Aryan Qader 0000-0002-2547-7708

Rebaz Omer 0000-0002-3774-6071

Eman Abdulkareem 0000-0001-8991-0702

Publication Date December 18, 2024
Submission Date August 5, 2024
Acceptance Date September 24, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Mahmood, K., Qader, A., Omer, R., Abdulkareem, E. (2024). An Overview of the Preparation Methodologies for the Synthesis of Organic and Bioorganic Nanoparticles. Journal of Physical Chemistry and Functional Materials, 7(2), 227-235. https://doi.org/10.54565/jphcfum.1528076
AMA Mahmood K, Qader A, Omer R, Abdulkareem E. An Overview of the Preparation Methodologies for the Synthesis of Organic and Bioorganic Nanoparticles. Journal of Physical Chemistry and Functional Materials. December 2024;7(2):227-235. doi:10.54565/jphcfum.1528076
Chicago Mahmood, Karzan, Aryan Qader, Rebaz Omer, and Eman Abdulkareem. “An Overview of the Preparation Methodologies for the Synthesis of Organic and Bioorganic Nanoparticles”. Journal of Physical Chemistry and Functional Materials 7, no. 2 (December 2024): 227-35. https://doi.org/10.54565/jphcfum.1528076.
EndNote Mahmood K, Qader A, Omer R, Abdulkareem E (December 1, 2024) An Overview of the Preparation Methodologies for the Synthesis of Organic and Bioorganic Nanoparticles. Journal of Physical Chemistry and Functional Materials 7 2 227–235.
IEEE K. Mahmood, A. Qader, R. Omer, and E. Abdulkareem, “An Overview of the Preparation Methodologies for the Synthesis of Organic and Bioorganic Nanoparticles”, Journal of Physical Chemistry and Functional Materials, vol. 7, no. 2, pp. 227–235, 2024, doi: 10.54565/jphcfum.1528076.
ISNAD Mahmood, Karzan et al. “An Overview of the Preparation Methodologies for the Synthesis of Organic and Bioorganic Nanoparticles”. Journal of Physical Chemistry and Functional Materials 7/2 (December 2024), 227-235. https://doi.org/10.54565/jphcfum.1528076.
JAMA Mahmood K, Qader A, Omer R, Abdulkareem E. An Overview of the Preparation Methodologies for the Synthesis of Organic and Bioorganic Nanoparticles. Journal of Physical Chemistry and Functional Materials. 2024;7:227–235.
MLA Mahmood, Karzan et al. “An Overview of the Preparation Methodologies for the Synthesis of Organic and Bioorganic Nanoparticles”. Journal of Physical Chemistry and Functional Materials, vol. 7, no. 2, 2024, pp. 227-35, doi:10.54565/jphcfum.1528076.
Vancouver Mahmood K, Qader A, Omer R, Abdulkareem E. An Overview of the Preparation Methodologies for the Synthesis of Organic and Bioorganic Nanoparticles. Journal of Physical Chemistry and Functional Materials. 2024;7(2):227-35.

© 2018 Journal of Physical Chemistry and Functional Materials (JPCFM). All rights reserved.
For inquiries, submissions, and editorial support, please get in touch with nbulut@firat.edu.tr or visit our website at https://dergipark.org.tr/en/pub/jphcfum.

Stay connected with JPCFM for the latest research updates on physical chemistry and functional materials. Follow us on Social Media.

Published by DergiPark. Proudly supporting the advancement of science and innovation.https://dergipark.org.tr/en/pub/jphcfum