Review Article
BibTex RIS Cite

Determination of Three Metal Ions (Cu2+, Pb2+, Cd2+) by Ultraviolet-visible Spectroscopy

Year 2024, Volume: 7 Issue: 2, 88 - 100, 18.12.2024
https://doi.org/10.54565/jphcfum.1535225

Abstract

Abstract
The objective of this article review is the determination of the concentration or amount of trace metal ions using Ultraviolet-visible spectrophotometry. The maximum absorption wavelength (λ-max) of the three metallic ions (Cu+2, Pb+2, and Cd+2) that I have highlighted are equivalent to (755 nm, 100-380 nm, and 323.9 nm) when they are alone, However, when these metal ions interact with a reagent, the λ-max of each metal ion differs. Ultraviolet-visible (UV-Vis) spectrophotometry is deemed an efficient method for both qualitative and quantitative analysis of pollutants in a water environment. This succinct statement outlines the focus of the article review, emphasizing the application of UV-Vis spectrophotometry for analyzing trace metal ions in water samples. Also, the analytical technique measures the amount of single-color lighting absorbed via a colorless substance in the close ultraviolet light region of a range (between 200 and 400 nm). The process required to ascertain the “identity, strength, quality and purity” of such chemicals is included in the pharmaceutical analysis. Using calibration curves and absorption band correlation with certain ions to find concentration metal ion or analyte in the sample. A bibliometric analysis classifies the top 10,000 cited UV-Vis papers (2016-2017) into four clusters: nanoparticles, photocatalysis, crystals, and biological interaction of Ag and Au nanoparticles.

References

  • 1. G.D. Christian, P.K. Dasgupta, and K.A. Schug, Analytical chemistry. 2013: John Wiley & Sons.
  • 2. N. Sudharshan and V. Swetha, UV-VISIBLE SPECTROSCOPY: A COMPREHENSIVE REVIEW ON INSTRUMENTATION. 2023.
  • 3. S.J.I.J.o.P.R. Vijayraj and Analysis, Analytical process of drug by ultraviolet (UV) spectroscopy: A review. 2012. 2(2): p. 72-78.
  • 4. D.A. Skoog, F.J. Holler, and S.R. Crouch, Instrumental analysis. Vol. 47. 2007: Brooks/Cole, Cengage Learning Belmont.
  • 5. K.N. Aziz, et al., A review of coordination compounds: structure, stability, and biological significance. Reviews in Inorganic Chemistry, 2024(0).
  • 6. B. Bansod, et al., A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. 2017. 94: p. 443-455.
  • 7. K.N. Aziz, et al., Organometallic complexes and reaction methods for synthesis: a review. Reviews in Inorganic Chemistry, 2024(0).
  • 8. R.A. OMER, et al., Computational and spectroscopy study of melatonin. Indian Journal of Chemistry-Section B (IJC-B), 2021. 60(5): p. 732-741.
  • 9. H. Ismail, et al., Synthesis, Characterization, and Computational Insights Into the Conductive Poly (p-aminophenol). Russian Journal of Physical Chemistry B, 2024. 18(4): p. 1148-1165.
  • 10. L. Sommer, Analytical absorption spectrophotometry in the visible and ultraviolet: the principles. 2012: Elsevier.
  • 11. B.M. Weckhuysen, P. Voort, and G. Catana, Spectroscopy of transition metal ions on surfaces. 2000: Leuven University Press.
  • 12. A. Vogler and H. Kunkely, Photoreactivity of metal-to-ligand charge transfer excited states. Coordination chemistry reviews, 1998. 177(1): p. 81-96.
  • 13. C.P. Bacon, Y. Mattley, and R.J.R.o.S.i. DeFrece, Miniature spectroscopic instrumentation: Applications to biology and chemistry. 2004. 75(1): p. 1-16.
  • 14. D.M.K. Panchal, et al., A REVIEW ON “HIGH PERFORMANCE THIN LAYER CHROMATOGRAPHY”. 2022.
  • 15. G. Verma and M.J.W.J.P.R. Mishra, Development and optimization of UV-Vis spectroscopy-a review. 2018. 7(11): p. 1170-1180.
  • 16. D. González-Morales, et al., Development of a low-cost UV-Vis spectrophotometer and its application for the detection of mercuric ions assisted by chemosensors. 2020. 20(3): p. 906.
  • 17. D.M. Atole and H.H.J.A.J.p.c.r. Rajput, Ultraviolet spectroscopy and its pharmaceutical applications-a brief review. 2018. 11(2): p. 59-66.
  • 18. I.I. Mut Günzler and A.J.E. Williams, Handbook of analytical techniques,. 2001. 1: p. 1.2.
  • 19. S.L.J.E.o.a.c. Upstone, Ultraviolet/visible light absorption spectrophotometry in clinical chemistry. 2000: p. 1699-1714.
  • 20. D.L. Pavia, et al., Introduction to spectroscopy. 2014: Cengage learning.
  • 21. W. Cheng, et al., Direct-determination of high-concentration sulfate by serial differential spectrophotometry with multiple optical pathlengths. 2022. 811: p. 152121.
  • 22. F. Zhou, et al., A spectrophotometric method for simultaneous determination of trace ions of copper, cobalt, and nickel in the zinc sulfate solution by ultraviolet-visible spectrometry. 2019. 223: p. 117370.
  • 23. L.H. Abdel-Rahman, et al., Synthesis, characterization, biological and docking studies of ZrO (II), VO (II) and Zn (II) complexes of a halogenated tetra-dentate Schiff base. 2022. 15(5): p. 103737.
  • 24. M.L. Passos and M.L.M.J.M. Saraiva, Detection in UV-visible spectrophotometry: Detectors, detection systems, and detection strategies. 2019. 135: p. 896-904.
  • 25. F.S. Rocha, et al., Experimental methods in chemical engineering: Ultraviolet visible spectroscopy—UV‐Vis. 2018. 96(12): p. 2512-2517.
  • 26. R.A. Omer, et al., Combined DFT and Monte Carlo simulation studies of potential corrosion inhibition properties of coumarin derivatives. Journal of Molecular Modeling, 2024. 30(8): p. 288.
  • 27. Y.H. Azeez, et al., Combined DFT and Monte Carlo simulation studies of potential corrosion inhibition properties of heterocyclic derivatives with an extended π-System. Computational and Theoretical Chemistry, 2024. 1240: p. 114803.
  • 28. M. Sauer, J. Hofkens, and J. Enderlein, Handbook of fluorescence spectroscopy and imaging: from ensemble to single molecules. 2010: John Wiley & Sons.
  • 29. Y.H. Azeez, et al., Investigation of corrosion inhibition and adsorption properties of quinoxaline derivatives on metal surfaces through DFT and Monte Carlo simulations. Corrosion Reviews, 2024(0).
  • 30. Y.R. Sharma, Elementary organic spectroscopy. 2007: S. Chand Publishing.
  • 31. G. Shinde, et al., A Review on Advances in UV Spectroscopy. 2020. 12(1): p. 47-51.
  • 32. N.S. Nemeş, A.J.M.E.T.F. Negrea, and Applications, Infrared and Visible Spectroscopy: Fourier Transform Infrared Spectroscopy and Ultraviolet–Visible Spectroscopy. 2023. 1: p. 163-200.
  • 33. D.L. Pavia, G.M. Lampman, and G.S.J. Kriz, Introduction to organic laboratory techniques: a contemporary approach. 1976.
  • 34. D. Harvey, Modern analytical chemistry. 2000: McGraw Hill.
  • 35. J. Cazes, Analytical instrumentation handbook. 2004: CRC Press.
  • 36. C. Adeeyinwo, et al., Basic calibration of UV/visible spectrophotometer. 2013. 2(3): p. 247-251.
  • 37. E. Pourbasheer, et al., Design of a novel optical sensor for determination of trace amounts of copper by UV–visible spectrophotometry in real samples. 2018. 32(3): p. e4110.
  • 38. A.A.A. Hassoni and A.S. Abbas. Cloud point extraction for the determination of copper (II) by UV-visible spectrophotometry. in AIP Conference Proceedings. 2022. AIP Publishing.
  • 39. M.-B. Kime and D.J.C.E.C. Makgoale, Characterization of copper–cobalt ores and quantification of Cu2+, Co2+, Co3+, and Fe3+ in aqueous leachates using UV/Visible spectrophotometry. 2016. 203(12): p. 1648-1655.
  • 40. M.-h. Cui, et al., A novel UV-visible chemosensor based on the 8-hydroxyquinoline derivative for copper ion detection. 2015. 7(10): p. 4252-4256.
  • 41. J.i.J.A. Miura, Masking agents in the spectrophotometric determination of metal ions with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol and non-ionic surfactant. 1989. 114(10): p. 1323-1329.
  • 42. S.S. Hassan, et al., Determination of metformin in pharmaceutical preparations using potentiometry, spectrofluorimetry and UV–visible spectrophotometry. 1999. 378(1-3): p. 299-311.
  • 43. F. Zhou, et al., Determination of trace ions of cobalt and copper by UV–vis spectrometry in purification process of zinc hydrometallurgy. 2019. 184: p. 227-233.
  • 44. J.J. Pinto, et al., A simple and very sensitive spectrophotometric method for the direct determination of copper ions. 2002. 373: p. 844-848.
  • 45. T. Güray and Ü.D.J.J.o.t.C.S.o.P. UYSAL, Validated UV-Vis Spectrophotometric Method for the Determination of Copper using 2, 3, 4, 6/-Tetrahydroxy-3/-Sulfoazobenzene in Real Samples. 2018. 40(3).
  • 46. M.M. Hassan and A.F. Hussain. Study of the spectrophotometric determination of Copper ion (I) by Michler’s thioketone Reagent. in IOP Conference Series: Materials Science and Engineering. 2020. IOP Publishing.
  • 47. C. Kavitha, et al., Spectrophotometric determination of copper as copper piperazine. 2013. 8: p. 205-209.
  • 48. E. Chiyindiko, E.H. Langner, and J.J.E.A. Conradie, Electrochemical behaviour of copper (II) complexes containing 2-hydroxyphenones. 2022. 424: p. 140629.
  • 49. E. Chiyindiko, E.H. Langner, and J.J.M. Conradie, Spectroscopic behaviour of copper (II) complexes containing 2-hydroxyphenones. 2022. 27(18): p. 6033.
  • 50. E. Santoyo, S. Santoyo-Gutiérrez, and S.P.J.J.o.C.A. Verma, Trace analysis of heavy metals in groundwater samples by ion chromatography with post-column reaction and ultraviolet–visible detection. 2000. 884(1-2): p. 229-241.
  • 51. A. Timerbaev and G.J.J.o.C.A. Bonn, Complexation ion chromatography—an overview of developments and trends in trace metal analysis. 1993. 640(1-2): p. 195-206.
  • 52. N.J. Williams, et al., Possible steric control of the relative strength of chelation enhanced fluorescence for Zinc (II) compared to Cadmium (II): Metal ion complexing properties of Tris (2-quinolylmethyl) amine, a crystallographic, UV− Visible, and fluorometric study. 2009. 48(4): p. 1407-1415.
  • 53. M. Shakil Hossain, Determination of lead (pb) in trace amount using Ultraviolet-visible spectrophotometric method. 2011.
  • 54. J. Mutembei, et al., Determination of heavy metals and nutrients in Rivers Naka and Irigu, Chuka,(Kenya) using atomic absorption spectrometry and UV/visible spectrophotometry. 2014. 7(11): p. 82-88.
  • 55. W. Ruengsitagoon, A. Chisvert, and S.J.T. Liawruangrath, Flow injection spectrophotometric determination of lead using 1, 5-diphenylthiocarbazone in aqueous micellar. 2010. 81(1-2): p. 709-713.
  • 56. N. Rajesh, S.J.S.A.P.A.M. Manikandan, and B. Spectroscopy, Spectrophotometric determination of lead after preconcentration of its diphenylthiocarbazone complex on an Amberlite XAD-1180 column. 2008. 70(4): p. 754-757.
  • 57. M. Luconi, et al., Flow injection spectrophotometric analysis of lead in human saliva for monitoring environmental pollution. 2001. 54(1): p. 45-52.
  • 58. C. Okoye, et al., Simultaneous ultraviolet-visible (UV–VIS) spectrophotometric quantitative determination of Pb, Hg, Cd, As and Ni ions in aqueous solutions using cyanidin as a chromogenic reagent. 2013. 8(3): p. 98-102.
  • 59. Z.A. Khammas, A.A. Ghali, and K.H.J.I.J.C.S. Kadhim, Combined cloud-point extraction and spectrophotometric detection of lead and cadmium in honey samples using a new ligand. 2012. 10(3): p. 1185-1204.
  • 60. K.M. Elsherif, et al., Facile spectrophotometric determination of Cd (II) and Pb (II) using murexide reagent in mixed solvent system. 2022. 8(4): p. 144-152.
  • 61. H. Khan, M. Jamaluddin Ahmed, and M.J.S. Iqbal Bhanger, A simple spectrophotometric method for the determination of trace level lead in biological samples in the presence of aqueous micellar solutions. 2006. 20(5-6): p. 285-297.
  • 62. H.J.C.P. Cesur, Selective solid-phase extraction of Cu (II) using freshly precipitated lead diethyldithiocarbamate and its spectrophotometric determination. 2007. 61: p. 342-347.
  • 63. R. Dagnall, T. West, and P.J.T. Young, Determination of lead with 4-(2-pyridylazo)-resorcinol—I: Spectrophotometry and solvent extraction. 1965. 12(6): p. 583-588.
  • 64. Z. Marczenko and M. Balcerzak, Separation, preconcentration and spectrophotometry in inorganic analysis. 2000: Elsevier.
  • 65. K. Matharu, et al., Selectivity enhancement of Arsenazo (III) reagent towards heavier lanthanides using polyaminocarboxylic acids: A spectrophotometric study. 2015. 145: p. 165-175.
  • 66. L.S.G. Teixeira, et al., Spectrophotometric determination of uranium using 2-(2-thiazolylazo)-p-cresol (TAC) in the presence of surfactants. 1999. 10: p. 519-522.
  • 67. A.R. Sekhar, et al., Porphyrin as a versatile visible-light-activatable organic/metal hybrid photoremovable protecting group. 2022. 13(1): p. 3614.
  • 68. D. Xu, et al., Simultaneous determination of traces amounts of cadmium, zinc, and cobalt based on UV–Vis spectrometry combined with wavelength selection and partial least squares regression. 2014. 123: p. 430-435.
  • 69. M.J. Ahmed and M.T.I.J.A.S. Chowdhury, A simple spectrophotometric method for the determination of cadmium in industrial, environmental, biological and soil samples using 5, 7-dibromo-8-hydroxyquinoline. 2004. 20(6): p. 987-990.
  • 70. K. Parikh, R. Patel, and K.J.E.-J.o.C. Patel, New spectrophotometric method for determination of cadmium. 2009. 6(S1): p. S496-S500.
  • 71. E.Y.J.S.A.P.A.M. Hashem and B. Spectroscopy, Spectrophotometric studies on the simultaneous determination of cadmium and mercury with 4-(2-pyridylazo)-resorcinol. 2002. 58(7): p. 1401-1410.
  • 72. B. Nagalaxmi, et al., Determination of trace amount of Cd (II) by using a chromogenic reagent diacetylmonoxime-3-amino-4-hydroxy benzoyl hydrazone (DMAHBH) with UV-visible spectrophotometry. 2015. 4(2): p. 104-111.
  • 73. A.A. Ensafi and Z.N.J.J.o.a.c. Isfahani, A simple optical sensor for cadmium ions assay in water samples using spectrophotometry. 2011. 66: p. 151-157.
  • 74. M.M. AL-Kishwan, M.A. AL-Daamy, and S.H. Kadhim. Spectrophotometric determination of Cd (II) using reagent derived from unsubstituted imidazole. in AIP Conference Proceedings. 2023. AIP Publishing.
  • 75. S.G. Lee and H.S.J.B.o.t.K.C.S. Choe, Spectrophotometric determination of cadmium and copper with ammonium pyrrolodinedithiocarbamate in nonionic Tween 80 micellar media. 2001. 22(5): p. 463-466.
  • 76. Z. Ali, et al., Characterization of semiconductor CdS/Poly (vinyl alcohol) nanocomposites using ultraviolet/visible spectrophotometry. 2015. 2: p. 17-29.
  • 77. S. Karaderi, M. Bakla, and C.J.I.J.P.R.A.S. Mazı, Determination of UV-Vis Spectrophotometric Method of Metal Complexes Stoichiometry between Cu (II), Ca (II), Cd (II), Mg (II) and Zn (II) with Bupropion Hydrochloride. 2019. 8: p. 1-9.
  • 78. D. Oxspring, T. Maxwell, and W.J.A.c.a. Smyth, UV-visible spectrophotometric, adsorptive stripping voltammetric and capillary electrophoretic study of 2-(5′-bromo-2′-pyridylazo)-5-diethylaminophenol and its chelates with selected metal ions: application to the determination of Co (III) in vitamin B12. 1996. 323(1-3): p. 97-105.
  • 79. G. Mohamed, et al., Extractive spectrophotometric method for determination of cadmium (II) in different water sources. 2015. 212: p. 517-523.
  • 80. M. Eskandarpour, et al., Developing a highly selective method for preconcentration and determination of cobalt in water and nut samples using 1‐(2‐pyridylazo)‐2‐naphthol and UV–visible spectroscopy. 2020. 100(5): p. 2272-2279.
  • 81. B.M. Weckhuysen, Ultraviolet-visible spectroscopy. 2004.
  • 82. D. Harvey, Spaces of hope. Vol. 7. 2000: Univ of California Press.
  • 83. P.D. Sethi, Quantitative analysis of drugs in pharmaceutical formulations. 2008: CBS.
  • 84. A. Ferdowsi and H.J.T.o.N.M.S.o.C. Yoozbashizadeh, Process optimization and kinetics for leaching of cerium, lanthanum and neodymium elements from iron ore waste's apatite by nitric acid. 2017. 27(2): p. 420-428.
  • 85. H.M. Hassan, et al., A novel and potential chemical sensor for effective monitoring of Fe (II) ion in corrosion systems of water samples. 2020. 154: p. 104578.
  • 86. S. Pepper, et al., Determination of ferrous and ferric iron in aqueous biological solutions. 2010. 663(2): p. 172-177.
  • 87. X. Cai, et al., Novel Pb2+ Ion Imprinted Polymers Based on Ionic Interaction via Synergy of Dual Functional Monomers for Selective Solid-Phase Extraction of Pb2+ in Water Samples. ACS Applied Materials & Interfaces, 2014. 6(1): p. 305-313.
  • 88. E.Y. Frag, N.A. Abd El-Ghany, and M.A.E.J.J.o.E.C. Fattah, Physico-chemical properties and characterization of iron (II) electrochemical sensor based on carbon paste electrode modified with novel antimicrobial Carboxymethyl chitosan-graft-poly (1-cyanoethanoyl-4-acryloyl-thiosemcarbazide) copolymers. 2018. 808: p. 266-277.
  • 89. H. Xie, et al., Rapid detection of iron ore grades based on Fractional-order derivative spectroscopy and machine learning. 2023.
  • 90. A.S. Farhood and D.N.J.분. Taha, A new merging-zone flow injection system for the quantification of ferrous and ferric ions in aqueous solution and sludge of wastewater. 2022. 35(5): p. 218-227.
  • 91. Y. Du, et al., Stalk-derived carbon dots as nanosensors for Fe3+ ions detection and biological cell imaging. 2023. 11: p. 1187632.
  • 92. F. Zhou, et al., Simultaneous determination of trace metal ions in industrial wastewater based on UV–vis spectrometry. 2019. 176: p. 512-517.
  • 93. F. Cheng, et al., A direct and rapid method for determination of total iron in environmental samples and hydrometallurgy using UV–Vis spectrophotometry. 2022. 179: p. 107478.
  • 94. O. Turkoglu and M.J.J.o.t.C.C.S. Soylak, Spectrophotometric determination of copper in natural waters and pharmaceutical samples with chloro (phenyl) glyoxime. 2005. 52(3): p. 575-579.
  • 95. N. Nik-Abdul-Ghani, et al., Study of graphene oxide-polymer nanocomposite (GPN) adsorptive membrane for lead removal from wastewater. 2021. 5: p. 3620-3636.
Year 2024, Volume: 7 Issue: 2, 88 - 100, 18.12.2024
https://doi.org/10.54565/jphcfum.1535225

Abstract

References

  • 1. G.D. Christian, P.K. Dasgupta, and K.A. Schug, Analytical chemistry. 2013: John Wiley & Sons.
  • 2. N. Sudharshan and V. Swetha, UV-VISIBLE SPECTROSCOPY: A COMPREHENSIVE REVIEW ON INSTRUMENTATION. 2023.
  • 3. S.J.I.J.o.P.R. Vijayraj and Analysis, Analytical process of drug by ultraviolet (UV) spectroscopy: A review. 2012. 2(2): p. 72-78.
  • 4. D.A. Skoog, F.J. Holler, and S.R. Crouch, Instrumental analysis. Vol. 47. 2007: Brooks/Cole, Cengage Learning Belmont.
  • 5. K.N. Aziz, et al., A review of coordination compounds: structure, stability, and biological significance. Reviews in Inorganic Chemistry, 2024(0).
  • 6. B. Bansod, et al., A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. 2017. 94: p. 443-455.
  • 7. K.N. Aziz, et al., Organometallic complexes and reaction methods for synthesis: a review. Reviews in Inorganic Chemistry, 2024(0).
  • 8. R.A. OMER, et al., Computational and spectroscopy study of melatonin. Indian Journal of Chemistry-Section B (IJC-B), 2021. 60(5): p. 732-741.
  • 9. H. Ismail, et al., Synthesis, Characterization, and Computational Insights Into the Conductive Poly (p-aminophenol). Russian Journal of Physical Chemistry B, 2024. 18(4): p. 1148-1165.
  • 10. L. Sommer, Analytical absorption spectrophotometry in the visible and ultraviolet: the principles. 2012: Elsevier.
  • 11. B.M. Weckhuysen, P. Voort, and G. Catana, Spectroscopy of transition metal ions on surfaces. 2000: Leuven University Press.
  • 12. A. Vogler and H. Kunkely, Photoreactivity of metal-to-ligand charge transfer excited states. Coordination chemistry reviews, 1998. 177(1): p. 81-96.
  • 13. C.P. Bacon, Y. Mattley, and R.J.R.o.S.i. DeFrece, Miniature spectroscopic instrumentation: Applications to biology and chemistry. 2004. 75(1): p. 1-16.
  • 14. D.M.K. Panchal, et al., A REVIEW ON “HIGH PERFORMANCE THIN LAYER CHROMATOGRAPHY”. 2022.
  • 15. G. Verma and M.J.W.J.P.R. Mishra, Development and optimization of UV-Vis spectroscopy-a review. 2018. 7(11): p. 1170-1180.
  • 16. D. González-Morales, et al., Development of a low-cost UV-Vis spectrophotometer and its application for the detection of mercuric ions assisted by chemosensors. 2020. 20(3): p. 906.
  • 17. D.M. Atole and H.H.J.A.J.p.c.r. Rajput, Ultraviolet spectroscopy and its pharmaceutical applications-a brief review. 2018. 11(2): p. 59-66.
  • 18. I.I. Mut Günzler and A.J.E. Williams, Handbook of analytical techniques,. 2001. 1: p. 1.2.
  • 19. S.L.J.E.o.a.c. Upstone, Ultraviolet/visible light absorption spectrophotometry in clinical chemistry. 2000: p. 1699-1714.
  • 20. D.L. Pavia, et al., Introduction to spectroscopy. 2014: Cengage learning.
  • 21. W. Cheng, et al., Direct-determination of high-concentration sulfate by serial differential spectrophotometry with multiple optical pathlengths. 2022. 811: p. 152121.
  • 22. F. Zhou, et al., A spectrophotometric method for simultaneous determination of trace ions of copper, cobalt, and nickel in the zinc sulfate solution by ultraviolet-visible spectrometry. 2019. 223: p. 117370.
  • 23. L.H. Abdel-Rahman, et al., Synthesis, characterization, biological and docking studies of ZrO (II), VO (II) and Zn (II) complexes of a halogenated tetra-dentate Schiff base. 2022. 15(5): p. 103737.
  • 24. M.L. Passos and M.L.M.J.M. Saraiva, Detection in UV-visible spectrophotometry: Detectors, detection systems, and detection strategies. 2019. 135: p. 896-904.
  • 25. F.S. Rocha, et al., Experimental methods in chemical engineering: Ultraviolet visible spectroscopy—UV‐Vis. 2018. 96(12): p. 2512-2517.
  • 26. R.A. Omer, et al., Combined DFT and Monte Carlo simulation studies of potential corrosion inhibition properties of coumarin derivatives. Journal of Molecular Modeling, 2024. 30(8): p. 288.
  • 27. Y.H. Azeez, et al., Combined DFT and Monte Carlo simulation studies of potential corrosion inhibition properties of heterocyclic derivatives with an extended π-System. Computational and Theoretical Chemistry, 2024. 1240: p. 114803.
  • 28. M. Sauer, J. Hofkens, and J. Enderlein, Handbook of fluorescence spectroscopy and imaging: from ensemble to single molecules. 2010: John Wiley & Sons.
  • 29. Y.H. Azeez, et al., Investigation of corrosion inhibition and adsorption properties of quinoxaline derivatives on metal surfaces through DFT and Monte Carlo simulations. Corrosion Reviews, 2024(0).
  • 30. Y.R. Sharma, Elementary organic spectroscopy. 2007: S. Chand Publishing.
  • 31. G. Shinde, et al., A Review on Advances in UV Spectroscopy. 2020. 12(1): p. 47-51.
  • 32. N.S. Nemeş, A.J.M.E.T.F. Negrea, and Applications, Infrared and Visible Spectroscopy: Fourier Transform Infrared Spectroscopy and Ultraviolet–Visible Spectroscopy. 2023. 1: p. 163-200.
  • 33. D.L. Pavia, G.M. Lampman, and G.S.J. Kriz, Introduction to organic laboratory techniques: a contemporary approach. 1976.
  • 34. D. Harvey, Modern analytical chemistry. 2000: McGraw Hill.
  • 35. J. Cazes, Analytical instrumentation handbook. 2004: CRC Press.
  • 36. C. Adeeyinwo, et al., Basic calibration of UV/visible spectrophotometer. 2013. 2(3): p. 247-251.
  • 37. E. Pourbasheer, et al., Design of a novel optical sensor for determination of trace amounts of copper by UV–visible spectrophotometry in real samples. 2018. 32(3): p. e4110.
  • 38. A.A.A. Hassoni and A.S. Abbas. Cloud point extraction for the determination of copper (II) by UV-visible spectrophotometry. in AIP Conference Proceedings. 2022. AIP Publishing.
  • 39. M.-B. Kime and D.J.C.E.C. Makgoale, Characterization of copper–cobalt ores and quantification of Cu2+, Co2+, Co3+, and Fe3+ in aqueous leachates using UV/Visible spectrophotometry. 2016. 203(12): p. 1648-1655.
  • 40. M.-h. Cui, et al., A novel UV-visible chemosensor based on the 8-hydroxyquinoline derivative for copper ion detection. 2015. 7(10): p. 4252-4256.
  • 41. J.i.J.A. Miura, Masking agents in the spectrophotometric determination of metal ions with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol and non-ionic surfactant. 1989. 114(10): p. 1323-1329.
  • 42. S.S. Hassan, et al., Determination of metformin in pharmaceutical preparations using potentiometry, spectrofluorimetry and UV–visible spectrophotometry. 1999. 378(1-3): p. 299-311.
  • 43. F. Zhou, et al., Determination of trace ions of cobalt and copper by UV–vis spectrometry in purification process of zinc hydrometallurgy. 2019. 184: p. 227-233.
  • 44. J.J. Pinto, et al., A simple and very sensitive spectrophotometric method for the direct determination of copper ions. 2002. 373: p. 844-848.
  • 45. T. Güray and Ü.D.J.J.o.t.C.S.o.P. UYSAL, Validated UV-Vis Spectrophotometric Method for the Determination of Copper using 2, 3, 4, 6/-Tetrahydroxy-3/-Sulfoazobenzene in Real Samples. 2018. 40(3).
  • 46. M.M. Hassan and A.F. Hussain. Study of the spectrophotometric determination of Copper ion (I) by Michler’s thioketone Reagent. in IOP Conference Series: Materials Science and Engineering. 2020. IOP Publishing.
  • 47. C. Kavitha, et al., Spectrophotometric determination of copper as copper piperazine. 2013. 8: p. 205-209.
  • 48. E. Chiyindiko, E.H. Langner, and J.J.E.A. Conradie, Electrochemical behaviour of copper (II) complexes containing 2-hydroxyphenones. 2022. 424: p. 140629.
  • 49. E. Chiyindiko, E.H. Langner, and J.J.M. Conradie, Spectroscopic behaviour of copper (II) complexes containing 2-hydroxyphenones. 2022. 27(18): p. 6033.
  • 50. E. Santoyo, S. Santoyo-Gutiérrez, and S.P.J.J.o.C.A. Verma, Trace analysis of heavy metals in groundwater samples by ion chromatography with post-column reaction and ultraviolet–visible detection. 2000. 884(1-2): p. 229-241.
  • 51. A. Timerbaev and G.J.J.o.C.A. Bonn, Complexation ion chromatography—an overview of developments and trends in trace metal analysis. 1993. 640(1-2): p. 195-206.
  • 52. N.J. Williams, et al., Possible steric control of the relative strength of chelation enhanced fluorescence for Zinc (II) compared to Cadmium (II): Metal ion complexing properties of Tris (2-quinolylmethyl) amine, a crystallographic, UV− Visible, and fluorometric study. 2009. 48(4): p. 1407-1415.
  • 53. M. Shakil Hossain, Determination of lead (pb) in trace amount using Ultraviolet-visible spectrophotometric method. 2011.
  • 54. J. Mutembei, et al., Determination of heavy metals and nutrients in Rivers Naka and Irigu, Chuka,(Kenya) using atomic absorption spectrometry and UV/visible spectrophotometry. 2014. 7(11): p. 82-88.
  • 55. W. Ruengsitagoon, A. Chisvert, and S.J.T. Liawruangrath, Flow injection spectrophotometric determination of lead using 1, 5-diphenylthiocarbazone in aqueous micellar. 2010. 81(1-2): p. 709-713.
  • 56. N. Rajesh, S.J.S.A.P.A.M. Manikandan, and B. Spectroscopy, Spectrophotometric determination of lead after preconcentration of its diphenylthiocarbazone complex on an Amberlite XAD-1180 column. 2008. 70(4): p. 754-757.
  • 57. M. Luconi, et al., Flow injection spectrophotometric analysis of lead in human saliva for monitoring environmental pollution. 2001. 54(1): p. 45-52.
  • 58. C. Okoye, et al., Simultaneous ultraviolet-visible (UV–VIS) spectrophotometric quantitative determination of Pb, Hg, Cd, As and Ni ions in aqueous solutions using cyanidin as a chromogenic reagent. 2013. 8(3): p. 98-102.
  • 59. Z.A. Khammas, A.A. Ghali, and K.H.J.I.J.C.S. Kadhim, Combined cloud-point extraction and spectrophotometric detection of lead and cadmium in honey samples using a new ligand. 2012. 10(3): p. 1185-1204.
  • 60. K.M. Elsherif, et al., Facile spectrophotometric determination of Cd (II) and Pb (II) using murexide reagent in mixed solvent system. 2022. 8(4): p. 144-152.
  • 61. H. Khan, M. Jamaluddin Ahmed, and M.J.S. Iqbal Bhanger, A simple spectrophotometric method for the determination of trace level lead in biological samples in the presence of aqueous micellar solutions. 2006. 20(5-6): p. 285-297.
  • 62. H.J.C.P. Cesur, Selective solid-phase extraction of Cu (II) using freshly precipitated lead diethyldithiocarbamate and its spectrophotometric determination. 2007. 61: p. 342-347.
  • 63. R. Dagnall, T. West, and P.J.T. Young, Determination of lead with 4-(2-pyridylazo)-resorcinol—I: Spectrophotometry and solvent extraction. 1965. 12(6): p. 583-588.
  • 64. Z. Marczenko and M. Balcerzak, Separation, preconcentration and spectrophotometry in inorganic analysis. 2000: Elsevier.
  • 65. K. Matharu, et al., Selectivity enhancement of Arsenazo (III) reagent towards heavier lanthanides using polyaminocarboxylic acids: A spectrophotometric study. 2015. 145: p. 165-175.
  • 66. L.S.G. Teixeira, et al., Spectrophotometric determination of uranium using 2-(2-thiazolylazo)-p-cresol (TAC) in the presence of surfactants. 1999. 10: p. 519-522.
  • 67. A.R. Sekhar, et al., Porphyrin as a versatile visible-light-activatable organic/metal hybrid photoremovable protecting group. 2022. 13(1): p. 3614.
  • 68. D. Xu, et al., Simultaneous determination of traces amounts of cadmium, zinc, and cobalt based on UV–Vis spectrometry combined with wavelength selection and partial least squares regression. 2014. 123: p. 430-435.
  • 69. M.J. Ahmed and M.T.I.J.A.S. Chowdhury, A simple spectrophotometric method for the determination of cadmium in industrial, environmental, biological and soil samples using 5, 7-dibromo-8-hydroxyquinoline. 2004. 20(6): p. 987-990.
  • 70. K. Parikh, R. Patel, and K.J.E.-J.o.C. Patel, New spectrophotometric method for determination of cadmium. 2009. 6(S1): p. S496-S500.
  • 71. E.Y.J.S.A.P.A.M. Hashem and B. Spectroscopy, Spectrophotometric studies on the simultaneous determination of cadmium and mercury with 4-(2-pyridylazo)-resorcinol. 2002. 58(7): p. 1401-1410.
  • 72. B. Nagalaxmi, et al., Determination of trace amount of Cd (II) by using a chromogenic reagent diacetylmonoxime-3-amino-4-hydroxy benzoyl hydrazone (DMAHBH) with UV-visible spectrophotometry. 2015. 4(2): p. 104-111.
  • 73. A.A. Ensafi and Z.N.J.J.o.a.c. Isfahani, A simple optical sensor for cadmium ions assay in water samples using spectrophotometry. 2011. 66: p. 151-157.
  • 74. M.M. AL-Kishwan, M.A. AL-Daamy, and S.H. Kadhim. Spectrophotometric determination of Cd (II) using reagent derived from unsubstituted imidazole. in AIP Conference Proceedings. 2023. AIP Publishing.
  • 75. S.G. Lee and H.S.J.B.o.t.K.C.S. Choe, Spectrophotometric determination of cadmium and copper with ammonium pyrrolodinedithiocarbamate in nonionic Tween 80 micellar media. 2001. 22(5): p. 463-466.
  • 76. Z. Ali, et al., Characterization of semiconductor CdS/Poly (vinyl alcohol) nanocomposites using ultraviolet/visible spectrophotometry. 2015. 2: p. 17-29.
  • 77. S. Karaderi, M. Bakla, and C.J.I.J.P.R.A.S. Mazı, Determination of UV-Vis Spectrophotometric Method of Metal Complexes Stoichiometry between Cu (II), Ca (II), Cd (II), Mg (II) and Zn (II) with Bupropion Hydrochloride. 2019. 8: p. 1-9.
  • 78. D. Oxspring, T. Maxwell, and W.J.A.c.a. Smyth, UV-visible spectrophotometric, adsorptive stripping voltammetric and capillary electrophoretic study of 2-(5′-bromo-2′-pyridylazo)-5-diethylaminophenol and its chelates with selected metal ions: application to the determination of Co (III) in vitamin B12. 1996. 323(1-3): p. 97-105.
  • 79. G. Mohamed, et al., Extractive spectrophotometric method for determination of cadmium (II) in different water sources. 2015. 212: p. 517-523.
  • 80. M. Eskandarpour, et al., Developing a highly selective method for preconcentration and determination of cobalt in water and nut samples using 1‐(2‐pyridylazo)‐2‐naphthol and UV–visible spectroscopy. 2020. 100(5): p. 2272-2279.
  • 81. B.M. Weckhuysen, Ultraviolet-visible spectroscopy. 2004.
  • 82. D. Harvey, Spaces of hope. Vol. 7. 2000: Univ of California Press.
  • 83. P.D. Sethi, Quantitative analysis of drugs in pharmaceutical formulations. 2008: CBS.
  • 84. A. Ferdowsi and H.J.T.o.N.M.S.o.C. Yoozbashizadeh, Process optimization and kinetics for leaching of cerium, lanthanum and neodymium elements from iron ore waste's apatite by nitric acid. 2017. 27(2): p. 420-428.
  • 85. H.M. Hassan, et al., A novel and potential chemical sensor for effective monitoring of Fe (II) ion in corrosion systems of water samples. 2020. 154: p. 104578.
  • 86. S. Pepper, et al., Determination of ferrous and ferric iron in aqueous biological solutions. 2010. 663(2): p. 172-177.
  • 87. X. Cai, et al., Novel Pb2+ Ion Imprinted Polymers Based on Ionic Interaction via Synergy of Dual Functional Monomers for Selective Solid-Phase Extraction of Pb2+ in Water Samples. ACS Applied Materials & Interfaces, 2014. 6(1): p. 305-313.
  • 88. E.Y. Frag, N.A. Abd El-Ghany, and M.A.E.J.J.o.E.C. Fattah, Physico-chemical properties and characterization of iron (II) electrochemical sensor based on carbon paste electrode modified with novel antimicrobial Carboxymethyl chitosan-graft-poly (1-cyanoethanoyl-4-acryloyl-thiosemcarbazide) copolymers. 2018. 808: p. 266-277.
  • 89. H. Xie, et al., Rapid detection of iron ore grades based on Fractional-order derivative spectroscopy and machine learning. 2023.
  • 90. A.S. Farhood and D.N.J.분. Taha, A new merging-zone flow injection system for the quantification of ferrous and ferric ions in aqueous solution and sludge of wastewater. 2022. 35(5): p. 218-227.
  • 91. Y. Du, et al., Stalk-derived carbon dots as nanosensors for Fe3+ ions detection and biological cell imaging. 2023. 11: p. 1187632.
  • 92. F. Zhou, et al., Simultaneous determination of trace metal ions in industrial wastewater based on UV–vis spectrometry. 2019. 176: p. 512-517.
  • 93. F. Cheng, et al., A direct and rapid method for determination of total iron in environmental samples and hydrometallurgy using UV–Vis spectrophotometry. 2022. 179: p. 107478.
  • 94. O. Turkoglu and M.J.J.o.t.C.C.S. Soylak, Spectrophotometric determination of copper in natural waters and pharmaceutical samples with chloro (phenyl) glyoxime. 2005. 52(3): p. 575-579.
  • 95. N. Nik-Abdul-Ghani, et al., Study of graphene oxide-polymer nanocomposite (GPN) adsorptive membrane for lead removal from wastewater. 2021. 5: p. 3620-3636.
There are 95 citations in total.

Details

Primary Language English
Subjects Colloid and Surface Chemistry
Journal Section Articles
Authors

Sarbaz Qader This is me 0009-0004-2228-4072

Azhin Mohammed This is me 0000-0001-6727-5648

Akar Mahmood Muhammed 0009-0005-2743-9907

Rebaz Omer 0000-0002-3774-6071

Aryan Qader 0000-0002-2547-7708

Publication Date December 18, 2024
Submission Date August 18, 2024
Acceptance Date October 2, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Qader, S., Mohammed, A., Muhammed, A. M., Omer, R., et al. (2024). Determination of Three Metal Ions (Cu2+, Pb2+, Cd2+) by Ultraviolet-visible Spectroscopy. Journal of Physical Chemistry and Functional Materials, 7(2), 88-100. https://doi.org/10.54565/jphcfum.1535225
AMA Qader S, Mohammed A, Muhammed AM, Omer R, Qader A. Determination of Three Metal Ions (Cu2+, Pb2+, Cd2+) by Ultraviolet-visible Spectroscopy. Journal of Physical Chemistry and Functional Materials. December 2024;7(2):88-100. doi:10.54565/jphcfum.1535225
Chicago Qader, Sarbaz, Azhin Mohammed, Akar Mahmood Muhammed, Rebaz Omer, and Aryan Qader. “Determination of Three Metal Ions (Cu2+, Pb2+, Cd2+) by Ultraviolet-Visible Spectroscopy”. Journal of Physical Chemistry and Functional Materials 7, no. 2 (December 2024): 88-100. https://doi.org/10.54565/jphcfum.1535225.
EndNote Qader S, Mohammed A, Muhammed AM, Omer R, Qader A (December 1, 2024) Determination of Three Metal Ions (Cu2+, Pb2+, Cd2+) by Ultraviolet-visible Spectroscopy. Journal of Physical Chemistry and Functional Materials 7 2 88–100.
IEEE S. Qader, A. Mohammed, A. M. Muhammed, R. Omer, and A. Qader, “Determination of Three Metal Ions (Cu2+, Pb2+, Cd2+) by Ultraviolet-visible Spectroscopy”, Journal of Physical Chemistry and Functional Materials, vol. 7, no. 2, pp. 88–100, 2024, doi: 10.54565/jphcfum.1535225.
ISNAD Qader, Sarbaz et al. “Determination of Three Metal Ions (Cu2+, Pb2+, Cd2+) by Ultraviolet-Visible Spectroscopy”. Journal of Physical Chemistry and Functional Materials 7/2 (December 2024), 88-100. https://doi.org/10.54565/jphcfum.1535225.
JAMA Qader S, Mohammed A, Muhammed AM, Omer R, Qader A. Determination of Three Metal Ions (Cu2+, Pb2+, Cd2+) by Ultraviolet-visible Spectroscopy. Journal of Physical Chemistry and Functional Materials. 2024;7:88–100.
MLA Qader, Sarbaz et al. “Determination of Three Metal Ions (Cu2+, Pb2+, Cd2+) by Ultraviolet-Visible Spectroscopy”. Journal of Physical Chemistry and Functional Materials, vol. 7, no. 2, 2024, pp. 88-100, doi:10.54565/jphcfum.1535225.
Vancouver Qader S, Mohammed A, Muhammed AM, Omer R, Qader A. Determination of Three Metal Ions (Cu2+, Pb2+, Cd2+) by Ultraviolet-visible Spectroscopy. Journal of Physical Chemistry and Functional Materials. 2024;7(2):88-100.