Review Article
BibTex RIS Cite
Year 2025, Volume: 8 Issue: 1, 23 - 42, 17.06.2025
https://doi.org/10.54565/jphcfum.1630835

Abstract

References

  • [1] A. K. Deshantri, A. V. Moreira, V. Ecker, S. N. Mandhane, R. M. Schiffelers, M. Buchner and M. H. Fens. Nanomedicines for the treatment of hematological malignancies. Journal of Controlled Release. 2018;287:194-215.
  • [2] A. M. Elbadry and H. H. Mohamed. Introduction to Nanomedicine, Nanotechnology, and Nanopharmaceuticals. Nanocarriers in Neurodegenerative Disorders. CRC Press. p. 75-83.
  • [3] R. Sood and D. S. Chopra. Metal–plant frameworks in nanotechnology: an overview. Phytomedicine. 2018;50:148-156.
  • [4] F. Rodríguez, P. Caruana, N. De la Fuente, P. Español, M. Gámez, J. Balart, E. Llurba, R. Rovira, R. Ruiz and C. Martín-Lorente. Nano-based approved pharmaceuticals for cancer treatment: present and future challenges. Biomolecules. 2022;12(6):784.
  • [5] V. K. Yata, S. Ranjan, N. Dasgupta and E. Lichtfouse. Nanopharmaceuticals: Principles and Applications Vol. 2. Springer; 2020.
  • [6] S. P. Gangapure and O. G. Bhusnure. Nanopharmaceuticals. Journal of Drug Delivery and Therapeutics. 2019;9(4):676-687.
  • [7] G. D. Moon, S. Ko, Y. Min, J. Zeng, Y. Xia and U. Jeong. Chemical transformations of nanostructured materials. Nano Today. 2011;6(2):186-203.
  • [8] M. Fernandez-Garcia, A. Martinez-Arias, J. Hanson and J. Rodriguez. Nanostructured oxides in chemistry: characterization and properties. Chemical reviews. 2004;104(9):4063-4104.
  • [9] Y. Wang. Nanogeochemistry: Nanostructures, emergent properties and their control on geochemical reactions and mass transfers. Chemical Geology. 2014;378:1-23.
  • [10] M. Prato, K. Kostarelos and A. Bianco. Functionalized carbon nanotubes in drug design and discovery. Accounts of chemical research. 2008;41(1):60-68.
  • [11] F. Karimi, A. J. O'Connor, G. G. Qiao and D. E. Heath. Integrin clustering matters: a review of biomaterials functionalized with multivalent integrin‐binding ligands to improve cell adhesion, migration, differentiation, angiogenesis, and biomedical device integration. Advanced Healthcare Materials. 2018;7(12):1701324.
  • [12] C. Sahlgren, A. Meinander, H. Zhang, F. Cheng, M. Preis, C. Xu, T. A. Salminen, D. Toivola, D. Abankwa and A. Rosling. Tailored approaches in drug development and diagnostics: from molecular design to biological model systems. Advanced Healthcare Materials. 2017;6(21):1700258.
  • [13] L. Stillger and D. Müller. Peptide-coating combating antimicrobial contaminations: a review of covalent immobilization strategies for industrial applications. Journal of Materials Science. 2022;57(24):10863-10885.
  • [14] N. Kamaly, B. Yameen, J. Wu and O. C. Farokhzad. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chemical reviews. 2016;116(4):2602-2663.
  • [15] J. H. Lee and Y. Yeo. Controlled drug release from pharmaceutical nanocarriers. Chemical engineering science. 2015;125:75-84.
  • [16] M. Rawal, A. Singh and M. M. Amiji. Quality-by-design concepts to improve nanotechnology-based drug development. Pharmaceutical research. 2019;36(11):153.
  • [17] H. M. Mansour, M. Sohn, A. Al-Ghananeem and P. P. DeLuca. Materials for pharmaceutical dosage forms: molecular pharmaceutics and controlled release drug delivery aspects. International journal of molecular sciences. 2010;11(9):3298-3322.
  • [18] O. Dumitriu Buzia, A. M. Păduraru, C. S. Stefan, M. Dinu, D. I. Cocoș, L. C. Nwabudike and A. L. Tatu. Strategies for Improving Transdermal Administration: New Approaches to Controlled Drug Release. Pharmaceutics. 2023;15(4):1183.
  • [19] A. Raza, T. Rasheed, F. Nabeel, U. Hayat, M. Bilal and H. M. Iqbal. Endogenous and exogenous stimuli-responsive drug delivery systems for programmed site-specific release. Molecules. 2019;24(6):1117.
  • [20] F. Li, C. Zheng, J. Xin, F. Chen, H. Ling, L. Sun, T. J. Webster, X. Ming and J. Liu. Enhanced tumor delivery and antitumor response of doxorubicin-loaded albumin nanoparticles formulated based on a Schiff base. International journal of nanomedicine. 2016:3875-3890.
  • [21] M. Esmaeilpour, A. R. Sardarian and J. Javidi. Schiff base complex of metal ions supported on superparamagnetic Fe3O4@ SiO2 nanoparticles: An efficient, selective and recyclable catalyst for synthesis of 1, 1-diacetates from aldehydes under solvent-free conditions. Applied Catalysis A: General. 2012;445:359-367.
  • [22] S. Peng, X. Yuan, W. Lin, C. Cai and L. Zhang. pH-responsive controlled release of mesoporous silica nanoparticles capped with Schiff base copolymer gatekeepers: Experiment and molecular dynamics simulation. Colloids and surfaces B: biointerfaces. 2019;176:394-403.
  • [23] S. Verma, R. Gokhale and D. J. Burgess. A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. International journal of pharmaceutics. 2009;380(1-2):216-222.
  • [24] H. Panjiar, R. Gakkhar and B. Daniel. Strain-free graphite nanoparticle synthesis by mechanical milling. Powder Technology. 2015;275:25-29.
  • [25] T. P. Yadav, R. M. Yadav and D. P. Singh. Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. Nanoscience and Nanotechnology. 2012;2(3):22-48.
  • [26] P. G. Jamkhande, N. W. Ghule, A. H. Bamer and M. G. Kalaskar. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of drug delivery science and technology. 2019;53:101174.
  • [27] M. Kim, S. Osone, T. Kim, H. Higashi and T. Seto. Synthesis of nanoparticles by laser ablation: A review. KONA Powder and Particle Journal. 2017;34:80-90.
  • [28] N. Semaltianos. Nanoparticles by laser ablation. Critical reviews in solid state and materials sciences. 2010;35(2):105-124.
  • [29] M. C. Sportelli, M. Izzi, A. Volpe, M. Clemente, R. A. Picca, A. Ancona, P. M. Lugarà, G. Palazzo and N. Cioffi. The pros and cons of the use of laser ablation synthesis for the production of silver nano-antimicrobials. Antibiotics. 2018;7(3):67.
  • [30] R. Hufschmid, H. Arami, R. M. Ferguson, M. Gonzales, E. Teeman, L. N. Brush, N. D. Browning and K. M. Krishnan. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale. 2015;7(25):11142-11154.
  • [31] O. Pascu, E. Carenza, M. Gich, S. Estrade, F. Peiro, G. Herranz and A. Roig. Surface reactivity of iron oxide nanoparticles by microwave-assisted synthesis; comparison with the thermal decomposition route. The Journal of Physical Chemistry C. 2012;116(28):15108-15116.
  • [32] I. Hussain, N. Singh, A. Singh, H. Singh and S. Singh. Green synthesis of nanoparticles and its potential application. Biotechnology letters. 2016;38:545-560.
  • [33] H. Jahangirian, E. G. Lemraski, T. J. Webster, R. Rafiee-Moghaddam and Y. Abdollahi. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. International journal of nanomedicine. 2017:2957-2978.
  • [34] H. Nadaroglu, A. A. Güngör and S. Ince. Synthesis of nanoparticles by green synthesis method. International Journal of Innovative Research and Reviews. 2017;1(1):6-9.
  • [35] P. K. Dikshit, J. Kumar, A. K. Das, S. Sadhu, S. Sharma, S. Singh, P. K. Gupta and B. S. Kim. Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts. 2021;11(8):902.
  • [36] M. Parashar, V. K. Shukla and R. Singh. Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. Journal of Materials Science: Materials in Electronics. 2020;31(5):3729-3749.
  • [37] D. Bokov, A. Turki Jalil, S. Chupradit, W. Suksatan, M. Javed Ansari, I. H. Shewael, G. H. Valiev and E. Kianfar. Nanomaterial by sol‐gel method: synthesis and application. Advances in materials science and engineering. 2021;2021(1):5102014.
  • [38] J. A. Darr, J. Zhang, N. M. Makwana and X. Weng. Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions. Chemical reviews. 2017;117(17):11125-11238.
  • [39] H. Lu, J. Wang, T. Wang, J. Zhong, Y. Bao and H. Hao. Recent progress on nanostructures for drug delivery applications. Journal of Nanomaterials. 2016;2016(1):5762431.
  • [40] E. Andronescu and A. M. Grumezescu. Nanostructures for drug delivery. Elsevier; 2017.
  • [41] D. Patel, B. Patel and H. Thakkar. Lipid based nanocarriers: promising drug delivery system for topical application. european Journal of lipid science and technology. 2021;123(5):2000264.
  • [42] M. R. Shah, M. Imran and S. Ullah. Lipid-based nanocarriers for drug delivery and diagnosis. William Andrew; 2017.
  • [43] A. Abbasi. TiO2-Based nanocarriers for drug delivery. Nanocarriers for Drug Delivery. Elsevier; 2019. p. 205-248.
  • [44] D. Lombardo, P. Calandra, D. Barreca, S. Magazù and M. A. Kiselev. Soft interaction in liposome nanocarriers for therapeutic drug delivery. Nanomaterials. 2016;6(7):125.
  • [45] D. K. Mishra, R. Shandilya and P. K. Mishra. Lipid based nanocarriers: a translational perspective. Nanomedicine: Nanotechnology, Biology and Medicine. 2018;14(7):2023-2050.
  • [46] N. Naseri, H. Valizadeh and P. Zakeri-Milani. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Advanced pharmaceutical bulletin. 2015;5(3):305.
  • [47] H. Nsairat, D. Khater, U. Sayed, F. Odeh, A. Al Bawab and W. Alshaer. Liposomes: Structure, composition, types, and clinical applications. Heliyon. 2022;8(5).
  • [48] M. Ashtikar, K. Nagarsekar and A. Fahr. Transdermal delivery from liposomal formulations–Evolution of the technology over the last three decades. Journal of Controlled Release. 2016;242:126-140.
  • [49] L. W. Allahou, S. Y. Madani and A. Seifalian. Investigating the application of liposomes as drug delivery systems for the diagnosis and treatment of cancer. International journal of biomaterials. 2021;2021(1):3041969.
  • [50] Y. Malam, M. Loizidou and A. M. Seifalian. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends in pharmacological sciences. 2009;30(11):592-599.
  • [51] P. Ghasemiyeh and S. Mohammadi-Samani. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Research in pharmaceutical sciences. 2018;13(4):288-303.
  • [52] G. Yoon, J. W. Park and I.-S. Yoon. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs): recent advances in drug delivery. Journal of Pharmaceutical Investigation. 2013;43:353-362.
  • [53] A. Gordillo-Galeano and C. E. Mora-Huertas. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. European Journal of Pharmaceutics and Biopharmaceutics. 2018;133:285-308.
  • [54] H. Bunjes. Structural properties of solid lipid based colloidal drug delivery systems. Current Opinion in Colloid & Interface Science. 2011;16(5):405-411.
  • [55] S. Khatak and H. Dureja. Structural composition of solid lipid nanoparticles for invasive and non-invasive drug delivery. Current Nanomaterials. 2017;2(3):129-153.
  • [56] R. P. Patel and J. R. Joshi. An overview on nanoemulsion: a novel approach. International Journal of Pharmaceutical sciences and research. 2012;3(12):4640.
  • [57] P. J. Espitia, C. A. Fuenmayor and C. G. Otoni. Nanoemulsions: Synthesis, characterization, and application in bio‐based active food packaging. Comprehensive Reviews in Food Science and Food Safety. 2019;18(1):264-285.
  • [58] Y. Singh, J. G. Meher, K. Raval, F. A. Khan, M. Chaurasia, N. K. Jain and M. K. Chourasia. Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release. 2017;252:28-49.
  • [59] P. Bhatt and S. Madhav. A detailed review on nanoemulsion drug delivery system. International Journal of Pharmaceutical sciences and research. 2011;2(10):2482.
  • [60] M. Jaiswal, R. Dudhe and P. Sharma. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015;5:123-127.
  • [61] M. Somiya and S. i. Kuroda. Development of a virus-mimicking nanocarrier for drug delivery systems: The bio-nanocapsule. Advanced Drug Delivery Reviews. 2015;95:77-89.
  • [62] K. C. Bentz and D. A. Savin. Hollow polymer nanocapsules: synthesis, properties, and applications. Polymer Chemistry. 2018;9(16):2059-2081.
  • [63] C. E. Mora-Huertas, H. Fessi and A. Elaissari. Polymer-based nanocapsules for drug delivery. International journal of pharmaceutics. 2010;385(1-2):113-142.
  • [64] D. Urimi, M. Hellsing, N. Mahmoudi, C. Soderberg, R. Widenbring, L. Gedda, K. Edwards, T. Loftsson and N. Schipper. Structural characterization study of a lipid nanocapsule formulation intended for drug delivery applications using small-angle scattering techniques. Molecular pharmaceutics. 2022;19(4):1068-1077.
  • [65] U. Shimanovich, G. J. Bernardes, T. Knowles and A. Cavaco-Paulo. Protein micro-and nano-capsules for biomedical applications. Chemical Society Reviews. 2014;43(5):1361-1371.
  • [66] C. Mayer. Nanocapsules as drug delivery systems. The International journal of artificial organs. 2005;28(11):1163-1171.
  • [67] A.-L. Robson, P. C. Dastoor, J. Flynn, W. Palmer, A. Martin, D. W. Smith, A. Woldu and S. Hua. Advantages and limitations of current imaging techniques for characterizing liposome morphology. Frontiers in pharmacology. 2018;9:80.
  • [68] L. Sercombe, T. Veerati, F. Moheimani, S. Y. Wu, A. K. Sood and S. Hua. Advances and challenges of liposome assisted drug delivery. Frontiers in pharmacology. 2015;6:286.
  • [69] M. Nishitani Yukuyama, E. Tomiko Myiake Kato, R. Lobenberg and N. Araci Bou-Chacra. Challenges and future prospects of nanoemulsion as a drug delivery system. Current pharmaceutical design. 2017;23(3):495-508.
  • [70] C. Viegas, A. B. Patrício, J. M. Prata, A. Nadhman, P. K. Chintamaneni and P. Fonte. Solid lipid nanoparticles vs. nanostructured lipid carriers: a comparative review. Pharmaceutics. 2023;15(6):1593.
  • [71] P. Ganesan and D. Narayanasamy. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustainable Chemistry and Pharmacy. 2017;6:37-56.
  • [72] B. Begines, T. Ortiz, M. Pérez-Aranda, G. Martínez, M. Merinero, F. Argüelles-Arias and A. Alcudia. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials. 2020;10(7):1403.
  • [73] J. M. Chan, P. M. Valencia, L. Zhang, R. Langer and O. C. Farokhzad. Polymeric nanoparticles for drug delivery. Cancer nanotechnology: Methods and protocols. 2010:163-175.
  • [74] Y. Sun, A. Bhattacharjee, M. Reynolds and Y. V. Li. Synthesis and characterizations of gentamicin-loaded poly-lactic-co-glycolic (PLGA) nanoparticles. Journal of Nanoparticle Research. 2021;23:1-15.
  • [75] P. Narvekar, P. Bhatt, G. Fnu and V. Sutariya. Axitinib-loaded poly (lactic-co-glycolic acid) nanoparticles for age-related macular degeneration: formulation development and in vitro characterization. Assay and drug development technologies. 2019;17(4):167-177.
  • [76] A. Kumari, S. K. Yadav and S. C. Yadav. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and surfaces B: biointerfaces. 2010;75(1):1-18.
  • [77] N. Jan, A. Madni, S. Khan, H. Shah, F. Akram, A. Khan, D. Ertas, M. F. Bostanudin, C. H. Contag and N. Ashammakhi. Biomimetic cell membrane‐coated poly (lactic‐co‐glycolic acid) nanoparticles for biomedical applications. Bioengineering & Translational Medicine. 2023;8(2):e10441.
  • [78] D. Pandita, S. Kumar and V. Lather. Hybrid poly (lactic-co-glycolic acid) nanoparticles: design and delivery prospectives. Drug discovery today. 2015;20(1):95-104.
  • [79] E. Nagarajana, P. Shanmugasundarama, V. Ravichandirana, A. Vijayalakshmia, B. Senthilnathanb and K. Masilamanib. Development and evaluation of chitosan based polymeric nanoparticles of an antiulcer drug lansoprazole. Journal of Applied Pharmaceutical Science. 2015;5(4):020-025.
  • [80] A. Grenha. Chitosan nanoparticles: a survey of preparation methods. Journal of drug targeting. 2012;20(4):291-300.
  • [81] S. Naskar, S. Sharma and K. Kuotsu. Chitosan-based nanoparticles: An overview of biomedical applications and its preparation. Journal of drug delivery science and technology. 2019;49:66-81.
  • [82] K. Divya and M. Jisha. Chitosan nanoparticles preparation and applications. Environmental chemistry letters. 2018;16:101-112.
  • [83] A. Pramanik, D. Laha, S. K. Dash, S. Chattopadhyay, S. Roy, D. K. Das, P. Pramanik and P. Karmakar. An in-vivo study for targeted delivery of copper-organic complex to breast cancer using chitosan polymer nanoparticles. Materials Science and Engineering: C. 2016;68:327-337.
  • [84] Z. Ahmad, A. Shah, M. Siddiq and H.-B. Kraatz. Polymeric micelles as drug delivery vehicles. Rsc Advances. 2014;4(33):17028-17038.
  • [85] X. Wang, J. E. Hall, S. Warren, J. Krom, J. M. Magistrelli, M. Rackaitis and G. G. Bohm. Synthesis, characterization, and application of novel polymeric nanoparticles. Macromolecules. 2007;40(3):499-508.
  • [86] S. Movassaghian, O. M. Merkel and V. P. Torchilin. Applications of polymer micelles for imaging and drug delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2015;7(5):691-707.
  • [87] J. Gong, M. Chen, Y. Zheng, S. Wang and Y. Wang. Polymeric micelles drug delivery system in oncology. Journal of Controlled Release. 2012;159(3):312-323.
  • [88] U. Kedar, P. Phutane, S. Shidhaye and V. Kadam. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine: Nanotechnology, Biology and Medicine. 2010;6(6):714-729.
  • [89] J. Kousalová and T. Etrych. Polymeric nanogels as drug delivery systems. Physiological research. 2018;67.
  • [90] J. Ramos, J. Forcada and R. Hidalgo-Alvarez. Cationic polymer nanoparticles and nanogels: from synthesis to biotechnological applications. Chemical reviews. 2014;114(1):367-428.
  • [91] S. Rigogliuso, M. A. Sabatino, G. Adamo, N. Grimaldi, C. Dispenza and G. Ghersi. Polymeric nanogels: Nanocarriers for drug delivery application. Chem Eng. 2012;27:247-252.
  • [92] R. T. Chacko, J. Ventura, J. Zhuang and S. Thayumanavan. Polymer nanogels: a versatile nanoscopic drug delivery platform. Advanced Drug Delivery Reviews. 2012;64(9):836-851.
  • [93] S. Hajebi, N. Rabiee, M. Bagherzadeh, S. Ahmadi, M. Rabiee, H. Roghani-Mamaqani, M. Tahriri, L. Tayebi and M. R. Hamblin. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta biomaterialia. 2019;92:1-18.
  • [94] P. V. Devarajan and S. Jain. Targeted drug delivery: concepts and design. 2015.
  • [95] K. Rani and S. Paliwal. A review on targeted drug delivery: Its entire focus on advanced therapeutics and diagnostics. Sch. J. App. Med. Sci. 2014;2(1C):328-31.
  • [96] A. Tewabe, A. Abate, M. Tamrie, A. Seyfu and E. Abdela Siraj. Targeted drug delivery—from magic bullet to nanomedicine: principles, challenges, and future perspectives. Journal of Multidisciplinary Healthcare. 2021:1711-1724.
  • [97] A. I. Freeman and E. Mayhew. Targeted drug delivery. Cancer. 1986;58(S2):573-583.
  • [98] P. Y. Liyanage, S. D. Hettiarachchi, Y. Zhou, A. Ouhtit, E. S. Seven, C. Y. Oztan, E. Celik and R. M. Leblanc. Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2019;1871(2):419-433.
  • [99] S. Titu, C. M. Grapa, T. Mocan, O. Balacescu and A. Irimie. Tetraspanins: physiology, colorectal cancer development, and nanomediated applications. Cancers. 2021;13(22):5662.
  • [100] N. Ponnappan and A. Chugh. Nanoparticle-mediated delivery of therapeutic drugs. Pharmaceutical Medicine. 2015;29:155-167.
  • [101] C. Yang and D. Merlin. Nanoparticle-mediated drug delivery systems for the treatment of IBD: current perspectives. International journal of nanomedicine. 2019:8875-8889.
  • [102] H. Kang, S. Hu, M. H. Cho, S. H. Hong, Y. Choi and H. S. Choi. Theranostic nanosystems for targeted cancer therapy. Nano Today. 2018;23:59-72.
  • [103] B. Massoumi, N. Poorgholy and M. Jaymand. Multistimuli responsive polymeric nanosystems for theranostic applications. International Journal of Polymeric Materials and Polymeric Biomaterials. 2017;66(1):38-47.
  • [104] X. Chen, J. Song, X. Chen and H. Yang. X-ray-activated nanosystems for theranostic applications. Chemical Society Reviews. 2019;48(11):3073-3101.
  • [105] W. Lin, X. Zhang, L. Qian, N. Yao, Y. Pan and L. Zhang. Doxorubicin-loaded unimolecular micelle-stabilized gold nanoparticles as a theranostic nanoplatform for tumor-targeted chemotherapy and computed tomography imaging. Biomacromolecules. 2017;18(12):3869-3880.
  • [106] A. Polyak and T. L. Ross. Nanoparticles for SPECT and PET imaging: towards personalized medicine and theranostics. Current medicinal chemistry. 2018;25(34):4328-4353.
  • [107] S. Khizar, N. M. Ahmad, N. Zine, N. Jaffrezic-Renault, A. Errachid-el-salhi and A. Elaissari. Magnetic nanoparticles: from synthesis to theranostic applications. ACS Applied Nano Materials. 2021;4(5):4284-4306.
  • [108] D. Wei, Y. Sun, H. Zhu and Q. Fu. Stimuli-responsive polymer-based nanosystems for cancer theranostics. ACS nano. 2023;17(23):23223-23261.
  • [109] S. Berkner, K. Schwirn and D. Voelker. Nanopharmaceuticals: tiny challenges for the environmental risk assessment of pharmaceuticals. Environmental toxicology and chemistry. 2016;35(4):780-787.
  • [110] J. Jeevanandam, Y. San Chan and M. K. Danquah. Nano-formulations of drugs: recent developments, impact and challenges. Biochimie. 2016;128:99-112.
  • [111] F. Farjadian, A. Ghasemi, O. Gohari, A. Roointan, M. Karimi and M. R. Hamblin. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine. 2019;14(1):93-126.
  • [112] M. N. Hafeez, C. Celia and V. Petrikaite. Challenges towards targeted drug delivery in cancer nanomedicines. Processes. 2021;9(9):1527.
  • [113] B. S. Pattni and V. P. Torchilin. Targeted drug delivery systems: Strategies and challenges. Targeted drug delivery: Concepts and design. 2015:3-38.
  • [114] A. A. Halwani. Development of pharmaceutical nanomedicines: from the bench to the market. Pharmaceutics. 2022;14(1):106.
  • [115] J. K. Patra, G. Das, L. F. Fraceto, E. V. R. Campos, M. d. P. Rodriguez-Torres, L. S. Acosta-Torres, L. A. Diaz-Torres, R. Grillo, M. K. Swamy and S. Sharma. Nano based drug delivery systems: recent developments and future prospects. Journal of nanobiotechnology. 2018;16:1-33.
  • [116] A. Badar, S. Pachera, A. Ansari and N. Lohiya. Nano based drug delivery systems: present and future prospects. Nanomed Nanotechnol J. 2019;2(1):121.
  • [117] P. Agrawal. Potential prospects of future medicine: Nano medicine. Journal of Pharmacovigilance. 2016;4(1):1000-1149.
  • [118] S. Çalış, K. Ö. Atar, F. B. Arslan, H. Eroğlu and Y. Çapan. Nanopharmaceuticals as Drug-Delivery Systems: For, Against, and Current Applications. Nanocarriers for Drug Delivery. Elsevier; 2019. p. 133-154.
  • [119] R. K. Thapa and J. O. Kim. Nanomedicine-based commercial formulations: Current developments and future prospects. Journal of Pharmaceutical Investigation. 2023;53(1):19-33

Nano Pharmaceuticals: A Comprehensive Review on Chemistry, Nanostructures, and Advanced in Drug Delivery Applications

Year 2025, Volume: 8 Issue: 1, 23 - 42, 17.06.2025
https://doi.org/10.54565/jphcfum.1630835

Abstract

This review provides an in-depth analysis of nanopharmaceuticals, focusing on their chemistry, nanostructures, and advanced drug delivery applications. Its significance lies in the detailed examination of the molecular design, synthesis techniques, and functionalization strategies that enable nanopharmaceuticals to revolutionize drug delivery. By exploring the unique properties of various nanostructures, such as lipid-based nanocarriers, polymeric nanoparticles, and theranostic nanosystems, this review aims to synthesize current knowledge on the chemistry and technological advancements in nanopharmaceuticals, offering a foundational understanding for future research and development in this rapidly evolving field. It also addresses the challenges and future prospects of nanopharmaceuticals, emphasizing the need for innovation to overcome issues related to stability, scalability, and regulatory compliance. Overall, the review underscores the transformative potential of nanopharmaceuticals in drug delivery, providing insights into how these advanced systems can be optimized for more effective and personalized medicine. The findings suggest that while the future of nanopharmaceuticals is promising, ongoing research is likely to yield significant advancements in targeted and controlled drug delivery systems.

References

  • [1] A. K. Deshantri, A. V. Moreira, V. Ecker, S. N. Mandhane, R. M. Schiffelers, M. Buchner and M. H. Fens. Nanomedicines for the treatment of hematological malignancies. Journal of Controlled Release. 2018;287:194-215.
  • [2] A. M. Elbadry and H. H. Mohamed. Introduction to Nanomedicine, Nanotechnology, and Nanopharmaceuticals. Nanocarriers in Neurodegenerative Disorders. CRC Press. p. 75-83.
  • [3] R. Sood and D. S. Chopra. Metal–plant frameworks in nanotechnology: an overview. Phytomedicine. 2018;50:148-156.
  • [4] F. Rodríguez, P. Caruana, N. De la Fuente, P. Español, M. Gámez, J. Balart, E. Llurba, R. Rovira, R. Ruiz and C. Martín-Lorente. Nano-based approved pharmaceuticals for cancer treatment: present and future challenges. Biomolecules. 2022;12(6):784.
  • [5] V. K. Yata, S. Ranjan, N. Dasgupta and E. Lichtfouse. Nanopharmaceuticals: Principles and Applications Vol. 2. Springer; 2020.
  • [6] S. P. Gangapure and O. G. Bhusnure. Nanopharmaceuticals. Journal of Drug Delivery and Therapeutics. 2019;9(4):676-687.
  • [7] G. D. Moon, S. Ko, Y. Min, J. Zeng, Y. Xia and U. Jeong. Chemical transformations of nanostructured materials. Nano Today. 2011;6(2):186-203.
  • [8] M. Fernandez-Garcia, A. Martinez-Arias, J. Hanson and J. Rodriguez. Nanostructured oxides in chemistry: characterization and properties. Chemical reviews. 2004;104(9):4063-4104.
  • [9] Y. Wang. Nanogeochemistry: Nanostructures, emergent properties and their control on geochemical reactions and mass transfers. Chemical Geology. 2014;378:1-23.
  • [10] M. Prato, K. Kostarelos and A. Bianco. Functionalized carbon nanotubes in drug design and discovery. Accounts of chemical research. 2008;41(1):60-68.
  • [11] F. Karimi, A. J. O'Connor, G. G. Qiao and D. E. Heath. Integrin clustering matters: a review of biomaterials functionalized with multivalent integrin‐binding ligands to improve cell adhesion, migration, differentiation, angiogenesis, and biomedical device integration. Advanced Healthcare Materials. 2018;7(12):1701324.
  • [12] C. Sahlgren, A. Meinander, H. Zhang, F. Cheng, M. Preis, C. Xu, T. A. Salminen, D. Toivola, D. Abankwa and A. Rosling. Tailored approaches in drug development and diagnostics: from molecular design to biological model systems. Advanced Healthcare Materials. 2017;6(21):1700258.
  • [13] L. Stillger and D. Müller. Peptide-coating combating antimicrobial contaminations: a review of covalent immobilization strategies for industrial applications. Journal of Materials Science. 2022;57(24):10863-10885.
  • [14] N. Kamaly, B. Yameen, J. Wu and O. C. Farokhzad. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chemical reviews. 2016;116(4):2602-2663.
  • [15] J. H. Lee and Y. Yeo. Controlled drug release from pharmaceutical nanocarriers. Chemical engineering science. 2015;125:75-84.
  • [16] M. Rawal, A. Singh and M. M. Amiji. Quality-by-design concepts to improve nanotechnology-based drug development. Pharmaceutical research. 2019;36(11):153.
  • [17] H. M. Mansour, M. Sohn, A. Al-Ghananeem and P. P. DeLuca. Materials for pharmaceutical dosage forms: molecular pharmaceutics and controlled release drug delivery aspects. International journal of molecular sciences. 2010;11(9):3298-3322.
  • [18] O. Dumitriu Buzia, A. M. Păduraru, C. S. Stefan, M. Dinu, D. I. Cocoș, L. C. Nwabudike and A. L. Tatu. Strategies for Improving Transdermal Administration: New Approaches to Controlled Drug Release. Pharmaceutics. 2023;15(4):1183.
  • [19] A. Raza, T. Rasheed, F. Nabeel, U. Hayat, M. Bilal and H. M. Iqbal. Endogenous and exogenous stimuli-responsive drug delivery systems for programmed site-specific release. Molecules. 2019;24(6):1117.
  • [20] F. Li, C. Zheng, J. Xin, F. Chen, H. Ling, L. Sun, T. J. Webster, X. Ming and J. Liu. Enhanced tumor delivery and antitumor response of doxorubicin-loaded albumin nanoparticles formulated based on a Schiff base. International journal of nanomedicine. 2016:3875-3890.
  • [21] M. Esmaeilpour, A. R. Sardarian and J. Javidi. Schiff base complex of metal ions supported on superparamagnetic Fe3O4@ SiO2 nanoparticles: An efficient, selective and recyclable catalyst for synthesis of 1, 1-diacetates from aldehydes under solvent-free conditions. Applied Catalysis A: General. 2012;445:359-367.
  • [22] S. Peng, X. Yuan, W. Lin, C. Cai and L. Zhang. pH-responsive controlled release of mesoporous silica nanoparticles capped with Schiff base copolymer gatekeepers: Experiment and molecular dynamics simulation. Colloids and surfaces B: biointerfaces. 2019;176:394-403.
  • [23] S. Verma, R. Gokhale and D. J. Burgess. A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. International journal of pharmaceutics. 2009;380(1-2):216-222.
  • [24] H. Panjiar, R. Gakkhar and B. Daniel. Strain-free graphite nanoparticle synthesis by mechanical milling. Powder Technology. 2015;275:25-29.
  • [25] T. P. Yadav, R. M. Yadav and D. P. Singh. Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. Nanoscience and Nanotechnology. 2012;2(3):22-48.
  • [26] P. G. Jamkhande, N. W. Ghule, A. H. Bamer and M. G. Kalaskar. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of drug delivery science and technology. 2019;53:101174.
  • [27] M. Kim, S. Osone, T. Kim, H. Higashi and T. Seto. Synthesis of nanoparticles by laser ablation: A review. KONA Powder and Particle Journal. 2017;34:80-90.
  • [28] N. Semaltianos. Nanoparticles by laser ablation. Critical reviews in solid state and materials sciences. 2010;35(2):105-124.
  • [29] M. C. Sportelli, M. Izzi, A. Volpe, M. Clemente, R. A. Picca, A. Ancona, P. M. Lugarà, G. Palazzo and N. Cioffi. The pros and cons of the use of laser ablation synthesis for the production of silver nano-antimicrobials. Antibiotics. 2018;7(3):67.
  • [30] R. Hufschmid, H. Arami, R. M. Ferguson, M. Gonzales, E. Teeman, L. N. Brush, N. D. Browning and K. M. Krishnan. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale. 2015;7(25):11142-11154.
  • [31] O. Pascu, E. Carenza, M. Gich, S. Estrade, F. Peiro, G. Herranz and A. Roig. Surface reactivity of iron oxide nanoparticles by microwave-assisted synthesis; comparison with the thermal decomposition route. The Journal of Physical Chemistry C. 2012;116(28):15108-15116.
  • [32] I. Hussain, N. Singh, A. Singh, H. Singh and S. Singh. Green synthesis of nanoparticles and its potential application. Biotechnology letters. 2016;38:545-560.
  • [33] H. Jahangirian, E. G. Lemraski, T. J. Webster, R. Rafiee-Moghaddam and Y. Abdollahi. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. International journal of nanomedicine. 2017:2957-2978.
  • [34] H. Nadaroglu, A. A. Güngör and S. Ince. Synthesis of nanoparticles by green synthesis method. International Journal of Innovative Research and Reviews. 2017;1(1):6-9.
  • [35] P. K. Dikshit, J. Kumar, A. K. Das, S. Sadhu, S. Sharma, S. Singh, P. K. Gupta and B. S. Kim. Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts. 2021;11(8):902.
  • [36] M. Parashar, V. K. Shukla and R. Singh. Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. Journal of Materials Science: Materials in Electronics. 2020;31(5):3729-3749.
  • [37] D. Bokov, A. Turki Jalil, S. Chupradit, W. Suksatan, M. Javed Ansari, I. H. Shewael, G. H. Valiev and E. Kianfar. Nanomaterial by sol‐gel method: synthesis and application. Advances in materials science and engineering. 2021;2021(1):5102014.
  • [38] J. A. Darr, J. Zhang, N. M. Makwana and X. Weng. Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions. Chemical reviews. 2017;117(17):11125-11238.
  • [39] H. Lu, J. Wang, T. Wang, J. Zhong, Y. Bao and H. Hao. Recent progress on nanostructures for drug delivery applications. Journal of Nanomaterials. 2016;2016(1):5762431.
  • [40] E. Andronescu and A. M. Grumezescu. Nanostructures for drug delivery. Elsevier; 2017.
  • [41] D. Patel, B. Patel and H. Thakkar. Lipid based nanocarriers: promising drug delivery system for topical application. european Journal of lipid science and technology. 2021;123(5):2000264.
  • [42] M. R. Shah, M. Imran and S. Ullah. Lipid-based nanocarriers for drug delivery and diagnosis. William Andrew; 2017.
  • [43] A. Abbasi. TiO2-Based nanocarriers for drug delivery. Nanocarriers for Drug Delivery. Elsevier; 2019. p. 205-248.
  • [44] D. Lombardo, P. Calandra, D. Barreca, S. Magazù and M. A. Kiselev. Soft interaction in liposome nanocarriers for therapeutic drug delivery. Nanomaterials. 2016;6(7):125.
  • [45] D. K. Mishra, R. Shandilya and P. K. Mishra. Lipid based nanocarriers: a translational perspective. Nanomedicine: Nanotechnology, Biology and Medicine. 2018;14(7):2023-2050.
  • [46] N. Naseri, H. Valizadeh and P. Zakeri-Milani. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Advanced pharmaceutical bulletin. 2015;5(3):305.
  • [47] H. Nsairat, D. Khater, U. Sayed, F. Odeh, A. Al Bawab and W. Alshaer. Liposomes: Structure, composition, types, and clinical applications. Heliyon. 2022;8(5).
  • [48] M. Ashtikar, K. Nagarsekar and A. Fahr. Transdermal delivery from liposomal formulations–Evolution of the technology over the last three decades. Journal of Controlled Release. 2016;242:126-140.
  • [49] L. W. Allahou, S. Y. Madani and A. Seifalian. Investigating the application of liposomes as drug delivery systems for the diagnosis and treatment of cancer. International journal of biomaterials. 2021;2021(1):3041969.
  • [50] Y. Malam, M. Loizidou and A. M. Seifalian. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends in pharmacological sciences. 2009;30(11):592-599.
  • [51] P. Ghasemiyeh and S. Mohammadi-Samani. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Research in pharmaceutical sciences. 2018;13(4):288-303.
  • [52] G. Yoon, J. W. Park and I.-S. Yoon. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs): recent advances in drug delivery. Journal of Pharmaceutical Investigation. 2013;43:353-362.
  • [53] A. Gordillo-Galeano and C. E. Mora-Huertas. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. European Journal of Pharmaceutics and Biopharmaceutics. 2018;133:285-308.
  • [54] H. Bunjes. Structural properties of solid lipid based colloidal drug delivery systems. Current Opinion in Colloid & Interface Science. 2011;16(5):405-411.
  • [55] S. Khatak and H. Dureja. Structural composition of solid lipid nanoparticles for invasive and non-invasive drug delivery. Current Nanomaterials. 2017;2(3):129-153.
  • [56] R. P. Patel and J. R. Joshi. An overview on nanoemulsion: a novel approach. International Journal of Pharmaceutical sciences and research. 2012;3(12):4640.
  • [57] P. J. Espitia, C. A. Fuenmayor and C. G. Otoni. Nanoemulsions: Synthesis, characterization, and application in bio‐based active food packaging. Comprehensive Reviews in Food Science and Food Safety. 2019;18(1):264-285.
  • [58] Y. Singh, J. G. Meher, K. Raval, F. A. Khan, M. Chaurasia, N. K. Jain and M. K. Chourasia. Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release. 2017;252:28-49.
  • [59] P. Bhatt and S. Madhav. A detailed review on nanoemulsion drug delivery system. International Journal of Pharmaceutical sciences and research. 2011;2(10):2482.
  • [60] M. Jaiswal, R. Dudhe and P. Sharma. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015;5:123-127.
  • [61] M. Somiya and S. i. Kuroda. Development of a virus-mimicking nanocarrier for drug delivery systems: The bio-nanocapsule. Advanced Drug Delivery Reviews. 2015;95:77-89.
  • [62] K. C. Bentz and D. A. Savin. Hollow polymer nanocapsules: synthesis, properties, and applications. Polymer Chemistry. 2018;9(16):2059-2081.
  • [63] C. E. Mora-Huertas, H. Fessi and A. Elaissari. Polymer-based nanocapsules for drug delivery. International journal of pharmaceutics. 2010;385(1-2):113-142.
  • [64] D. Urimi, M. Hellsing, N. Mahmoudi, C. Soderberg, R. Widenbring, L. Gedda, K. Edwards, T. Loftsson and N. Schipper. Structural characterization study of a lipid nanocapsule formulation intended for drug delivery applications using small-angle scattering techniques. Molecular pharmaceutics. 2022;19(4):1068-1077.
  • [65] U. Shimanovich, G. J. Bernardes, T. Knowles and A. Cavaco-Paulo. Protein micro-and nano-capsules for biomedical applications. Chemical Society Reviews. 2014;43(5):1361-1371.
  • [66] C. Mayer. Nanocapsules as drug delivery systems. The International journal of artificial organs. 2005;28(11):1163-1171.
  • [67] A.-L. Robson, P. C. Dastoor, J. Flynn, W. Palmer, A. Martin, D. W. Smith, A. Woldu and S. Hua. Advantages and limitations of current imaging techniques for characterizing liposome morphology. Frontiers in pharmacology. 2018;9:80.
  • [68] L. Sercombe, T. Veerati, F. Moheimani, S. Y. Wu, A. K. Sood and S. Hua. Advances and challenges of liposome assisted drug delivery. Frontiers in pharmacology. 2015;6:286.
  • [69] M. Nishitani Yukuyama, E. Tomiko Myiake Kato, R. Lobenberg and N. Araci Bou-Chacra. Challenges and future prospects of nanoemulsion as a drug delivery system. Current pharmaceutical design. 2017;23(3):495-508.
  • [70] C. Viegas, A. B. Patrício, J. M. Prata, A. Nadhman, P. K. Chintamaneni and P. Fonte. Solid lipid nanoparticles vs. nanostructured lipid carriers: a comparative review. Pharmaceutics. 2023;15(6):1593.
  • [71] P. Ganesan and D. Narayanasamy. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustainable Chemistry and Pharmacy. 2017;6:37-56.
  • [72] B. Begines, T. Ortiz, M. Pérez-Aranda, G. Martínez, M. Merinero, F. Argüelles-Arias and A. Alcudia. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials. 2020;10(7):1403.
  • [73] J. M. Chan, P. M. Valencia, L. Zhang, R. Langer and O. C. Farokhzad. Polymeric nanoparticles for drug delivery. Cancer nanotechnology: Methods and protocols. 2010:163-175.
  • [74] Y. Sun, A. Bhattacharjee, M. Reynolds and Y. V. Li. Synthesis and characterizations of gentamicin-loaded poly-lactic-co-glycolic (PLGA) nanoparticles. Journal of Nanoparticle Research. 2021;23:1-15.
  • [75] P. Narvekar, P. Bhatt, G. Fnu and V. Sutariya. Axitinib-loaded poly (lactic-co-glycolic acid) nanoparticles for age-related macular degeneration: formulation development and in vitro characterization. Assay and drug development technologies. 2019;17(4):167-177.
  • [76] A. Kumari, S. K. Yadav and S. C. Yadav. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and surfaces B: biointerfaces. 2010;75(1):1-18.
  • [77] N. Jan, A. Madni, S. Khan, H. Shah, F. Akram, A. Khan, D. Ertas, M. F. Bostanudin, C. H. Contag and N. Ashammakhi. Biomimetic cell membrane‐coated poly (lactic‐co‐glycolic acid) nanoparticles for biomedical applications. Bioengineering & Translational Medicine. 2023;8(2):e10441.
  • [78] D. Pandita, S. Kumar and V. Lather. Hybrid poly (lactic-co-glycolic acid) nanoparticles: design and delivery prospectives. Drug discovery today. 2015;20(1):95-104.
  • [79] E. Nagarajana, P. Shanmugasundarama, V. Ravichandirana, A. Vijayalakshmia, B. Senthilnathanb and K. Masilamanib. Development and evaluation of chitosan based polymeric nanoparticles of an antiulcer drug lansoprazole. Journal of Applied Pharmaceutical Science. 2015;5(4):020-025.
  • [80] A. Grenha. Chitosan nanoparticles: a survey of preparation methods. Journal of drug targeting. 2012;20(4):291-300.
  • [81] S. Naskar, S. Sharma and K. Kuotsu. Chitosan-based nanoparticles: An overview of biomedical applications and its preparation. Journal of drug delivery science and technology. 2019;49:66-81.
  • [82] K. Divya and M. Jisha. Chitosan nanoparticles preparation and applications. Environmental chemistry letters. 2018;16:101-112.
  • [83] A. Pramanik, D. Laha, S. K. Dash, S. Chattopadhyay, S. Roy, D. K. Das, P. Pramanik and P. Karmakar. An in-vivo study for targeted delivery of copper-organic complex to breast cancer using chitosan polymer nanoparticles. Materials Science and Engineering: C. 2016;68:327-337.
  • [84] Z. Ahmad, A. Shah, M. Siddiq and H.-B. Kraatz. Polymeric micelles as drug delivery vehicles. Rsc Advances. 2014;4(33):17028-17038.
  • [85] X. Wang, J. E. Hall, S. Warren, J. Krom, J. M. Magistrelli, M. Rackaitis and G. G. Bohm. Synthesis, characterization, and application of novel polymeric nanoparticles. Macromolecules. 2007;40(3):499-508.
  • [86] S. Movassaghian, O. M. Merkel and V. P. Torchilin. Applications of polymer micelles for imaging and drug delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2015;7(5):691-707.
  • [87] J. Gong, M. Chen, Y. Zheng, S. Wang and Y. Wang. Polymeric micelles drug delivery system in oncology. Journal of Controlled Release. 2012;159(3):312-323.
  • [88] U. Kedar, P. Phutane, S. Shidhaye and V. Kadam. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine: Nanotechnology, Biology and Medicine. 2010;6(6):714-729.
  • [89] J. Kousalová and T. Etrych. Polymeric nanogels as drug delivery systems. Physiological research. 2018;67.
  • [90] J. Ramos, J. Forcada and R. Hidalgo-Alvarez. Cationic polymer nanoparticles and nanogels: from synthesis to biotechnological applications. Chemical reviews. 2014;114(1):367-428.
  • [91] S. Rigogliuso, M. A. Sabatino, G. Adamo, N. Grimaldi, C. Dispenza and G. Ghersi. Polymeric nanogels: Nanocarriers for drug delivery application. Chem Eng. 2012;27:247-252.
  • [92] R. T. Chacko, J. Ventura, J. Zhuang and S. Thayumanavan. Polymer nanogels: a versatile nanoscopic drug delivery platform. Advanced Drug Delivery Reviews. 2012;64(9):836-851.
  • [93] S. Hajebi, N. Rabiee, M. Bagherzadeh, S. Ahmadi, M. Rabiee, H. Roghani-Mamaqani, M. Tahriri, L. Tayebi and M. R. Hamblin. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta biomaterialia. 2019;92:1-18.
  • [94] P. V. Devarajan and S. Jain. Targeted drug delivery: concepts and design. 2015.
  • [95] K. Rani and S. Paliwal. A review on targeted drug delivery: Its entire focus on advanced therapeutics and diagnostics. Sch. J. App. Med. Sci. 2014;2(1C):328-31.
  • [96] A. Tewabe, A. Abate, M. Tamrie, A. Seyfu and E. Abdela Siraj. Targeted drug delivery—from magic bullet to nanomedicine: principles, challenges, and future perspectives. Journal of Multidisciplinary Healthcare. 2021:1711-1724.
  • [97] A. I. Freeman and E. Mayhew. Targeted drug delivery. Cancer. 1986;58(S2):573-583.
  • [98] P. Y. Liyanage, S. D. Hettiarachchi, Y. Zhou, A. Ouhtit, E. S. Seven, C. Y. Oztan, E. Celik and R. M. Leblanc. Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2019;1871(2):419-433.
  • [99] S. Titu, C. M. Grapa, T. Mocan, O. Balacescu and A. Irimie. Tetraspanins: physiology, colorectal cancer development, and nanomediated applications. Cancers. 2021;13(22):5662.
  • [100] N. Ponnappan and A. Chugh. Nanoparticle-mediated delivery of therapeutic drugs. Pharmaceutical Medicine. 2015;29:155-167.
  • [101] C. Yang and D. Merlin. Nanoparticle-mediated drug delivery systems for the treatment of IBD: current perspectives. International journal of nanomedicine. 2019:8875-8889.
  • [102] H. Kang, S. Hu, M. H. Cho, S. H. Hong, Y. Choi and H. S. Choi. Theranostic nanosystems for targeted cancer therapy. Nano Today. 2018;23:59-72.
  • [103] B. Massoumi, N. Poorgholy and M. Jaymand. Multistimuli responsive polymeric nanosystems for theranostic applications. International Journal of Polymeric Materials and Polymeric Biomaterials. 2017;66(1):38-47.
  • [104] X. Chen, J. Song, X. Chen and H. Yang. X-ray-activated nanosystems for theranostic applications. Chemical Society Reviews. 2019;48(11):3073-3101.
  • [105] W. Lin, X. Zhang, L. Qian, N. Yao, Y. Pan and L. Zhang. Doxorubicin-loaded unimolecular micelle-stabilized gold nanoparticles as a theranostic nanoplatform for tumor-targeted chemotherapy and computed tomography imaging. Biomacromolecules. 2017;18(12):3869-3880.
  • [106] A. Polyak and T. L. Ross. Nanoparticles for SPECT and PET imaging: towards personalized medicine and theranostics. Current medicinal chemistry. 2018;25(34):4328-4353.
  • [107] S. Khizar, N. M. Ahmad, N. Zine, N. Jaffrezic-Renault, A. Errachid-el-salhi and A. Elaissari. Magnetic nanoparticles: from synthesis to theranostic applications. ACS Applied Nano Materials. 2021;4(5):4284-4306.
  • [108] D. Wei, Y. Sun, H. Zhu and Q. Fu. Stimuli-responsive polymer-based nanosystems for cancer theranostics. ACS nano. 2023;17(23):23223-23261.
  • [109] S. Berkner, K. Schwirn and D. Voelker. Nanopharmaceuticals: tiny challenges for the environmental risk assessment of pharmaceuticals. Environmental toxicology and chemistry. 2016;35(4):780-787.
  • [110] J. Jeevanandam, Y. San Chan and M. K. Danquah. Nano-formulations of drugs: recent developments, impact and challenges. Biochimie. 2016;128:99-112.
  • [111] F. Farjadian, A. Ghasemi, O. Gohari, A. Roointan, M. Karimi and M. R. Hamblin. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine. 2019;14(1):93-126.
  • [112] M. N. Hafeez, C. Celia and V. Petrikaite. Challenges towards targeted drug delivery in cancer nanomedicines. Processes. 2021;9(9):1527.
  • [113] B. S. Pattni and V. P. Torchilin. Targeted drug delivery systems: Strategies and challenges. Targeted drug delivery: Concepts and design. 2015:3-38.
  • [114] A. A. Halwani. Development of pharmaceutical nanomedicines: from the bench to the market. Pharmaceutics. 2022;14(1):106.
  • [115] J. K. Patra, G. Das, L. F. Fraceto, E. V. R. Campos, M. d. P. Rodriguez-Torres, L. S. Acosta-Torres, L. A. Diaz-Torres, R. Grillo, M. K. Swamy and S. Sharma. Nano based drug delivery systems: recent developments and future prospects. Journal of nanobiotechnology. 2018;16:1-33.
  • [116] A. Badar, S. Pachera, A. Ansari and N. Lohiya. Nano based drug delivery systems: present and future prospects. Nanomed Nanotechnol J. 2019;2(1):121.
  • [117] P. Agrawal. Potential prospects of future medicine: Nano medicine. Journal of Pharmacovigilance. 2016;4(1):1000-1149.
  • [118] S. Çalış, K. Ö. Atar, F. B. Arslan, H. Eroğlu and Y. Çapan. Nanopharmaceuticals as Drug-Delivery Systems: For, Against, and Current Applications. Nanocarriers for Drug Delivery. Elsevier; 2019. p. 133-154.
  • [119] R. K. Thapa and J. O. Kim. Nanomedicine-based commercial formulations: Current developments and future prospects. Journal of Pharmaceutical Investigation. 2023;53(1):19-33
There are 119 citations in total.

Details

Primary Language English
Subjects Physical Chemistry (Other)
Journal Section Articles
Authors

Hana Ali 0009-0005-4193-4752

Ibrahim Nazem Qader 0000-0003-1167-3799

Publication Date June 17, 2025
Submission Date January 31, 2025
Acceptance Date May 2, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Ali, H., & Qader, I. N. (2025). Nano Pharmaceuticals: A Comprehensive Review on Chemistry, Nanostructures, and Advanced in Drug Delivery Applications. Journal of Physical Chemistry and Functional Materials, 8(1), 23-42. https://doi.org/10.54565/jphcfum.1630835
AMA Ali H, Qader IN. Nano Pharmaceuticals: A Comprehensive Review on Chemistry, Nanostructures, and Advanced in Drug Delivery Applications. Journal of Physical Chemistry and Functional Materials. June 2025;8(1):23-42. doi:10.54565/jphcfum.1630835
Chicago Ali, Hana, and Ibrahim Nazem Qader. “Nano Pharmaceuticals: A Comprehensive Review on Chemistry, Nanostructures, and Advanced in Drug Delivery Applications”. Journal of Physical Chemistry and Functional Materials 8, no. 1 (June 2025): 23-42. https://doi.org/10.54565/jphcfum.1630835.
EndNote Ali H, Qader IN (June 1, 2025) Nano Pharmaceuticals: A Comprehensive Review on Chemistry, Nanostructures, and Advanced in Drug Delivery Applications. Journal of Physical Chemistry and Functional Materials 8 1 23–42.
IEEE H. Ali and I. N. Qader, “Nano Pharmaceuticals: A Comprehensive Review on Chemistry, Nanostructures, and Advanced in Drug Delivery Applications”, Journal of Physical Chemistry and Functional Materials, vol. 8, no. 1, pp. 23–42, 2025, doi: 10.54565/jphcfum.1630835.
ISNAD Ali, Hana - Qader, Ibrahim Nazem. “Nano Pharmaceuticals: A Comprehensive Review on Chemistry, Nanostructures, and Advanced in Drug Delivery Applications”. Journal of Physical Chemistry and Functional Materials 8/1 (June 2025), 23-42. https://doi.org/10.54565/jphcfum.1630835.
JAMA Ali H, Qader IN. Nano Pharmaceuticals: A Comprehensive Review on Chemistry, Nanostructures, and Advanced in Drug Delivery Applications. Journal of Physical Chemistry and Functional Materials. 2025;8:23–42.
MLA Ali, Hana and Ibrahim Nazem Qader. “Nano Pharmaceuticals: A Comprehensive Review on Chemistry, Nanostructures, and Advanced in Drug Delivery Applications”. Journal of Physical Chemistry and Functional Materials, vol. 8, no. 1, 2025, pp. 23-42, doi:10.54565/jphcfum.1630835.
Vancouver Ali H, Qader IN. Nano Pharmaceuticals: A Comprehensive Review on Chemistry, Nanostructures, and Advanced in Drug Delivery Applications. Journal of Physical Chemistry and Functional Materials. 2025;8(1):23-42.

© 2018 Journal of Physical Chemistry and Functional Materials (JPCFM). All rights reserved.
For inquiries, submissions, and editorial support, please get in touch with nbulut@firat.edu.tr or visit our website at https://dergipark.org.tr/en/pub/jphcfum.

Stay connected with JPCFM for the latest research updates on physical chemistry and functional materials. Follow us on Social Media.

Published by DergiPark. Proudly supporting the advancement of science and innovation.https://dergipark.org.tr/en/pub/jphcfum