Review
BibTex RIS Cite
Year 2024, Volume: 21 Issue: 1, 27 - 33, 30.06.2024
https://doi.org/10.34233/jpr.1507538

Abstract

References

  • 1. Ahmadi, F., Kurdestani, A.H. (2010a) The impact of silver nano particles on growth performance, lymphoid organs and oxidative stress indicators in broiler chicks. Global Veterinaria 5:366-370
  • 2. Ahmadi, F., & Kurdestany, A. H. (2010b). The impact of silver nano particles on growth performance, lymphoid organs and oxidative stress indicators in broiler chicks. Global Veterinaria, 5(6), 366-370.
  • 3. Ahmadi, J. (2009). Application of different levels of silver nanoparticles in food on the performance and some blood parameters of broiler chickens. World Applied Sciences Journal, 7(1), 24-27.
  • 4. Alishahi, A. (2014). Antibacterial effect of chitosan nanoparticle loaded with nisin for the prolonged effect. Journal of Food Safety, 34(2), 111-118.
  • 5. Anwar, M. I., Awais, M. M., Akhtar, M., Navid, M. T., & Muhammad, F. (2019). Nutritional and immunological effects of nano-particles in commercial poultry birds. World's Poultry Science Journal, 75(2), 261-272.
  • 6. Aparna, N. & Karunakaran, R. (2016). Effect of selenium nanoparticles supplementation on oxidation resistance of broiler chicken. Indian Journal of Science Technology 9:1-5
  • 7. Bhanja, S. K., Hotowy, A., Mehra, M., Sawosz, E., Pineda, L., Vadalasetty, K. P., ... & Chwalibog, A. (2015). In ovo administration of silver nanoparticles and/or amino acids influence metabolism and immune gene expression in chicken embryos. International Journal of Molecular Sciences, 16(5), 9484-9503.
  • 8. Broom, L. J., Miller, H. M., Kerr, K. G., & Toplis, P. J. A. S. (2003). Removal of both zinc oxide and avilamycin from the post-weaning piglet diet: consequences for performance through to slaughter. Animal Science, 77(1), 79-84.
  • 9. Cai, S. (2012). The biology characteristics of nano-selenium and its application in livestock and poultry. China Feed Additivities l0, 10-12.
  • 10. Chen, X., & Moran Jr, E. T. (1995). The withdrawal feed of broilers: Carcass responses to dietary phosphorus. Journal of Applied Poultry Research, 4(1), 69-82.
  • 11. Chen, Z., Meng, H., Xing, G., Chen, C. & Zhao, Y. (2007) Toxicological and biological effects of nanomaterials. International Journal of Nanotechnology 4:179-196.
  • 12. Cho, K. H., Park, J. E., Osaka, T., & Park, S. G. (2005). The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta, 51(5), 956-960.
  • 13. Choi, S. & Choy, J. (2014) Biokinetics of zinc oxide nanoparticles: toxicokinetics, biological fates, and protein interaction. International Jorunal of Nanomedicine 9(2):261-269.
  • 14. Dai, C., Kang, H., Yang, W., Sun, J., Liu, C., Cheng, G., ... & Zhao, K. (2015). O-2′-hydroxypropyltrimethyl ammonium chloride chitosan nanoparticles for the delivery of live Newcastle disease vaccine. Carbohydrate Polymers, 130, 280-289.
  • 15. Doyle, M. P., Busta, F., Cords, B. R., Davidson, P. M., Hawke, J., Hurd, H. S., ... & Vogel, L. (2006). Antimicrobial resistance: Implications for the food system: An expert report, funded by the IFT Foundation. Comprehensive Reviews in Food Science and Food Safety, 5(3), 71-137.
  • 16. Elkloub, K., El Moustafa, M., Ghazalah, A. A., & Rehan, A. A. A. (2015). Effect of dietary nanosilver on broiler performance. International Journal of Poultry Science, 14(3), 177.
  • 17. Emami, T., Madani, R., Rezayat, S. M., Golchinfar, F., & Sarkar, S. (2012). Applying of gold nanoparticle to avoid diffusion of the conserved peptide of avian influenza nonstructural protein from membrane in Western blot. Journal of Applied Poultry Research, 21(3), 563-566.
  • 18. Esfahani, M., Farhad, A., & Mohammad, A. A. (2015). The effects of different levels of Curcuma longa and zinc oxide nanoparticles on the quality traits of thigh and breast meat in broiler chickens. International Journal of Biosciences, 6(3), 296-302.
  • 19. Feng, J. W. Q. M., Ma, W. Q., Niu, H. H., Wu, X. M., Wang, Y., & Feng, J. (2010). Effects of zinc glycine chelate on growth, hematological, and immunological characteristics in broilers. Biological Trace Element Research, 133, 203-211.
  • 20. Geraet, L., Oomen, A.G., Krystek, P., Jacobsen, N.R., Wallin, H., Laurentie Verharen, H.W., Brandon, E.F.A. & Jong, W.H. (2014) Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Particle and Fibre Toxicology 11:1-21.
  • 21. Ghasemzadeh, A. (2012). Global issues of food production. Agrotechnology, 1(2), 1-2.
  • 22. Gopi, M.B., Kumar, R.D., Shanmathy, M. & Prabakar, G. (2017) Role of nanoparticles in animal and poultry nutrition: modes of action and applications in formulating feed additives and food processing. International Journal of Pharmacology 13:724-731.
  • 23. Grodzik, M., & Sawosz, E. (2006). The influence of silver nanoparticles on chick embryo development and bursa of Fabricius morphology. Journal of Animal and Feed Sciences, 15, 111.
  • 24. Hassan, S., Hassan, F. U., & Rehman, M. S. U. (2020). Nano-particles of trace minerals in poultry nutrition: potential applications and future prospects. Biological Trace Element Research, 195, 591-612.
  • 25. Jan, S. S., Liu, D. C., Dong, X. Y., Hu, Y. M., & Chen, J. D. (2012). Effects of chitosan and its derivative added to water on immunological enhancement and disease control. Immunotherapy, 4(7), 697-701.
  • 26. Jarocka, U., Sawicka, R., Góra-Sochacka, A., Sirko, A., Zagórski-Ostoja, W., Radecki, J., & Radecka, H. (2014). An immunosensor based on antibody binding fragments attached to gold nanoparticles for the detection of peptides derived from avian influenza hemagglutinin H5. Sensors, 14(9), 15714-15728.
  • 27. Karimi, A., Sadeghi, G., & Vaziry, A. (2011). The effect of copper in excess of the requirement during the starter period on subsequent performance of broiler chicks. Journal of Applied Poultry Research, 20(2), 203-209.
  • 28. Khalili, I., Ghadimipour, R., Eteghad, S. S., Najafi, M. F., Ebrahimi, M. M., Godsian, N., ... & Khalili, M. T. (2015). Evaluation of immune response against inactivated avian influenza (H9N2) vaccine, by using chitosan nanoparticles. Jundishapur Journal of Microbiology, 8(12).
  • 29. Leeson, S. (2009). Copper metabolism and dietary needs. World's Poultry Science Journal, 65(3), 353-366.
  • 30. Lin, W., Xu, Y., Huang, C., Ma, Y., Shannon, K.B. & Chen, D. (2009) Toxicity of nano- and microsized ZnO particles in human lung epithelial cells. Journal of Nanoparticle Research 11:25-39.
  • 31. Liu, Z. H., Lu, L., Li, S. F., Zhang, L. Y., Xi, L., Zhang, K. Y., & Luo, X. G. (2011). Effects of supplemental zinc source and level on growth performance, carcass traits, and meat quality of broilers. Poultry Science, 90(8), 1782-1790.
  • 32. Matsumura, Y., Yoshikata, K., Kunisaki, S. I., & Tsuchido, T. (2003). Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Applied and Environmental Microbiology, 69(7), 4278-4281.
  • 33. Mohammadi, V., Ghazanfari, S., Mohammadi-Sangcheshmeh, A. & Nazaran, M.H. (2015a). Comparative effects of zinc-nano complexes, zinc-sulphate and zinc methionine on performance in broiler chickens. British Poultry Science 56:486-493
  • 34. Mohammadi, F., Ahmadi, F., & Andi, M. A. (2015b). Effect of zinc oxide nanoparticles on carcass parameters, relative weight of digestive and lymphoid organs of broiler fed wet diet during the starter period. International Journal of Biosciences, 6(2), 389-394.
  • 35. Mroczek-Sosnowska, N., Łukasiewicz, M., Wnuk, A., Sawosz, E., Niemiec, J., Skot, A., ... & Chwalibog, A. (2016). In ovo administration of copper nanoparticles and copper sulfate positively influences chicken performance. Journal of the Science of Food and Agriculture, 96(9), 3058-3062.
  • 36. Mroczek-Sosnowska, N., Sawosz, E., Vadalasetty, K. P., Łukasiewicz, M., Niemiec, J., Wierzbicki, M., ... & Chwalibog, A. (2015). Nanoparticles of copper stimulate angiogenesis at systemic and molecular level. International Journal of Molecular Sciences, 16(3), 4838-4849.
  • 37. Nygaard, U. C., Hansen, J. S., Samuelsen, M., Alberg, T., Marioara, C. D., & Løvik, M. (2009). Single-walled and multi-walled carbon nanotubes promote allergic immune responses in mice. Toxicological Sciences, 109(1), 113-123.
  • 38. Ohimain, E. I., & Ofongo, R. T. (2012). The effect of probiotic and prebiotic feed supplementation on chicken health and gut microflora: a review. International Journal of Animal and Veterinary Advances, 4(2), 135-143.
  • 39. Pangestika, R., & Ernawati, R. (2017). Antiviral activity effect of silver nanoparticles (Agnps) solution against the growth of infectious bursal disease virus on embryonated chicken eggs with Elisa test. KnE Life Sciences, 536-548.
  • 40. Park, E. J., Yi, J., Kim, Y., Choi, K., & Park, K. (2010). Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicology in vitro, 24(3), 872-878.
  • 41. Pineda, L., Chwalibog, A., Sawosz, E., Lauridsen, C., Engberg, R., Elnif, J., ... & Moghaddam, H. S. (2012). Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Archives of Animal Nutrition, 66(5), 416-429.
  • 42. Pirgozliev, V., Rose, S. P., & Ivanova, S. (2019). Feed additives in poultry nutrition. Bulgarian Journal of Agricultural Science, 25(1), 8-11.
  • 43. Saki, A. A., & Salary, J. J. P. S. (2015). The impact of in ovo injection of silver nanoparticles, thyme and savory extracts in broiler breeder eggs on growth performance, lymphoid-organ weights, and blood and immune parameters of broiler chicks. Poultry Science Journal, 3(2), 165-172.
  • 44. Saki, A.A. & Abbasinezhad, R.A.A. (2014) Iron nanoparticles and methionine hydroxy analog chelate in ovo feeding of broiler chickens. International Journal of Nanoscience and Nanotechnolgy 10:187-196
  • 45. Sawosz, E., Łukasiewicz, M., Łozicki, A., Sosnowska, M., Jaworski, S., Niemiec, J., ... & Chwalibog, A. (2018). Effect of copper nanoparticles on the mineral content of tissues and droppings, and growth of chickens. Archives of Animal Nutrition, 72(5), 396-406.
  • 46. Selim, N.A., Refaje, A. M., Abeer, R. K., & AS, A. E. H. (2014). Effect of sources and inclusion levels of zinc in broiler diets containing different vegetable oils during summer season conditions on meat quality. International Journal of Poultry Science, 13(11), 619-626
  • 47. Senthil Kumaran, C. K., Sugapriya, S., Manivannan, N., & Chandar Shekar, B. (2015). Effect on the growth performance of broiler chickens by selenium nanoparticles supplementation. Nano Vision, 5(4-6), 161-168.
  • 48. Sizova, E., Yausheva, E., Kosyan, D. & Miroshnikov, S. (2015). Growth enhancement by intramuscular injection of elemental iron nano- and microparticles. Modern Applied Science 9:17-26.
  • 49. Sundaresan, N. R., Anish, D., Sastry, K. V. H., Saxena, V. K., Nagarajan, K., Subramani, J., ... & Ahmed, K. A. (2008). High doses of dietary zinc induce cytokines, chemokines, and apoptosis in reproductive tissues during regression. Cell and Tissue Research, 332, 543-554.
  • 50. Surai, P.F., Kochish, I.I. & Velichko, O.A. (2017) Nano-Se assimilation and action in poultry and other monogastric animals: is gut microbiota an answer? Nanoscale Research Letters 12:612
  • 51. Suttle, N.F. (2010) Mineral nutrition of livestock, 4th edn. CAB International, Oxford, pp 334-362.
  • 52. Thulasi, A., Rajendran, D., Jash, S., Selvaraju, S., Jose, V.L., Velusamy, S. & Mathivanan, S. (2013) Animal nutrition and reproductive physiology (recent concepts). In: Nanobiotechnology in animal nutrition, 1st. edn. Satish Serial Publishing House, Delhi.
  • 53. Vijayakumar, M., & Balakrishnan, V. (2014). Nanoparticles supplementation on growth performance of broiler chicken. Indian Journal of Science Technology, 7, 1149-1154.
  • 54. Wang, C., Wang, M.Q., Ye, S.S., Tao, W.J. & Du, Y.J. (2011) Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers. Poultry Science 90:2223-2228.
  • 55. Wang, T., Long, X., Cheng, Y., Liu, Z. & Yan, S. (2014) The potential toxicity of copper nanoparticles and copper sulphate on juvenile epinephelus coioides. Aquatic Toxicology 152:96-104.
  • 56. Yang, T., Gan, Y., Song, Z., Zhao, T., & Gong, Y. (2014). Effects of different sources and levels of vitamin D3 on performance, eggshell quality and tibial quality of laying hens. Chinese Journal of Animal Nutrition, 26(3), 659-666.
  • 57. Zhao, C. Y., Tan, S. X., Xiao, X. Y., Qiu, X. S., Pan, J. Q., & Tang, Z. X. (2014). Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biological Trace Element Research, 160, 361-367.
  • 58. Zielinska, M. K., Sawosz, E., Chwalibog, A., Ostaszewska, T., Kamaszewski, M., Grodzik, M., & Skomiał, J. (2010). Nano-nutrition of chicken embryos. Effect of gold and taurine nanoparticles on muscle development. Journal of Animal Feed Science, 19(2), 277-285.

Uses of nanotechnological feed additives and nanofeeds in poultry feeding

Year 2024, Volume: 21 Issue: 1, 27 - 33, 30.06.2024
https://doi.org/10.34233/jpr.1507538

Abstract

In poultry, which has an important place in meeting the need for healthy animal protein, the production of ration substance compositions with alternative sources is one of the popular topics of the last period. Nanoparticles produced by nanotechnology of various minerals added to poultry diets are increasingly being used as feed additives that can reduce feed costs, reduce the risk of environmental waste, replace antibiotics and do not pose residue risk in animal products, both in terms of supporting growth and development and strengthening the immune system. The aim of this study was to bring together the studies on the effects of using nanoparticles as feed additives on growth, development performance and immune system in
poultry

Thanks

First Author: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Visualization and Writing -original draft, Funding Acquisition, Project Administration, Resources, Writing -review and editing

References

  • 1. Ahmadi, F., Kurdestani, A.H. (2010a) The impact of silver nano particles on growth performance, lymphoid organs and oxidative stress indicators in broiler chicks. Global Veterinaria 5:366-370
  • 2. Ahmadi, F., & Kurdestany, A. H. (2010b). The impact of silver nano particles on growth performance, lymphoid organs and oxidative stress indicators in broiler chicks. Global Veterinaria, 5(6), 366-370.
  • 3. Ahmadi, J. (2009). Application of different levels of silver nanoparticles in food on the performance and some blood parameters of broiler chickens. World Applied Sciences Journal, 7(1), 24-27.
  • 4. Alishahi, A. (2014). Antibacterial effect of chitosan nanoparticle loaded with nisin for the prolonged effect. Journal of Food Safety, 34(2), 111-118.
  • 5. Anwar, M. I., Awais, M. M., Akhtar, M., Navid, M. T., & Muhammad, F. (2019). Nutritional and immunological effects of nano-particles in commercial poultry birds. World's Poultry Science Journal, 75(2), 261-272.
  • 6. Aparna, N. & Karunakaran, R. (2016). Effect of selenium nanoparticles supplementation on oxidation resistance of broiler chicken. Indian Journal of Science Technology 9:1-5
  • 7. Bhanja, S. K., Hotowy, A., Mehra, M., Sawosz, E., Pineda, L., Vadalasetty, K. P., ... & Chwalibog, A. (2015). In ovo administration of silver nanoparticles and/or amino acids influence metabolism and immune gene expression in chicken embryos. International Journal of Molecular Sciences, 16(5), 9484-9503.
  • 8. Broom, L. J., Miller, H. M., Kerr, K. G., & Toplis, P. J. A. S. (2003). Removal of both zinc oxide and avilamycin from the post-weaning piglet diet: consequences for performance through to slaughter. Animal Science, 77(1), 79-84.
  • 9. Cai, S. (2012). The biology characteristics of nano-selenium and its application in livestock and poultry. China Feed Additivities l0, 10-12.
  • 10. Chen, X., & Moran Jr, E. T. (1995). The withdrawal feed of broilers: Carcass responses to dietary phosphorus. Journal of Applied Poultry Research, 4(1), 69-82.
  • 11. Chen, Z., Meng, H., Xing, G., Chen, C. & Zhao, Y. (2007) Toxicological and biological effects of nanomaterials. International Journal of Nanotechnology 4:179-196.
  • 12. Cho, K. H., Park, J. E., Osaka, T., & Park, S. G. (2005). The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta, 51(5), 956-960.
  • 13. Choi, S. & Choy, J. (2014) Biokinetics of zinc oxide nanoparticles: toxicokinetics, biological fates, and protein interaction. International Jorunal of Nanomedicine 9(2):261-269.
  • 14. Dai, C., Kang, H., Yang, W., Sun, J., Liu, C., Cheng, G., ... & Zhao, K. (2015). O-2′-hydroxypropyltrimethyl ammonium chloride chitosan nanoparticles for the delivery of live Newcastle disease vaccine. Carbohydrate Polymers, 130, 280-289.
  • 15. Doyle, M. P., Busta, F., Cords, B. R., Davidson, P. M., Hawke, J., Hurd, H. S., ... & Vogel, L. (2006). Antimicrobial resistance: Implications for the food system: An expert report, funded by the IFT Foundation. Comprehensive Reviews in Food Science and Food Safety, 5(3), 71-137.
  • 16. Elkloub, K., El Moustafa, M., Ghazalah, A. A., & Rehan, A. A. A. (2015). Effect of dietary nanosilver on broiler performance. International Journal of Poultry Science, 14(3), 177.
  • 17. Emami, T., Madani, R., Rezayat, S. M., Golchinfar, F., & Sarkar, S. (2012). Applying of gold nanoparticle to avoid diffusion of the conserved peptide of avian influenza nonstructural protein from membrane in Western blot. Journal of Applied Poultry Research, 21(3), 563-566.
  • 18. Esfahani, M., Farhad, A., & Mohammad, A. A. (2015). The effects of different levels of Curcuma longa and zinc oxide nanoparticles on the quality traits of thigh and breast meat in broiler chickens. International Journal of Biosciences, 6(3), 296-302.
  • 19. Feng, J. W. Q. M., Ma, W. Q., Niu, H. H., Wu, X. M., Wang, Y., & Feng, J. (2010). Effects of zinc glycine chelate on growth, hematological, and immunological characteristics in broilers. Biological Trace Element Research, 133, 203-211.
  • 20. Geraet, L., Oomen, A.G., Krystek, P., Jacobsen, N.R., Wallin, H., Laurentie Verharen, H.W., Brandon, E.F.A. & Jong, W.H. (2014) Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Particle and Fibre Toxicology 11:1-21.
  • 21. Ghasemzadeh, A. (2012). Global issues of food production. Agrotechnology, 1(2), 1-2.
  • 22. Gopi, M.B., Kumar, R.D., Shanmathy, M. & Prabakar, G. (2017) Role of nanoparticles in animal and poultry nutrition: modes of action and applications in formulating feed additives and food processing. International Journal of Pharmacology 13:724-731.
  • 23. Grodzik, M., & Sawosz, E. (2006). The influence of silver nanoparticles on chick embryo development and bursa of Fabricius morphology. Journal of Animal and Feed Sciences, 15, 111.
  • 24. Hassan, S., Hassan, F. U., & Rehman, M. S. U. (2020). Nano-particles of trace minerals in poultry nutrition: potential applications and future prospects. Biological Trace Element Research, 195, 591-612.
  • 25. Jan, S. S., Liu, D. C., Dong, X. Y., Hu, Y. M., & Chen, J. D. (2012). Effects of chitosan and its derivative added to water on immunological enhancement and disease control. Immunotherapy, 4(7), 697-701.
  • 26. Jarocka, U., Sawicka, R., Góra-Sochacka, A., Sirko, A., Zagórski-Ostoja, W., Radecki, J., & Radecka, H. (2014). An immunosensor based on antibody binding fragments attached to gold nanoparticles for the detection of peptides derived from avian influenza hemagglutinin H5. Sensors, 14(9), 15714-15728.
  • 27. Karimi, A., Sadeghi, G., & Vaziry, A. (2011). The effect of copper in excess of the requirement during the starter period on subsequent performance of broiler chicks. Journal of Applied Poultry Research, 20(2), 203-209.
  • 28. Khalili, I., Ghadimipour, R., Eteghad, S. S., Najafi, M. F., Ebrahimi, M. M., Godsian, N., ... & Khalili, M. T. (2015). Evaluation of immune response against inactivated avian influenza (H9N2) vaccine, by using chitosan nanoparticles. Jundishapur Journal of Microbiology, 8(12).
  • 29. Leeson, S. (2009). Copper metabolism and dietary needs. World's Poultry Science Journal, 65(3), 353-366.
  • 30. Lin, W., Xu, Y., Huang, C., Ma, Y., Shannon, K.B. & Chen, D. (2009) Toxicity of nano- and microsized ZnO particles in human lung epithelial cells. Journal of Nanoparticle Research 11:25-39.
  • 31. Liu, Z. H., Lu, L., Li, S. F., Zhang, L. Y., Xi, L., Zhang, K. Y., & Luo, X. G. (2011). Effects of supplemental zinc source and level on growth performance, carcass traits, and meat quality of broilers. Poultry Science, 90(8), 1782-1790.
  • 32. Matsumura, Y., Yoshikata, K., Kunisaki, S. I., & Tsuchido, T. (2003). Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Applied and Environmental Microbiology, 69(7), 4278-4281.
  • 33. Mohammadi, V., Ghazanfari, S., Mohammadi-Sangcheshmeh, A. & Nazaran, M.H. (2015a). Comparative effects of zinc-nano complexes, zinc-sulphate and zinc methionine on performance in broiler chickens. British Poultry Science 56:486-493
  • 34. Mohammadi, F., Ahmadi, F., & Andi, M. A. (2015b). Effect of zinc oxide nanoparticles on carcass parameters, relative weight of digestive and lymphoid organs of broiler fed wet diet during the starter period. International Journal of Biosciences, 6(2), 389-394.
  • 35. Mroczek-Sosnowska, N., Łukasiewicz, M., Wnuk, A., Sawosz, E., Niemiec, J., Skot, A., ... & Chwalibog, A. (2016). In ovo administration of copper nanoparticles and copper sulfate positively influences chicken performance. Journal of the Science of Food and Agriculture, 96(9), 3058-3062.
  • 36. Mroczek-Sosnowska, N., Sawosz, E., Vadalasetty, K. P., Łukasiewicz, M., Niemiec, J., Wierzbicki, M., ... & Chwalibog, A. (2015). Nanoparticles of copper stimulate angiogenesis at systemic and molecular level. International Journal of Molecular Sciences, 16(3), 4838-4849.
  • 37. Nygaard, U. C., Hansen, J. S., Samuelsen, M., Alberg, T., Marioara, C. D., & Løvik, M. (2009). Single-walled and multi-walled carbon nanotubes promote allergic immune responses in mice. Toxicological Sciences, 109(1), 113-123.
  • 38. Ohimain, E. I., & Ofongo, R. T. (2012). The effect of probiotic and prebiotic feed supplementation on chicken health and gut microflora: a review. International Journal of Animal and Veterinary Advances, 4(2), 135-143.
  • 39. Pangestika, R., & Ernawati, R. (2017). Antiviral activity effect of silver nanoparticles (Agnps) solution against the growth of infectious bursal disease virus on embryonated chicken eggs with Elisa test. KnE Life Sciences, 536-548.
  • 40. Park, E. J., Yi, J., Kim, Y., Choi, K., & Park, K. (2010). Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicology in vitro, 24(3), 872-878.
  • 41. Pineda, L., Chwalibog, A., Sawosz, E., Lauridsen, C., Engberg, R., Elnif, J., ... & Moghaddam, H. S. (2012). Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Archives of Animal Nutrition, 66(5), 416-429.
  • 42. Pirgozliev, V., Rose, S. P., & Ivanova, S. (2019). Feed additives in poultry nutrition. Bulgarian Journal of Agricultural Science, 25(1), 8-11.
  • 43. Saki, A. A., & Salary, J. J. P. S. (2015). The impact of in ovo injection of silver nanoparticles, thyme and savory extracts in broiler breeder eggs on growth performance, lymphoid-organ weights, and blood and immune parameters of broiler chicks. Poultry Science Journal, 3(2), 165-172.
  • 44. Saki, A.A. & Abbasinezhad, R.A.A. (2014) Iron nanoparticles and methionine hydroxy analog chelate in ovo feeding of broiler chickens. International Journal of Nanoscience and Nanotechnolgy 10:187-196
  • 45. Sawosz, E., Łukasiewicz, M., Łozicki, A., Sosnowska, M., Jaworski, S., Niemiec, J., ... & Chwalibog, A. (2018). Effect of copper nanoparticles on the mineral content of tissues and droppings, and growth of chickens. Archives of Animal Nutrition, 72(5), 396-406.
  • 46. Selim, N.A., Refaje, A. M., Abeer, R. K., & AS, A. E. H. (2014). Effect of sources and inclusion levels of zinc in broiler diets containing different vegetable oils during summer season conditions on meat quality. International Journal of Poultry Science, 13(11), 619-626
  • 47. Senthil Kumaran, C. K., Sugapriya, S., Manivannan, N., & Chandar Shekar, B. (2015). Effect on the growth performance of broiler chickens by selenium nanoparticles supplementation. Nano Vision, 5(4-6), 161-168.
  • 48. Sizova, E., Yausheva, E., Kosyan, D. & Miroshnikov, S. (2015). Growth enhancement by intramuscular injection of elemental iron nano- and microparticles. Modern Applied Science 9:17-26.
  • 49. Sundaresan, N. R., Anish, D., Sastry, K. V. H., Saxena, V. K., Nagarajan, K., Subramani, J., ... & Ahmed, K. A. (2008). High doses of dietary zinc induce cytokines, chemokines, and apoptosis in reproductive tissues during regression. Cell and Tissue Research, 332, 543-554.
  • 50. Surai, P.F., Kochish, I.I. & Velichko, O.A. (2017) Nano-Se assimilation and action in poultry and other monogastric animals: is gut microbiota an answer? Nanoscale Research Letters 12:612
  • 51. Suttle, N.F. (2010) Mineral nutrition of livestock, 4th edn. CAB International, Oxford, pp 334-362.
  • 52. Thulasi, A., Rajendran, D., Jash, S., Selvaraju, S., Jose, V.L., Velusamy, S. & Mathivanan, S. (2013) Animal nutrition and reproductive physiology (recent concepts). In: Nanobiotechnology in animal nutrition, 1st. edn. Satish Serial Publishing House, Delhi.
  • 53. Vijayakumar, M., & Balakrishnan, V. (2014). Nanoparticles supplementation on growth performance of broiler chicken. Indian Journal of Science Technology, 7, 1149-1154.
  • 54. Wang, C., Wang, M.Q., Ye, S.S., Tao, W.J. & Du, Y.J. (2011) Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers. Poultry Science 90:2223-2228.
  • 55. Wang, T., Long, X., Cheng, Y., Liu, Z. & Yan, S. (2014) The potential toxicity of copper nanoparticles and copper sulphate on juvenile epinephelus coioides. Aquatic Toxicology 152:96-104.
  • 56. Yang, T., Gan, Y., Song, Z., Zhao, T., & Gong, Y. (2014). Effects of different sources and levels of vitamin D3 on performance, eggshell quality and tibial quality of laying hens. Chinese Journal of Animal Nutrition, 26(3), 659-666.
  • 57. Zhao, C. Y., Tan, S. X., Xiao, X. Y., Qiu, X. S., Pan, J. Q., & Tang, Z. X. (2014). Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biological Trace Element Research, 160, 361-367.
  • 58. Zielinska, M. K., Sawosz, E., Chwalibog, A., Ostaszewska, T., Kamaszewski, M., Grodzik, M., & Skomiał, J. (2010). Nano-nutrition of chicken embryos. Effect of gold and taurine nanoparticles on muscle development. Journal of Animal Feed Science, 19(2), 277-285.
There are 58 citations in total.

Details

Primary Language English
Subjects Poultry Farming and Treatment
Journal Section Collection
Authors

Şevket Evci This is me

Publication Date June 30, 2024
Submission Date February 4, 2024
Acceptance Date June 12, 2024
Published in Issue Year 2024 Volume: 21 Issue: 1

Cite

APA Evci, Ş. (2024). Uses of nanotechnological feed additives and nanofeeds in poultry feeding. Journal of Poultry Research, 21(1), 27-33. https://doi.org/10.34233/jpr.1507538
AMA Evci Ş. Uses of nanotechnological feed additives and nanofeeds in poultry feeding. JPR. June 2024;21(1):27-33. doi:10.34233/jpr.1507538
Chicago Evci, Şevket. “Uses of Nanotechnological Feed Additives and Nanofeeds in Poultry Feeding”. Journal of Poultry Research 21, no. 1 (June 2024): 27-33. https://doi.org/10.34233/jpr.1507538.
EndNote Evci Ş (June 1, 2024) Uses of nanotechnological feed additives and nanofeeds in poultry feeding. Journal of Poultry Research 21 1 27–33.
IEEE Ş. Evci, “Uses of nanotechnological feed additives and nanofeeds in poultry feeding”, JPR, vol. 21, no. 1, pp. 27–33, 2024, doi: 10.34233/jpr.1507538.
ISNAD Evci, Şevket. “Uses of Nanotechnological Feed Additives and Nanofeeds in Poultry Feeding”. Journal of Poultry Research 21/1 (June 2024), 27-33. https://doi.org/10.34233/jpr.1507538.
JAMA Evci Ş. Uses of nanotechnological feed additives and nanofeeds in poultry feeding. JPR. 2024;21:27–33.
MLA Evci, Şevket. “Uses of Nanotechnological Feed Additives and Nanofeeds in Poultry Feeding”. Journal of Poultry Research, vol. 21, no. 1, 2024, pp. 27-33, doi:10.34233/jpr.1507538.
Vancouver Evci Ş. Uses of nanotechnological feed additives and nanofeeds in poultry feeding. JPR. 2024;21(1):27-33.

204x63 Creative Commons License
This work is licensed under Creative Commons Attribution 4.0 International License 
Print ISSN:1302-3209 - Online ISSN:2147-9003

Journal of Poultry Research is indexed by the following national and international scientific indexing services

14964166171665216684166851668616687


166881668916692


1669016691