BibTex RIS Cite

Inborn errors of bile acid metabolism and their diagnostic confirmation by means of mass spectrometry

Year 2011, Volume: 3 Issue: 1, 1 - 11, 01.01.2011

Abstract

Bile acids are amphipathic molecules formed from cholesterol in the liver by two main pathways, the neutral and the acidic. Biosynthesis of bile acids generates bile ï¬â€šow which is important for biliary secretion of free cholesterol, endogenous metabolites, and xenobiotics. Bile acids play an important role as biological detergents that make possible intestinal absorption of lipids and fat-soluble vitamins but also as metabolic regulators of lipid, glucose, and energy homeostasis. Several enzymatic steps and subcellular compartiments are involved in the biosynthesis of bile acids. In general, the synthetic pathways of bile acids consist of modification of the steroid nucleus, oxidation and cleavage of the corresponding side chain, and finally conjugation with the amino acids glycine or taurine. Genetic defects in one of these enzymes result in an accumulation of atypical bile acids or intermediates. These defects can cause beside others liver diseases that can vary from mild to very severe. Detection of elevated concentrations of unusual bile acids, intermediates and other endogenous metabolites can be performed by mass spectrometry. In this article, the most known inborn errors in bile acid metabolism and their mass spectrometric confirmation in biological fluids are concisely reviewed.

References

  • Keitel V, Kubitz R, Hauessinger D. Endocrine and paracrine role of bile acids. World J Gastroenterol. 2008; 14: 5620-29.
  • Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov. 2008; 7: 678-93.
  • Burkard I, Eckardstein AV, Rentsch KM. Differentiated quantification of human bile acids in chromatography–tandem mass spectrometry. J Chromatogr B. 2005; 826: 147-59. liquid
  • Meng L J, Reyes H, Palma J, Hernandez I, Ribalta J, Sjovall J. ProŞles of bile acids and progesterone metabolites in the urine and serum of women with intrahepatic cholestasis of pregnancy. J Hepatol. 1997; 27: 346-57.
  • Palmeira CM, Rolo AP. Mitochondrially- mediated toxicity of bile acids. Toxicology 2004; 203: 1-15.
  • Ferdinandusse S, Houten SM. Peroxisomes and bile acid synthesis. Biochim et Biophys Acta. 2006; 1763: 1427-40.
  • Norlin M, Wikvall K. Enzymes in the Conversion of Cholesterol into Bile Acids. Curr Mol Med. 2007; 7: 199-18.
  • Nguyen LB, Guorong X, Shefer S, Tint GS, Batta A, Salen G. Comparative Regulation of Hepatic Sterol 27-Hydroxylase and Cholesterol 7alpha- Hydroxylase Activities in the Rat, Guinea Pig, and Rabbit: Effects of Cholesterol and Bile Acids. Metabolism. 1999; 48: 1542-48. 9. Hasler JA. Pharmacogenetics
  • cytochromes P450. Mol Aspects Med. 1999; 20: 25-137. of human
  • Wu Z, Martin KO, Javitt NB, Chiang JYL. Structure and functions of human oxysterol 7alpha-hydroxylase cDNAs and gene CYP7B1. J Lipid Res. 1999; 40: 2195-203.
  • Duane WC, Pooler PA, Hamilton JN. Bile acid synthesis in man. In vivo activity of the 25- hydroxylation pathway. J Clin Invest. 1988 ; 82: 82-5.
  • Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, et al. Molecular Basis for Feedback Regulation of Bile Acid Synthesis by Nuclear Receptors. Mol Cell. 2000; 6: 507-15.
  • Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, et al. Identification of a Nuclear Receptor for Bile Acids. Science. 1999; 284: 1362-65.
  • Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, et al. Bile Acids: Natural Ligands for an Orphan Nuclear Receptor. Science. 1999; 284: 1365-68.
  • Chiang JY. Bile acids: regulation of synthesis. J Lipid Res. 2009; 50:1955-66
  • Fiorucci S, Cipriani S, Baldelli F, Mencarelli A. Bile acid-activated receptors in the treatment of dyslipidemia and related disorders. Prog Lipid Res. 2010; 49:171-85.
  • Nishiura H, Kimura A, Yamato Y, Aoki K, Inokuchi T, Kurosawa T, et al. Developmental pattern of urinary bile acid profile in preterm infants. Pediatr Int. 2010; 52:44-50
  • Ye L, Liu SY, Wang M, Shao S, Ding M. High- performance liquid chromatography-tandem mass spectrometry for the analysis of bile acid proŞles in serum of women with intrahepatic cholestasis of pregnancy. J Chromatogr B. 2007; 860: 10-17.
  • Roda A, Piazza F, Baraldini M. Separation techniques for bile salts analysis. J Chromatogr B. 1998; 717: 263-78.
  • Batta AK, Salen G. Gas chromatography of bile acids. J Chromatogr B. 1999; 723: 1-16. 21. Keller S, Jahreis G. underivatised sterols and bile acid trimethyl silyl ether methyl esters by gas chromatography-mass spectrometry-single ion monitoring in faeces. J Chromatogr B. 2004; 813: 199-07. of
  • Johnson DW, ten-Brink HJ, Schuit RC, Jakobs C. Rapid and quantitative analysis of unconjugated C27 bile acids in plasma and blood samples by tandem mass spectrometry. J Lipid Res. 2001; 42: 9-16.
  • Gatti R, Roda A, Cerre C, Bonazzi D, Cavrini V. HPLC-fluorescence determination of individual free and conjugated bile acids in human serum. Biomed Chromatogr. 1997; 11: 11-15.
  • Perwaiz S, Tuchweber B, Mignault D, Gilat T, Yousef IM. Determination of bile acids in biological fluids by liquid chroma-tography- electrospray tandem mass spectrometry. J Lipid Res. 2001; 42: 114-19.
  • Scherer M, Gnewuch C, Schmitz G, Liebisch G. Rapid quantification of bile acids and their conjugates in serum by liquid chromatography- tandem mass spectrometry. J Chromatogr B. 2009; 877: 3920-925.
  • Xiang X, Han Y, Neuvonen M, Laitila J, Neuvonen PJ, Niemi M. High performance liquid chromatography-tandem mass spectrometry for the determination of bile acid concentrations in human plasma. J Chromatogr B. 2010; 878: 51- 60.
  • Bentayeb K, Batlle R, Sánchez C, Nerín C, Domeño C. Determination of bile acids in human serum by on-line restricted access material-ultra high-performance liquid chromatography-mass spectrometry. J Chromatogr B. 2008; 869:1-8.
  • Pullinger CR, Eng C, Salen G, Shefer S, Batta AK, Erickson SK, et al. Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest. 2002; 110:109-17.
  • Setchell KD, Schwarz M, O'Connell NC, Lund EG, Davis DL, Lathe R, et al. Identification of a new inborn error in bile acid synthesis: mutation of the oxysterol 7alpha-hydroxylase gene causes severe neonatal liver disease. J Clin Invest. 1998; 102:1690-703.
  • Björkhem I, Hansson M. Cerebrotendinous xanthomatosis: an inborn error in bile acid synthesis with defined mutations but still a challenge. Biochem Biophys Res Commun. 2010; 396: 46-9.
  • Egestad B, Pettersson P, Skrede S, Sjövall J. Fast atom bombardment mass spectrometry in the diagnosis of cerebrotendinous xanthomatosis. Scand J Clin Lab Invest. 1985 ; 45: 443-6.
  • Dayal B, Salen G, Tint GS, Shefer S, Benz SW. Use of positive ion fast atom bombardment mass spectrometry for rapid identification of a bile alcohol cerebrotendinous Steroids. 1990; 55: 74-8. isolated from xanthomatosis patients.
  • DeBarber AE, Connor WE, Pappu AS, Merkens LS, Steiner RD. ESI-MS/MS quantification of 7alpha-hydroxy-4-cholesten-3-one rapid, cerebrotendinous xanthomatosis. Clin Chim Acta. 2010; 411:43-8. facilitates convenient diagnostic testing for
  • Bove KE, Heubi JE, Balistreri WF, Setchell KD. Bile acid synthetic defects and liver disease: a comprehensive review. Pediatr Dev Pathol. 2004; 7: 315-34.
  • Clayton PT, Leonard JV, Lawson AM, Setchell KD, Andersson S, Egestad B, et al. Familial giant cell hepatitis associated with synthesis of 3β,7α - dihydroxy- cholenoic acids. J Clin Invest 1987; 79: 1031-38.
  • β,7α,12α-trihydroxy-5
  • Ichimiya H, Egestad B, Nazer H, Baginski ES, Clayton PT, Sjovall J. Bile acids and bile alcohols in a child with hepatic 3β-hydroxy-∆5-C27-steroid dehydrogenase chenodeoxycholic acid treatment. J Lipid Res 1991; 32: 829-41. effects of
  • Fischler B, Bodin K, Stjernman H, Olin M, Hansson M, Sjövall J, Björkhem I. Cholestatic liver disease in adults may be due to an inherited defect in bile acid biosynthesis. J Intern Med. 2007; 262: 254-62.
  • 38. Lemonde HA, Johnson AW, Clayton PT. The identification of unusual bile acid metabolites by tandem mass spectrometry: use of low-energy collision-induced informative spectra. Rapid Commun Mass Spectrom. 1999;13:1159-64. to produce
  • Setchell KD, Suchy FJ, Welsh MB, Zimmer- Nechemias L, Heubi J, Balistreri WF. Delta 4-3- oxosteroid-5- beta-reductase deficiency described in identical twins with neonatal hepatitis. A new inborn error in bile acid synthesis. J Clin Invest. 1988; 82: 2148-57.
  • Shneider BL, Setchell KD, Whitington PF, Neilson KA, Suchy FJ. Delta 4-3-oxosteroid- 5- beta-reductase deficiency causing neonatal liver failure and hemochromatosis. J Pediatr. 1994; 124: 234-8.
  • Setchell KD, Schwarz M, O'Connell NC, Lund EG, Davis DL, Lathe R, et al. Identification of a new inborn error in bile acid synthesis: mutation of the oxysterol 7alpha-hydroxylase gene causes severe neonatal liver disease. J Clin Invest. 1998; 102:1690-703.
  • Clayton PT, Lemonde HA. Disorders of bile acid synthesis. In Blau N, Duran M, Blascovics M, Gibson KM (Eds). A physician's guide to the laboratory diagnosis of inherited metabolic disease. 2nd ed. 2003, Chapman & Hall, London, pp 615-30.
  • Ferdinandusse S, Denis S, IJlst L, Dacremont G, Waterham localization and physiological role of alpha- methylacyl-CoA racemase. J Lipid Res. 2000; 41: 1890-6. RJ. Subcellular
  • Cuebas DA, Phillips C, Schmitz W, Conzelmann E, Novikov DK. The role of alpha-methylacyl- CoA racemase in bile acid synthesis. Biochem J. 2002; 363: 801-7.
  • Wanders RJA, Waterham HR, Leroy BP. Refsum Disease. In: Pagon RA, Bird TC, Dolan CR, Stephens K, editors. GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle; Initial posting 2006 Mar 20 [updated 2010 Apr 22].
  • Setchell KD, Heubi JE, Bove KE, O'Connell NC, Brewsaugh T, Steinberg SJ, et al. Liver disease caused trihydroxycholestanoic acid: gene mutation and effect of bile acid therapy. Gastroenterology. 2003; 124: 217-32. to racemize
  • Ferdinandusse S, Overmars H, Denis S, Waterham HR, Wanders RJ, Vreken P. Plasma analysis of di- and trihydroxycholestanoic acid diastereoisomers methylacyl-CoA racemase deficiency. J Lipid Res. 2001; 42: 137-41. peroxisomal alpha
  • Setchell KDR, Heubi JE, O’Connell C, Hofmann A, Lavine J. IdentiŞcation of a unique inborn error in bile acid conjugation involving a deŞciency in amidation. In: Paumgartner G, Stiehl A, Gerok W, eds. Bile Acids in Hepatobiliary Diseases: Basic Research and Clinical Application. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1997: 43-47.
  • Heubi JE, Setchell KD, Bove KE. Inborn errors of bile acid metabolism. Semin Liver Dis. 2007; 27: 282-94.
  • Steinberg SJ, Dodt G, Raymond GV, Braverman NE, Moser AB, Moser HW. Peroxisome biogenesis disorders. Biochim Biophys Acta. 2006; 1763: 1733-48.
  • Wanders RJ, Waterham HR. Peroxisomal disorders: the single peroxisomal enzyme deficiencies. Biochim Biophys Acta. 2006; 1763: 1707-20.
  • Bowen P, Lee C, Zellweger H, Lindenberg R. A familial syndrome of multiple congenital defects. Bull Johns Hopkins Hosp. 1964;114: 402-14.
  • GoldŞscher S, Moore C, Johnson A, et al. Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science. 1973; 182: 62-64.
  • Ferdinandusse S, Denis S, Faust PL, Wanders RJ. Bile acids: the role of peroxisomes. J Lipid Res. 2009; 50: 2139-47.
  • Ferdinandusse S, Denis S, Dacremont G, Wanders RJ. Toxicity of peroxisomal C27-bile acid intermediates. Mol Genet Metab. 2009; 96: 121-8.
  • Johnson DW, Trinh MU, Oe T. Measurement of plasma pristanic, phytanic and very long chain fatty acids by liquid chromatography-electrospray tandem mass spectrometry for the diagnosis of peroxisomal disorders. J Chromatogr. 2003; 798: 159-62.
  • Al-Dirbashi OY, Santa T, Rashed MS, Al- Hassnan Z, Shimozawa N, Chedrawi A, Jacob M, Al-Mokhadab M. Rapid UPLC-MS/MS method for routine analysis of plasma pristanic, phytanic, and very long chain fatty acid markers of peroxisomal disorders. J Lipid Res. 2008; 49: 1855-62.
  • Evans JE, Ghosh A, Evans BA, Natowicz MR. Screening techniques for the detection of inborn errors of bile acid metabolism by direct injection and chromatography-continuous bombardment mass spectrometry. Biol Mass Spectrom. 1993; 22: 331-7. liquid atom flow/fast
  • Setchell KD, Street JM. Inborn errors of bile acid synthesis. Semin Liver Dis. 1987; 7: 85-99.
Year 2011, Volume: 3 Issue: 1, 1 - 11, 01.01.2011

Abstract

References

  • Keitel V, Kubitz R, Hauessinger D. Endocrine and paracrine role of bile acids. World J Gastroenterol. 2008; 14: 5620-29.
  • Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov. 2008; 7: 678-93.
  • Burkard I, Eckardstein AV, Rentsch KM. Differentiated quantification of human bile acids in chromatography–tandem mass spectrometry. J Chromatogr B. 2005; 826: 147-59. liquid
  • Meng L J, Reyes H, Palma J, Hernandez I, Ribalta J, Sjovall J. ProŞles of bile acids and progesterone metabolites in the urine and serum of women with intrahepatic cholestasis of pregnancy. J Hepatol. 1997; 27: 346-57.
  • Palmeira CM, Rolo AP. Mitochondrially- mediated toxicity of bile acids. Toxicology 2004; 203: 1-15.
  • Ferdinandusse S, Houten SM. Peroxisomes and bile acid synthesis. Biochim et Biophys Acta. 2006; 1763: 1427-40.
  • Norlin M, Wikvall K. Enzymes in the Conversion of Cholesterol into Bile Acids. Curr Mol Med. 2007; 7: 199-18.
  • Nguyen LB, Guorong X, Shefer S, Tint GS, Batta A, Salen G. Comparative Regulation of Hepatic Sterol 27-Hydroxylase and Cholesterol 7alpha- Hydroxylase Activities in the Rat, Guinea Pig, and Rabbit: Effects of Cholesterol and Bile Acids. Metabolism. 1999; 48: 1542-48. 9. Hasler JA. Pharmacogenetics
  • cytochromes P450. Mol Aspects Med. 1999; 20: 25-137. of human
  • Wu Z, Martin KO, Javitt NB, Chiang JYL. Structure and functions of human oxysterol 7alpha-hydroxylase cDNAs and gene CYP7B1. J Lipid Res. 1999; 40: 2195-203.
  • Duane WC, Pooler PA, Hamilton JN. Bile acid synthesis in man. In vivo activity of the 25- hydroxylation pathway. J Clin Invest. 1988 ; 82: 82-5.
  • Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, et al. Molecular Basis for Feedback Regulation of Bile Acid Synthesis by Nuclear Receptors. Mol Cell. 2000; 6: 507-15.
  • Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, et al. Identification of a Nuclear Receptor for Bile Acids. Science. 1999; 284: 1362-65.
  • Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, et al. Bile Acids: Natural Ligands for an Orphan Nuclear Receptor. Science. 1999; 284: 1365-68.
  • Chiang JY. Bile acids: regulation of synthesis. J Lipid Res. 2009; 50:1955-66
  • Fiorucci S, Cipriani S, Baldelli F, Mencarelli A. Bile acid-activated receptors in the treatment of dyslipidemia and related disorders. Prog Lipid Res. 2010; 49:171-85.
  • Nishiura H, Kimura A, Yamato Y, Aoki K, Inokuchi T, Kurosawa T, et al. Developmental pattern of urinary bile acid profile in preterm infants. Pediatr Int. 2010; 52:44-50
  • Ye L, Liu SY, Wang M, Shao S, Ding M. High- performance liquid chromatography-tandem mass spectrometry for the analysis of bile acid proŞles in serum of women with intrahepatic cholestasis of pregnancy. J Chromatogr B. 2007; 860: 10-17.
  • Roda A, Piazza F, Baraldini M. Separation techniques for bile salts analysis. J Chromatogr B. 1998; 717: 263-78.
  • Batta AK, Salen G. Gas chromatography of bile acids. J Chromatogr B. 1999; 723: 1-16. 21. Keller S, Jahreis G. underivatised sterols and bile acid trimethyl silyl ether methyl esters by gas chromatography-mass spectrometry-single ion monitoring in faeces. J Chromatogr B. 2004; 813: 199-07. of
  • Johnson DW, ten-Brink HJ, Schuit RC, Jakobs C. Rapid and quantitative analysis of unconjugated C27 bile acids in plasma and blood samples by tandem mass spectrometry. J Lipid Res. 2001; 42: 9-16.
  • Gatti R, Roda A, Cerre C, Bonazzi D, Cavrini V. HPLC-fluorescence determination of individual free and conjugated bile acids in human serum. Biomed Chromatogr. 1997; 11: 11-15.
  • Perwaiz S, Tuchweber B, Mignault D, Gilat T, Yousef IM. Determination of bile acids in biological fluids by liquid chroma-tography- electrospray tandem mass spectrometry. J Lipid Res. 2001; 42: 114-19.
  • Scherer M, Gnewuch C, Schmitz G, Liebisch G. Rapid quantification of bile acids and their conjugates in serum by liquid chromatography- tandem mass spectrometry. J Chromatogr B. 2009; 877: 3920-925.
  • Xiang X, Han Y, Neuvonen M, Laitila J, Neuvonen PJ, Niemi M. High performance liquid chromatography-tandem mass spectrometry for the determination of bile acid concentrations in human plasma. J Chromatogr B. 2010; 878: 51- 60.
  • Bentayeb K, Batlle R, Sánchez C, Nerín C, Domeño C. Determination of bile acids in human serum by on-line restricted access material-ultra high-performance liquid chromatography-mass spectrometry. J Chromatogr B. 2008; 869:1-8.
  • Pullinger CR, Eng C, Salen G, Shefer S, Batta AK, Erickson SK, et al. Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest. 2002; 110:109-17.
  • Setchell KD, Schwarz M, O'Connell NC, Lund EG, Davis DL, Lathe R, et al. Identification of a new inborn error in bile acid synthesis: mutation of the oxysterol 7alpha-hydroxylase gene causes severe neonatal liver disease. J Clin Invest. 1998; 102:1690-703.
  • Björkhem I, Hansson M. Cerebrotendinous xanthomatosis: an inborn error in bile acid synthesis with defined mutations but still a challenge. Biochem Biophys Res Commun. 2010; 396: 46-9.
  • Egestad B, Pettersson P, Skrede S, Sjövall J. Fast atom bombardment mass spectrometry in the diagnosis of cerebrotendinous xanthomatosis. Scand J Clin Lab Invest. 1985 ; 45: 443-6.
  • Dayal B, Salen G, Tint GS, Shefer S, Benz SW. Use of positive ion fast atom bombardment mass spectrometry for rapid identification of a bile alcohol cerebrotendinous Steroids. 1990; 55: 74-8. isolated from xanthomatosis patients.
  • DeBarber AE, Connor WE, Pappu AS, Merkens LS, Steiner RD. ESI-MS/MS quantification of 7alpha-hydroxy-4-cholesten-3-one rapid, cerebrotendinous xanthomatosis. Clin Chim Acta. 2010; 411:43-8. facilitates convenient diagnostic testing for
  • Bove KE, Heubi JE, Balistreri WF, Setchell KD. Bile acid synthetic defects and liver disease: a comprehensive review. Pediatr Dev Pathol. 2004; 7: 315-34.
  • Clayton PT, Leonard JV, Lawson AM, Setchell KD, Andersson S, Egestad B, et al. Familial giant cell hepatitis associated with synthesis of 3β,7α - dihydroxy- cholenoic acids. J Clin Invest 1987; 79: 1031-38.
  • β,7α,12α-trihydroxy-5
  • Ichimiya H, Egestad B, Nazer H, Baginski ES, Clayton PT, Sjovall J. Bile acids and bile alcohols in a child with hepatic 3β-hydroxy-∆5-C27-steroid dehydrogenase chenodeoxycholic acid treatment. J Lipid Res 1991; 32: 829-41. effects of
  • Fischler B, Bodin K, Stjernman H, Olin M, Hansson M, Sjövall J, Björkhem I. Cholestatic liver disease in adults may be due to an inherited defect in bile acid biosynthesis. J Intern Med. 2007; 262: 254-62.
  • 38. Lemonde HA, Johnson AW, Clayton PT. The identification of unusual bile acid metabolites by tandem mass spectrometry: use of low-energy collision-induced informative spectra. Rapid Commun Mass Spectrom. 1999;13:1159-64. to produce
  • Setchell KD, Suchy FJ, Welsh MB, Zimmer- Nechemias L, Heubi J, Balistreri WF. Delta 4-3- oxosteroid-5- beta-reductase deficiency described in identical twins with neonatal hepatitis. A new inborn error in bile acid synthesis. J Clin Invest. 1988; 82: 2148-57.
  • Shneider BL, Setchell KD, Whitington PF, Neilson KA, Suchy FJ. Delta 4-3-oxosteroid- 5- beta-reductase deficiency causing neonatal liver failure and hemochromatosis. J Pediatr. 1994; 124: 234-8.
  • Setchell KD, Schwarz M, O'Connell NC, Lund EG, Davis DL, Lathe R, et al. Identification of a new inborn error in bile acid synthesis: mutation of the oxysterol 7alpha-hydroxylase gene causes severe neonatal liver disease. J Clin Invest. 1998; 102:1690-703.
  • Clayton PT, Lemonde HA. Disorders of bile acid synthesis. In Blau N, Duran M, Blascovics M, Gibson KM (Eds). A physician's guide to the laboratory diagnosis of inherited metabolic disease. 2nd ed. 2003, Chapman & Hall, London, pp 615-30.
  • Ferdinandusse S, Denis S, IJlst L, Dacremont G, Waterham localization and physiological role of alpha- methylacyl-CoA racemase. J Lipid Res. 2000; 41: 1890-6. RJ. Subcellular
  • Cuebas DA, Phillips C, Schmitz W, Conzelmann E, Novikov DK. The role of alpha-methylacyl- CoA racemase in bile acid synthesis. Biochem J. 2002; 363: 801-7.
  • Wanders RJA, Waterham HR, Leroy BP. Refsum Disease. In: Pagon RA, Bird TC, Dolan CR, Stephens K, editors. GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle; Initial posting 2006 Mar 20 [updated 2010 Apr 22].
  • Setchell KD, Heubi JE, Bove KE, O'Connell NC, Brewsaugh T, Steinberg SJ, et al. Liver disease caused trihydroxycholestanoic acid: gene mutation and effect of bile acid therapy. Gastroenterology. 2003; 124: 217-32. to racemize
  • Ferdinandusse S, Overmars H, Denis S, Waterham HR, Wanders RJ, Vreken P. Plasma analysis of di- and trihydroxycholestanoic acid diastereoisomers methylacyl-CoA racemase deficiency. J Lipid Res. 2001; 42: 137-41. peroxisomal alpha
  • Setchell KDR, Heubi JE, O’Connell C, Hofmann A, Lavine J. IdentiŞcation of a unique inborn error in bile acid conjugation involving a deŞciency in amidation. In: Paumgartner G, Stiehl A, Gerok W, eds. Bile Acids in Hepatobiliary Diseases: Basic Research and Clinical Application. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1997: 43-47.
  • Heubi JE, Setchell KD, Bove KE. Inborn errors of bile acid metabolism. Semin Liver Dis. 2007; 27: 282-94.
  • Steinberg SJ, Dodt G, Raymond GV, Braverman NE, Moser AB, Moser HW. Peroxisome biogenesis disorders. Biochim Biophys Acta. 2006; 1763: 1733-48.
  • Wanders RJ, Waterham HR. Peroxisomal disorders: the single peroxisomal enzyme deficiencies. Biochim Biophys Acta. 2006; 1763: 1707-20.
  • Bowen P, Lee C, Zellweger H, Lindenberg R. A familial syndrome of multiple congenital defects. Bull Johns Hopkins Hosp. 1964;114: 402-14.
  • GoldŞscher S, Moore C, Johnson A, et al. Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science. 1973; 182: 62-64.
  • Ferdinandusse S, Denis S, Faust PL, Wanders RJ. Bile acids: the role of peroxisomes. J Lipid Res. 2009; 50: 2139-47.
  • Ferdinandusse S, Denis S, Dacremont G, Wanders RJ. Toxicity of peroxisomal C27-bile acid intermediates. Mol Genet Metab. 2009; 96: 121-8.
  • Johnson DW, Trinh MU, Oe T. Measurement of plasma pristanic, phytanic and very long chain fatty acids by liquid chromatography-electrospray tandem mass spectrometry for the diagnosis of peroxisomal disorders. J Chromatogr. 2003; 798: 159-62.
  • Al-Dirbashi OY, Santa T, Rashed MS, Al- Hassnan Z, Shimozawa N, Chedrawi A, Jacob M, Al-Mokhadab M. Rapid UPLC-MS/MS method for routine analysis of plasma pristanic, phytanic, and very long chain fatty acid markers of peroxisomal disorders. J Lipid Res. 2008; 49: 1855-62.
  • Evans JE, Ghosh A, Evans BA, Natowicz MR. Screening techniques for the detection of inborn errors of bile acid metabolism by direct injection and chromatography-continuous bombardment mass spectrometry. Biol Mass Spectrom. 1993; 22: 331-7. liquid atom flow/fast
  • Setchell KD, Street JM. Inborn errors of bile acid synthesis. Semin Liver Dis. 1987; 7: 85-99.
There are 59 citations in total.

Details

Primary Language English
Journal Section Reviews
Authors

Diran Herebıan

Ertan Mayatepek This is me

Publication Date January 1, 2011
Published in Issue Year 2011 Volume: 3 Issue: 1

Cite

APA Herebıan, D., & Mayatepek, E. (2011). Inborn errors of bile acid metabolism and their diagnostic confirmation by means of mass spectrometry. Journal of Pediatric Sciences, 3(1), 1-11. https://doi.org/10.17334/jps.55342
AMA Herebıan D, Mayatepek E. Inborn errors of bile acid metabolism and their diagnostic confirmation by means of mass spectrometry. Journal of Pediatric Sciences. January 2011;3(1):1-11. doi:10.17334/jps.55342
Chicago Herebıan, Diran, and Ertan Mayatepek. “Inborn Errors of Bile Acid Metabolism and Their Diagnostic Confirmation by Means of Mass Spectrometry”. Journal of Pediatric Sciences 3, no. 1 (January 2011): 1-11. https://doi.org/10.17334/jps.55342.
EndNote Herebıan D, Mayatepek E (January 1, 2011) Inborn errors of bile acid metabolism and their diagnostic confirmation by means of mass spectrometry. Journal of Pediatric Sciences 3 1 1–11.
IEEE D. Herebıan and E. Mayatepek, “Inborn errors of bile acid metabolism and their diagnostic confirmation by means of mass spectrometry”, Journal of Pediatric Sciences, vol. 3, no. 1, pp. 1–11, 2011, doi: 10.17334/jps.55342.
ISNAD Herebıan, Diran - Mayatepek, Ertan. “Inborn Errors of Bile Acid Metabolism and Their Diagnostic Confirmation by Means of Mass Spectrometry”. Journal of Pediatric Sciences 3/1 (January 2011), 1-11. https://doi.org/10.17334/jps.55342.
JAMA Herebıan D, Mayatepek E. Inborn errors of bile acid metabolism and their diagnostic confirmation by means of mass spectrometry. Journal of Pediatric Sciences. 2011;3:1–11.
MLA Herebıan, Diran and Ertan Mayatepek. “Inborn Errors of Bile Acid Metabolism and Their Diagnostic Confirmation by Means of Mass Spectrometry”. Journal of Pediatric Sciences, vol. 3, no. 1, 2011, pp. 1-11, doi:10.17334/jps.55342.
Vancouver Herebıan D, Mayatepek E. Inborn errors of bile acid metabolism and their diagnostic confirmation by means of mass spectrometry. Journal of Pediatric Sciences. 2011;3(1):1-11.