Research Article
BibTex RIS Cite

Year 2025, Volume: 29 Issue: 3, 1227 - 1238, 04.06.2025
https://doi.org/10.12991/jrespharm.1694403

Abstract

References

  • [1] Kementerian Kesehatan (Kemenkes) RI. Hasil Utama Riskesdas 2018 by Kemenkes RI. 2019. https://kesmas.kemkes.go.id/ (accesed March 15, 2023).
  • [2] Praptiwi, Ahmad F, Ade LP, Dewi W, Andria A. Biological potency of Actinomycetes extracts from rhizosphere soil of Dacrycarpus imbricatus from Toba Samosir, North Sumatra. J Appl Pharm Sci. 2023; 0(00): 001-008. https://doi.org/10.7324/JAPS.2023.106853
  • [3] Abdelgawad H, Walid A, Mahmoud MYM, Samy S, Gaurav Z, Ahmed SMM, Wael NH. Actinomycetes Enrich Soil rhizosphere and ımprove seed quality as well as productivity of legumes by boosting nitrogen availability and metabolism. Biomolecules. 2020; 10: 1675. https://doi.org/10.3390/biom10121675
  • [4] Kumari N, Ekta M, Rekha M. Bioactivity assessment of potentially active Actinomycetes from rhizospheric soil. J Sci Ind Res. 2020; 79: 712-716.
  • [5] Sapkota A, Aishwarya T, Anupa B, Muskan S, Prativa S, Sagar A. Isolation, characterization, and screening of antimicrobial-producing Actinomycetes from soil samples. Int J Microbiol. 2020; 2020: 2716584. https://doi.org/10.1155/2020/2716584.
  • [6] Dhanasekaran D, Yi J. Actinobacteria - Basics and Biotechnological Applications. Published by IntechOpen. 2016. http://doi.org/10.57772/60457
  • [7] Xiong Q, Jinlong H, Haiyan W, Hongcheng Z, Jinyan Z. Relationship between plant roots, rhizosphere microorganisms, and nitrogen and ıts special focus on rice. Agriculture. 2021; 11: 234. https://doi.org/10.3390/agriculture11030234
  • [8] Pereira LB, Andrade GS, Meneghin SP, Vicentini R, Ottoboni LMM. Prospecting plant growth-promoting bacteria ısolated from the rhizosphere of sugarcane under drought stress. Curr Microbiol. 2019;76(11):1345-1354. https://doi.org/10.1007/s00284-019-01749-x.
  • [9] Mallongi A, Annisa UR, Anwar D, Muhammad H, Wesam A, Ridwan A, Stang S, Atjo W, Ratna DPA. Health risk assessment of potentially toxic elements in Maros karst groundwater: a Monte Carlo simulation approach. Geomat Nat Hazard Risk. 2022; 13(1): 338–363. https://doi.org/10.1080/19475705.2022.2027528
  • [10] Ahmad I, Baso DH, Riski S, Abdul M. Peperomia pellucida (L.) Kunth herbs: A comprehensive review on phytochemical, pharmacological, extraction engineering development, and economic promising perspectives. J Appl Pharm Sci. 2023; 13 (01): 001-009. https://doi.org/10.7324/JAPS.2023.130201
  • [11] Boy HIA, Alfred JHR, Kimbberly AS, Allister MTT, Alicia IY, Tooba M, Jitbanjong T, Veeranoot N. Recommended Medicinal Plants as Source of Natural Products: A Review. Digit Chin Med. 2018; 1: 131-142. https://doi.org/10.1016/S2589-3777(19)30018-7
  • [12] Fan Z, Shuyu L, Shuang L, Hui G, Tao W, Jinxing Z, Xiawei P. Changes in plant rhizosphere microbial communities under different vegetation restoration patterns in karst and non-karst ecosystems. Sci Rep. 2019; 9: 8761. https://doi.org/10.1038/s41598-019-44985-8
  • [13] Dede A, Kiymet G, Nevzat Ş. Isolation,plant growth-promoting traits, antagonistic effects on clinical and plant pathogenic organisms and identification of Actinomycetes from olive rhizosphere. Microb Pathog. 2020; 143: 104134. https://doi.org/10.1016/j.micpath.2020.104134
  • [14] Alves NSF, Suzana GKI, Adriana RC, Ulisses BA, William NS, Jose GM, Eloisa HA, Joyce Kelly R. da S. Variation in Peperomia pellucida growth and secondary metabolism after rhizobacteria inoculation. PLOS ONE. 2022; 17(1): e262794. https://doi.org/10.1371/journal.pone.0262794
  • [15] Rante H, Marianti AM, Gemini A, Ermina P, Andi EE, Nur H, Hamdayani LA, Alimuddin A. Isolation and identification of Actinomycetes with antifungal activity from karts ecosystem in Maros-Pangkep, Indonesia. Biodiversitas. 2024; 25(2): 458-464. https://doi.org/10.13057/biodiv/d250203
  • [16] Li Q, Xiu C, Chenglin J. (Eds). Morphological identification of Actinobacteria. In: Dhanasekaran D, Jiang Y. Actinobacteria Basics and Biotechnological Applications. IntechOpen, London. 2016. https://doi.org/10.5772/61461
  • [17] Ngamcharungchit C, Nutsuda C, Watanalai P, Jirayut E, Bungonsiri I. Bioactive metabolites from terrestrial and marine Actinomycetes. Molecules. 2023; 28(15): 5915. https://doi.org/10.3390/molecules28155915
  • [18] Rante H, Gemini A, Usmar, Syarifa Z, Ari K, Alimuddin A. Antimicrobial activity of Streptomyces spp. sponge-associated isolated from Samalona Island of South Sulawesi, Indonesia. Biodiversitas. 2022; 23(3): 1392-1398. https://doi.org/10.13057/biodiv/d230325
  • [19] Kim JH, Lee N, Hwang S, Kim W, Lee Y, Cho S, Palsson BO, Cho BK. Discovery of novel secondary metabolites encoded in actinomycete genomes through coculture. J Ind Microbiol Biotechnol. 2021; 48(3-4): kuaa001. https://doi.org/10.1093/jimb/kuaa001
  • [20] Jaishankar J, Preeti S. Molecular basic of stationary phase survival and applications. Front Microbiol. 2017; 8: 2000. https://doi.org/10.3389/fmicb.2017.02000
  • [21] Sah SN, Majhi R, Regmi S, Ghimire A, Biswas B, Yadaf LP, Sah RK, Shah PK. Fermentation and extraction of antibacterial metabolite using Streptomyces Spp. isolated from Taplejung Nepal. J Inst Sci Technol. 2021; 26(1): 8-15. https://doi.org/10.3126/jist.v26i1.37808
  • [22] Sah SN, Lekhak B. Screening of antibioticproducing Actinomycetes of the soil of Siraha, Nepal. Himalay J Sci Technol. 2017; 1: 20-25. https://doi.org/10.3126/hijost.v1i0.25817
  • [23] Davis, WW, Stout TR. Disk plate method of microbial antibiotik assay. Am Soc Microbiol. 1971; 4(22): 666-670.
  • [24] Barka EA, Vatsa P, Sanchez L, Gaveau VN, Jacquard C, Klenk HP, Clément C, Ouhdouch Y, Van WGP. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev. 2015; 80(1): 1-43. https://doi.org/10.1128/MMBR.00019-15.
  • [25] Lee N, Kim W, Hwang S, Lee Y, Cho S, Palsson B, Cho BK. Thirty complete Streptomyces genome sequences for mining novel secondary metabolite biosynthetic gene clusters. Sci Data 2020; 7: 55. https://doi.org/10.1038/s41597-020-0395-9.

Isolation of Actinomycetes from Soil Rhizosphere of Peperomia pellucida L. from Karst Maros Ecosystem as Antimicrobial Compound Producer

Year 2025, Volume: 29 Issue: 3, 1227 - 1238, 04.06.2025
https://doi.org/10.12991/jrespharm.1694403

Abstract

Infectious diseases pose a significant global challenge, and one approach to treatment is through antibiotic production. Various methods exist for obtaining antibiotics, one of which involves isolating Actinomycetes, known for their potential as producers of antimicrobial compounds. This research investigated antimicrobial agents produced by Actinomycetes isolated from the rhizosphere soil of Peperomia pellucida L. in the Karst ecosystem of Maros, South Sulawesi. Actinomycetes were isolated from the soil surrounding P. pellucida plants, resulting in 22 pure isolates, which were then screened for antimicrobial activity against Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, and Candida albicans ATCC 10231 using antagonistic assays. Screening results revealed two Actinomycetes isolates, coded as RKS-0.3- 13 and RKS-0.4-04, exhibiting the greatest antimicrobial activity. These isolates underwent further processing through fermentation for secondary metabolite production using M1 media under agitation conditions for 16 days at 150 rpm. The fermentation products were then sonicated and separated into supernatant and biomass. The supernatant was extracted using ethyl acetate (1:1 v/v), and the resulting ethyl acetate extract was tested for antimicrobial activity using paper disks. Test results indicated that the ethyl acetate extract inhibited the growth of E. coli ATCC 25922, S. aureus ATCC 25923, and C. albicans ATCC 10231 at a concentration of 0.5 mg/20 μL. Chemical compound profiles of ethyl acetate extracts from P. pellucida plants in karst and non-karst ecosystems, as well as secondary metabolite extracts from both Actinomycetes isolates, exhibit differences in RF values in chromatographic spots on Thin Layer Chromatography plates. Molecular identification of the Actinomycetes isolates based on the 16S rRNA gene sequence reveals that RKS-0.3- 13 is closely related to Streptomyces chartreusis CP108840.1 with a similarity value of 99.86%, and RKS-0.4-04 is closely related to Streptomyces neopeptinius KU324439.1 with a similarity value of 99.93%.

References

  • [1] Kementerian Kesehatan (Kemenkes) RI. Hasil Utama Riskesdas 2018 by Kemenkes RI. 2019. https://kesmas.kemkes.go.id/ (accesed March 15, 2023).
  • [2] Praptiwi, Ahmad F, Ade LP, Dewi W, Andria A. Biological potency of Actinomycetes extracts from rhizosphere soil of Dacrycarpus imbricatus from Toba Samosir, North Sumatra. J Appl Pharm Sci. 2023; 0(00): 001-008. https://doi.org/10.7324/JAPS.2023.106853
  • [3] Abdelgawad H, Walid A, Mahmoud MYM, Samy S, Gaurav Z, Ahmed SMM, Wael NH. Actinomycetes Enrich Soil rhizosphere and ımprove seed quality as well as productivity of legumes by boosting nitrogen availability and metabolism. Biomolecules. 2020; 10: 1675. https://doi.org/10.3390/biom10121675
  • [4] Kumari N, Ekta M, Rekha M. Bioactivity assessment of potentially active Actinomycetes from rhizospheric soil. J Sci Ind Res. 2020; 79: 712-716.
  • [5] Sapkota A, Aishwarya T, Anupa B, Muskan S, Prativa S, Sagar A. Isolation, characterization, and screening of antimicrobial-producing Actinomycetes from soil samples. Int J Microbiol. 2020; 2020: 2716584. https://doi.org/10.1155/2020/2716584.
  • [6] Dhanasekaran D, Yi J. Actinobacteria - Basics and Biotechnological Applications. Published by IntechOpen. 2016. http://doi.org/10.57772/60457
  • [7] Xiong Q, Jinlong H, Haiyan W, Hongcheng Z, Jinyan Z. Relationship between plant roots, rhizosphere microorganisms, and nitrogen and ıts special focus on rice. Agriculture. 2021; 11: 234. https://doi.org/10.3390/agriculture11030234
  • [8] Pereira LB, Andrade GS, Meneghin SP, Vicentini R, Ottoboni LMM. Prospecting plant growth-promoting bacteria ısolated from the rhizosphere of sugarcane under drought stress. Curr Microbiol. 2019;76(11):1345-1354. https://doi.org/10.1007/s00284-019-01749-x.
  • [9] Mallongi A, Annisa UR, Anwar D, Muhammad H, Wesam A, Ridwan A, Stang S, Atjo W, Ratna DPA. Health risk assessment of potentially toxic elements in Maros karst groundwater: a Monte Carlo simulation approach. Geomat Nat Hazard Risk. 2022; 13(1): 338–363. https://doi.org/10.1080/19475705.2022.2027528
  • [10] Ahmad I, Baso DH, Riski S, Abdul M. Peperomia pellucida (L.) Kunth herbs: A comprehensive review on phytochemical, pharmacological, extraction engineering development, and economic promising perspectives. J Appl Pharm Sci. 2023; 13 (01): 001-009. https://doi.org/10.7324/JAPS.2023.130201
  • [11] Boy HIA, Alfred JHR, Kimbberly AS, Allister MTT, Alicia IY, Tooba M, Jitbanjong T, Veeranoot N. Recommended Medicinal Plants as Source of Natural Products: A Review. Digit Chin Med. 2018; 1: 131-142. https://doi.org/10.1016/S2589-3777(19)30018-7
  • [12] Fan Z, Shuyu L, Shuang L, Hui G, Tao W, Jinxing Z, Xiawei P. Changes in plant rhizosphere microbial communities under different vegetation restoration patterns in karst and non-karst ecosystems. Sci Rep. 2019; 9: 8761. https://doi.org/10.1038/s41598-019-44985-8
  • [13] Dede A, Kiymet G, Nevzat Ş. Isolation,plant growth-promoting traits, antagonistic effects on clinical and plant pathogenic organisms and identification of Actinomycetes from olive rhizosphere. Microb Pathog. 2020; 143: 104134. https://doi.org/10.1016/j.micpath.2020.104134
  • [14] Alves NSF, Suzana GKI, Adriana RC, Ulisses BA, William NS, Jose GM, Eloisa HA, Joyce Kelly R. da S. Variation in Peperomia pellucida growth and secondary metabolism after rhizobacteria inoculation. PLOS ONE. 2022; 17(1): e262794. https://doi.org/10.1371/journal.pone.0262794
  • [15] Rante H, Marianti AM, Gemini A, Ermina P, Andi EE, Nur H, Hamdayani LA, Alimuddin A. Isolation and identification of Actinomycetes with antifungal activity from karts ecosystem in Maros-Pangkep, Indonesia. Biodiversitas. 2024; 25(2): 458-464. https://doi.org/10.13057/biodiv/d250203
  • [16] Li Q, Xiu C, Chenglin J. (Eds). Morphological identification of Actinobacteria. In: Dhanasekaran D, Jiang Y. Actinobacteria Basics and Biotechnological Applications. IntechOpen, London. 2016. https://doi.org/10.5772/61461
  • [17] Ngamcharungchit C, Nutsuda C, Watanalai P, Jirayut E, Bungonsiri I. Bioactive metabolites from terrestrial and marine Actinomycetes. Molecules. 2023; 28(15): 5915. https://doi.org/10.3390/molecules28155915
  • [18] Rante H, Gemini A, Usmar, Syarifa Z, Ari K, Alimuddin A. Antimicrobial activity of Streptomyces spp. sponge-associated isolated from Samalona Island of South Sulawesi, Indonesia. Biodiversitas. 2022; 23(3): 1392-1398. https://doi.org/10.13057/biodiv/d230325
  • [19] Kim JH, Lee N, Hwang S, Kim W, Lee Y, Cho S, Palsson BO, Cho BK. Discovery of novel secondary metabolites encoded in actinomycete genomes through coculture. J Ind Microbiol Biotechnol. 2021; 48(3-4): kuaa001. https://doi.org/10.1093/jimb/kuaa001
  • [20] Jaishankar J, Preeti S. Molecular basic of stationary phase survival and applications. Front Microbiol. 2017; 8: 2000. https://doi.org/10.3389/fmicb.2017.02000
  • [21] Sah SN, Majhi R, Regmi S, Ghimire A, Biswas B, Yadaf LP, Sah RK, Shah PK. Fermentation and extraction of antibacterial metabolite using Streptomyces Spp. isolated from Taplejung Nepal. J Inst Sci Technol. 2021; 26(1): 8-15. https://doi.org/10.3126/jist.v26i1.37808
  • [22] Sah SN, Lekhak B. Screening of antibioticproducing Actinomycetes of the soil of Siraha, Nepal. Himalay J Sci Technol. 2017; 1: 20-25. https://doi.org/10.3126/hijost.v1i0.25817
  • [23] Davis, WW, Stout TR. Disk plate method of microbial antibiotik assay. Am Soc Microbiol. 1971; 4(22): 666-670.
  • [24] Barka EA, Vatsa P, Sanchez L, Gaveau VN, Jacquard C, Klenk HP, Clément C, Ouhdouch Y, Van WGP. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev. 2015; 80(1): 1-43. https://doi.org/10.1128/MMBR.00019-15.
  • [25] Lee N, Kim W, Hwang S, Lee Y, Cho S, Palsson B, Cho BK. Thirty complete Streptomyces genome sequences for mining novel secondary metabolite biosynthetic gene clusters. Sci Data 2020; 7: 55. https://doi.org/10.1038/s41597-020-0395-9.
There are 25 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Akmal Saputra Ardiono This is me

Abdul Rahim

Herlina Rante This is me

Publication Date June 4, 2025
Submission Date May 15, 2024
Acceptance Date July 31, 2024
Published in Issue Year 2025 Volume: 29 Issue: 3

Cite

APA Ardiono, A. S., Rahim, A., & Rante, H. (2025). Isolation of Actinomycetes from Soil Rhizosphere of Peperomia pellucida L. from Karst Maros Ecosystem as Antimicrobial Compound Producer. Journal of Research in Pharmacy, 29(3), 1227-1238. https://doi.org/10.12991/jrespharm.1694403
AMA Ardiono AS, Rahim A, Rante H. Isolation of Actinomycetes from Soil Rhizosphere of Peperomia pellucida L. from Karst Maros Ecosystem as Antimicrobial Compound Producer. J. Res. Pharm. June 2025;29(3):1227-1238. doi:10.12991/jrespharm.1694403
Chicago Ardiono, Akmal Saputra, Abdul Rahim, and Herlina Rante. “Isolation of Actinomycetes from Soil Rhizosphere of Peperomia Pellucida L. From Karst Maros Ecosystem As Antimicrobial Compound Producer”. Journal of Research in Pharmacy 29, no. 3 (June 2025): 1227-38. https://doi.org/10.12991/jrespharm.1694403.
EndNote Ardiono AS, Rahim A, Rante H (June 1, 2025) Isolation of Actinomycetes from Soil Rhizosphere of Peperomia pellucida L. from Karst Maros Ecosystem as Antimicrobial Compound Producer. Journal of Research in Pharmacy 29 3 1227–1238.
IEEE A. S. Ardiono, A. Rahim, and H. Rante, “Isolation of Actinomycetes from Soil Rhizosphere of Peperomia pellucida L. from Karst Maros Ecosystem as Antimicrobial Compound Producer”, J. Res. Pharm., vol. 29, no. 3, pp. 1227–1238, 2025, doi: 10.12991/jrespharm.1694403.
ISNAD Ardiono, Akmal Saputra et al. “Isolation of Actinomycetes from Soil Rhizosphere of Peperomia Pellucida L. From Karst Maros Ecosystem As Antimicrobial Compound Producer”. Journal of Research in Pharmacy 29/3 (June2025), 1227-1238. https://doi.org/10.12991/jrespharm.1694403.
JAMA Ardiono AS, Rahim A, Rante H. Isolation of Actinomycetes from Soil Rhizosphere of Peperomia pellucida L. from Karst Maros Ecosystem as Antimicrobial Compound Producer. J. Res. Pharm. 2025;29:1227–1238.
MLA Ardiono, Akmal Saputra et al. “Isolation of Actinomycetes from Soil Rhizosphere of Peperomia Pellucida L. From Karst Maros Ecosystem As Antimicrobial Compound Producer”. Journal of Research in Pharmacy, vol. 29, no. 3, 2025, pp. 1227-38, doi:10.12991/jrespharm.1694403.
Vancouver Ardiono AS, Rahim A, Rante H. Isolation of Actinomycetes from Soil Rhizosphere of Peperomia pellucida L. from Karst Maros Ecosystem as Antimicrobial Compound Producer. J. Res. Pharm. 2025;29(3):1227-38.