Review
BibTex RIS Cite

Burn assessment: A critical review on care, advances in burn healing and pre-clinical animal studies

Year 2023, Volume: 27 Issue: 4, 1577 - 1593, 28.06.2025

Abstract

Burn, a severe skin injury due to electricity, radiation, chemicals, or friction, may lead to the death of affected skin cells. Burns are a painful and crucial problem which causes disabilities. Sometimes, burns may also associate with the mortality of burn-injured patients. First-degree, second-degree, and third-degree are three categories of burns. First-degree burns (superficial burns) create minor skin damage as it affects the only uppermost layer of skin, and domestic care is sufficient for the treatment. Second-degree burns have injuries beyond the upper layer of skin, and third-degree burns reach every layer of skin, including nerve injuries that require critical care in treatment.
Burn injuries are not limited to local; they may also give systemic responses and cause serious problems. Microbial infection is the most severe challenge associated with second and third-degree burns injuries. The ultimate goal for treating burn injuries is re-epithelialization with minimum tissue scarring. Selection of the appropriate treatment will be based on the extremity of the burn injury. The most prevalent and effective treatment is topical agents containing mafenide acetate, silver sulfadiazine, silver nitrate, etc. Skin substitutes, negative pressure wound therapy, and skin grafting are advanced treatments for burn injuries. Burn treatment is also associated with complications such as infection, dehydration, low body temperature, and emotional problems. Animal studies for burn models are performed using rabbits, rats, and pigs. This may be an effective way to find out the new forms of burn treatment, including assessing newly developed formulations.

References

  • [1] Peck M, Molnar J, Swart D. A global plan for burn prevention and care. Bull World Health Organ. 2009; 87:802–803. https://doi.org/10.2471%2FBLT.08.059733.
  • [2] Bhate-Deosthali P, Lingam L. Gendered pattern of burn injuries in India: a neglected health issue. Reprod Health Matters. 2016; 24:96–103. https://doi.org/10.1016/j.rhm.2016.05.004.
  • [3] Gupta JL, Makhija LK, Bajaj SP. National programme for prevention of burn injuries. Indian J Plast Surg. 2010; 43:S6–10. https://doi.org/10.4103/0970-0358.70716.
  • [4] Delhi NEW. 10 lakh Indians suffer from burns every year. The Times of India 2012. http://timesofindia.indiatimes.com/india/10-lakh-Indians-suffer-from-burns-every-year/articleshowprint/13880849.cms. (accessed August 29, 2022)
  • [5] Watson S. What Burns Cause Scars and How Burn Scars are Treated. Healthline 2018. https://www.healthline.com/health/burn-scars. (accessed September 05, 2022)
  • [6] Watt SM, Pleat JM. Stem cells, niches and scaffolds: Applications to burns and wound care. Adv Drug Deliv Rev. 2018; 123:82–106. https://doi.org/10.1016/j.addr.2017.10.012.
  • [7] Milstone LM. Epidermal desquamation. J Dermatol Sci. 2004; 36:131–140. https://doi.org/10.1016/j.jdermsci.2004.05.004.
  • [8] Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, Sahandi Zangabad K, Ghamarypour A, Aref AR, Karimi M, Hamblin MR. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv Drug Deliv Rev. 2018; 123:33–64. https://doi.org/10.1016/j.addr.2017.08.001.
  • [9] Marquart-Elbaz C, Lipsker D, Sick H, Grosshans E, Cribier B. Le tissu cellulaire sous-cutané existe-t-il? [Does subcutaneous cellular tissue exist?]. Ann Dermatol Venereol. 2001;128(11):1201-1205.
  • [10] Fuchs E. Skin stem cells: Rising to the surface. J Cell Biol. 2008; 180:273–284. https://doi.org/10.1083/jcb.200708185.
  • [11] Agrawal M, Alexander A, Khan J, Giri TK, Siddique S, Dubey SK, Patel RJ, Gupta U, Saraf S, Srafa S. Recent biomedical applications on stem cell therapy: A brief overview. Curr Stem Cell Res Ther. 2019; 14:127–136. https://doi.org/10.2174/1574888X13666181002161700.
  • [12] Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012; 49:35–43. https://doi.org/10.1159/000339613.
  • [13] Bellas E, Seiberg M, Garlick J, Kaplan DL. In vitro 3D Full-thickness skin-equivalent tissue model using silk and collagen biomaterials. Macromol Biosci. 2012; 12:1627–1636. https://doi.org/10.1002/mabi.201200262.
  • [14] Tiwari VK. Burn wound: How it differs from other wounds. Indian J Plast. 2012; 45:364–373. https://doi.org/10.4103/0970-0358.101319.
  • [15] Panasci K. Burns and Wounds. Acute Care Handb. Phys. Ther. Fourth Ed. 4th ed., Elsevier; 2014, p. 283–311. https://doi.org/10.1016/B978-1-4557-2896-1.00012-3.
  • [16] Ter Horst B, Chouhan G, Moiemen NS, Grover LM. Advances in keratinocyte delivery in burn wound care. Adv Drug Deliv Rev. 2018; 123:18–32. https://doi.org/10.1016/j.addr.2017.06.012.
  • [17] Forjuoh SN. Burns in low- and middle-income countries: A review of available literature on descriptive epidemiology, risk factors, treatment, and prevention. Burns. 2006; 32:529–537. https://doi.org/10.1016/j.burns.2006.04.002.
  • [18] Van Niekerk A, Rode H, Laflamme L. Incidence and patterns of childhood burn injuries in the Western Cape, South Africa. Burns. 2004;30:341–347. https://doi.org/10.1016/j.burns.2003.12.014
  • [19] International Best Practice Guidelines: Effective Skin and Wound Management of Non-complex Burns. J Wound Care 2014. http://www.woundcare-bbraun.com. (accessed August 30, 2022)
  • [20] Hettiaratchy S, Dziewulski P. ABC of burns: pathophysiology and types of burns. BMJ. 2004;328(7453):1427-1429. https://doi.org/10.1136/bmj.328.7453.1427.
  • [21] Marc G. Jeschke MG, Kamolz LP, Shahrokhi S. Burn Care and Treatment, second ed., Springer Cham, Springer Nature Switzerland AG, Baar, Switzerland, 2020.
  • [22] Palao R, Monge I, Ruiz M, Barret JP. Chemical burns: pathophysiology and treatment. Burns. 2010;36:295–304. https://doi.org/10.1016/j.burns.2009.07.009.
  • [23] Gauglitz GG, Jeschke MG. Pathophysiology of burn injury. Handb. Burn. Acute Burn Care, Vol. 1, Springer; 2012, p. 131–149. https://doi.org/10.1007/978-3-7091-0348-7_9.
  • [24] Hardwicke J, Hunter T, Staruch R, Moiemen N. Chemical burns - An historical comparison and review of the literature. Burns. 2012;38:383–387. https://doi.org/10.1016/j.burns.2011.09.014.
  • [25] Udy AA, Roberts JA, Lipman J, Blot S. The effects of major burn related pathophysiological changes on the pharmacokinetics and pharmacodynamics of drug use: An appraisal utilizing antibiotics. Adv Drug Deliv Rev. 2018;123:65–74. https://doi.org/10.1016/j.addr.2017.09.019.
  • [26] Ganrot K, Jacobsson S, Rothman U. Transcapillary passage of plasma proteins in experimental burns. Acta Physiol Scand. 1974;91:497–501. https://doi.org/10.1111/j.1748-1716.1974.tb05705.x.
  • [27] Al-Mousawi AM, Mecott-Rivera GA, Jeschke MG, Herndon DN. Burn teams and burn centers: The importance of a comprehensive team approach to burn care. Clin Plast Surg. 2009;36:547–554. https://doi.org/10.1016/j.cps.2009.05.015.
  • [28] Delavary BM, van der Veer WM, van Egmond M, Niessen FB, Beelen RHJ. Macrophages in skin injury and repair. Immunobiol. 2011;216:753–762. https://doi.org/10.1016/j.imbio.2011.01.001.
  • [29] Schultz GS, Davidson JM, Kirsner RS, Bornstein P, Herman IM. Dynamic reciprocity in the wound microenvironment. Wound Repair Regen. 2011;19:134–148. https://doi.org/10.1111/j.1524-475X.2011.00673.x.
  • [30] Gibran NS, Boyce S, Greenhalgh DG. Cutaneous wound healing. J Burn Care Res. 2007;28:577–579. https://doi.org/10.1097/BCR.0B013E318093E44C.
  • [31] Werner S, Krieg T, Smola H. Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol. 2007;127:998–1008. https://doi.org/10.1038/sj.jid.5700786.
  • [32] Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Isseroff RR, Tomic-Canic M, Patel SB, Khalid L. Epithelialization in wound healing: A comprehensive review. Adv Wound Care. 2014;3:445–464. https://doi.org/10.1089/wound.2013.0473.
  • [33] Rowan MP, Cancio LC, Elster EA, Burmeister DM, Rose LF, Natesan S, Chan RK, Christy RJ, Chung KK. Burn wound healing and treatment: Review and advancements. Crit Care. 2015;19:243. https://doi.org/10.1186/s13054-015-0961-2.
  • [34] Amini-Nik S, Yousuf Y, Jeschke MG. Scar management in burn injuries using drug delivery and molecular signaling: Current treatments and future directions. Adv Drug Deliv Rev. 2018;123:135–154. https://doi.org/10.1016/j.addr.2017.07.017.
  • [35] Bielefeld KA, Amini-Nik S, Alman BA. Cutaneous wound healing: Recruiting developmental pathways for regeneration. Cell Mol Life Sci. 2013;70:2059–2081. https://doi.org/10.1007/s00018-012-1152-9.
  • [36] Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol. 2007;127:526–537. https://doi.org/10.1038/sj.jid.5700613.
  • [37] Darby I, Skalli O, Gabbiani G. α-Smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Investig. 1990;63:21–29.
  • [38] Almine JF, Wise SG, Weiss AS. Elastin signaling in wound repair. Birth Defects Res Part C - Embryo Today Rev. 2012;96:248–257. https://doi.org/10.1002/bdrc.21016.
  • [39] Bainbridge P. Wound healing and the role of fibroblasts. J Wound Care. 2013; 22:407–412. https://doi.org/10.12968/jowc.2013.22.8.407.
  • [40] Alexander A, Saraf S, Saraf S, Agrawal M, Patel RJ, Agrawal P, Patel RJ, Agraval P, Khan J. Amalgamation of Stem Cells with Nanotechnology: A Unique Therapeutic Approach. Curr Stem Cell Res Ther. 2019;14:83–92. https://doi.org/10.2174/1574888x13666180703143219.
  • [41] Staff MC. Burns- Diagnosis and treatment. https://www.mayoclinic.org/diseases-conditions/burns/symptoms-causes/syc-20370539. (accessed September 02, 2022)
  • [42] Griggs C, Goverman J, Bittner EA, Levi B. Sedation and pain management in burn patients. Clin Plast Surg. 2017; 44:535–540. https://doi.org/10.1016/j.cps.2017.02.026.
  • [43] Lu J, Yang M, Zhan M, Xu X, Yue J, Xu T. Antibiotics for treating infected burn wounds. Cochrane Database Syst Rev. 2017;2017(7):CD012084. https://doi.org/10.1002%2F14651858.CD012084.pub2.
  • [44] Gallagher JJ, Branski LK, Williams-Bouyer N, Villarreal C, Herndon DN. Treatment of infection in burns. Total Burn Care, Fourth Ed. 2012; 137-156.e2. https://doi.org/10.1016/B978-1-4377-2786-9.00012-6.
  • [45] Robson MC. Bacterial control in the burn wound. Clin Plast Surg. 1979; 6:515–521. https://doi.org/10.1016/s0094-1298(20)32013-7.
  • [46] Moncrief JA. The status of topical antibacterial therapy in the treatment of burns. Surgery. 1968;63:862–867.
  • [47] Groves AR. Open and closed treatment of burns. J Hosp Infect. 1985; 6:43–46. https://doi.org/10.1016/S0195-6701(85)80084-0.
  • [48] Krizek TJ, Davis JH, Desprez JD, Kiehn CL, Krizek TJ. Topical therapy of burns: Experimental evaluation. Plast Reconstr Surg. 1967; 39:248–255. https://doi.org/10.1097/00006534-196703000-00003.
  • [49] Denning DW, Haiduven-Griffiths D. Eradication of low-level methicillin-resistant Staphylococcus aureus skin colonization with topical mupirocin. Infect Control Hosp Epidemiol. 1988; 9:261–263. https://doi.org/10.2307/30144179.
  • [50] Strock LL, Lee MM, Rutan RL, Desai MH, Robson MC, Herndon DN, Heggers JP. Topical bactroban (Mupirocin): Efficacy in treating burn wounds infected with methicillin-resistant staphylococci. J Burn Care Rehabil. 1990;11:454–459.
  • [51] Barret JP, Ramzy PI, Heggers JP, Villareal C, Herndon DN, Desai MH. Topical nystatin powder in severe burns: A new treatment for angioinvasive fungal infections refractory to other topical and systemic agents. Burns. 1999; 25:505–508. https://doi.org/10.1016/S0305-4179(99)00037-6.
  • [52] Heggers JP, Robson MC, Herndon DN, Desai MH. The efficacy of nystatin combined with topical microbial agents in the treatment of burn wound sepsis. J Burn Care Rehabil. 1989; 10:508–511. https://doi.org/10.1097/00004630-198911000-00009.
  • [53] Ruszczak Z. Effect of collagen matrices on dermal wound healing. Adv Drug Deliv Rev. 2003; 55:1595–1611. https://doi.org/10.1016/j.addr.2003.08.003.
  • [54] Hansen SL, Voigt DW, Wiebelhaus P, Paul CN. Using skin replacement products to treat burns and wounds. Adv Skin Wound Care. 2001; 14:37–46. https://doi.org/10.1097/00129334-200101000-00016.
  • [55] Rubis BA, Danikas D, Neumeister M, Williams WG, Suchy H, Milner SM. The use of split-thickness dermal grafts to resurface full thickness skin defects. Burns. 2002; 28:752–759. https://doi.org/10.1016/S0305-4179(02)00180-8.
  • [56] Föhn M, Bannasch H. Artificial skin. Methods Mol Med. 2007; 140:167–182. https://doi.org/10.1007/978-1-59745-443-8_10.
  • [57] Boyce ST, Kagan RJ, Greenhalgh DG, Warner P, Yakuboff KP, Palmieri T, Warden GD. Cultured skin substitutes reduce requirements for harvesting of skin autograft for closure of excised, full-thickness burns. J Trauma. 2006;60(4):821-829. https://doi.org/10.1097/01.ta.0000196802.91829.cc.
  • [58] van der Veen VC, van der Wal MBA, van Leeuwen MCE, Ulrich MMW, Middelkoop E. Biological background of dermal substitutes. Burns. 2010; 36:305–321. https://doi.org/10.1016/j.burns.2009.07.012.
  • [59] Wang Y, Beekman J, Hew J, Jackson S, Issler-Fisher AC, Parungao R, Lİ Z, Maitz KM. Burn injury: Challenges and advances in burn wound healing, infection, pain and scarring. Adv Drug Deliv Rev. 2018; 123:3–17. https://doi.org/10.1016/j.addr.2017.09.018.
  • [60] Kim S, Chung S-W, Cha I-H. Full thickness skin grafts from the groin: donor site morbidity and graft survival rate from 50 cases. J Korean Assoc Oral
  • [61] Shlash SO Al, Madani JO Al, Deib JI El, Alsubhi FS, Saifi SS Al, Helmi AMA, Helmi AMA, Al Mutairi SK, Khurram JA. Demographic characteristics and outcome of burn patients requiring skin grafts: a tertiary hospital experience. Int J Burns Trauma 2016;6(2):30–36.
  • [62] Low PSJ, Tjin MS, Fong E. Design and construction of artificial extracellular matrix (aECM) proteins from Escherichia coli for skin tissue engineering. J Vis Exp. 2015;(100):e52845. https://doi.org/10.3791/52845.
  • [63] Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface. 2010;7:229–258. https://doi.org/10.1098/rsif.2009.0403.
  • [64] Nathoo R, Howe N, Cohen G. Skin substitutes: an overview of the key players in wound management. J Clin Aesthet Dermatol. 2014;7(10):44–48.
  • [65] Schurr MJ, Foster KN, Centanni JM, Comer AR, Wicks A, Gibson AL, Christina TV, Sandy S, Lynn B. Phase I/II clinical evaluation of StrataGraft: A consistent, pathogen-free human skin substitute. J Trauma - Inj Infect Crit Care. 2009;66:866–873. https://doi.org/10.1097/TA.0b013e31819849d6.
  • [66] Still J, Glat P, Silverstein P, Griswold J, Mozingo D. The use of a collagen sponge/living cell composite material to treat donor sites in burn patients. Burns. 2003;29:837–841. https://doi.org/10.1016/S0305-4179(03)00164-5.
  • [67] Hansbrough JF, Doré C, Hansbrough WB. Clinical trials of a living dermal tissue replacement placed beneath meshed, split-thickness skin grafts on excised burn wounds. J Burn Care Rehabil. 1992;13:519–529. https://doi.org/10.1097/00004630-199209000-00004.
  • [68] Lam PK, Chan ESY, To EWH, Lau CH, Yen SC, King WWK. Development and evaluation of a new composite laserskin graft. J Trauma - Inj Infect Crit Care. 1999;47:918–922. https://doi.org/10.1097/00005373-199911000-00017.
  • [69] Enoch S, Grey JE, Harding KG. ABC of wound healing: Recent advances and emerging treatments. BMJ. 2006;332(7547):962–965. https://doi.org/10.1136%2Fbmj.332.7547.962.
  • [70] Vig K, Chaudhari A, Tripathi S, Dixit S, Sahu R, Pillai S, Dennis VA, Singh SR. Advances in skin regeneration using tissue engineering. Int J Mol Sci. 2017;18:E789. https://doi.org/10.3390/ijms18040789.
  • [71] Broussard KC, Powers JG. Wound dressings: Selecting the most appropriate type. Am J Clin Dermatol. 2013;14:449–459. https://doi.org/10.1007/s40257-013-0046-4.
  • [72] Wasiak J, Cleland H, Campbell F, Spinks A. Dressings for superficial and partial thickness burns. Cochrane Database Syst Rev. 2013;2013:CD002106. https://doi.org/10.1002/14651858.CD002106.pub4.
  • [73] Wasiak J, Cleland H, Campbell F, Spinks A. Dressings for superficial and partial thickness burns. Cochrane Database Syst Rev. 2013;2013(3):CD002106. https://doi.org/10.1002/14651858.cd002106.pub4.
  • [74] Abboud EC, Legare TB, Settle JC, Boubekri AM, Barillo DJ, Marcet JE, Sanchez JE. Do silver-based wound dressings reduce pain? A prospective study and review of the literature. Burns. 2014;40:S40–47. https://doi.org/10.1016/j.burns.2014.09.012.
  • [75] Pachence JM. Collagen-based devices for soft tissue repair. J Biomed Mater Res. 1996;33:35–40. https://doi.org/10.1002/(SICI)1097-4636(199621)33:1<35::AID-JBM6>3.0.CO;2-N.
  • [76] Cronin H, Goldstein G. Biologic skin substitutes and their applications in dermatology. Dermatol Surg. 2013;39:30–34. https://doi.org/10.1111/j.1524-4725.2012.02561.x.
  • [77] Skórkowska-Telichowska K, Czemplik M, Kulma A, Szopa J. The local treatment and available dressings designed for chronic wounds. J Am Acad Dermatol. 2013;68:e117–126. https://doi.org/10.1016/j.jaad.2011.06.028.
  • [78] Andrei M-C, Grosu-Bularda A, Vermesan O, Frunza A, Popescu SA, Ionita S, Teodoreanu R, Neagu TP, Lascar I. Surgical Treatment in Acute Phase of Severe Burns - a Comprehensive Approach. Med Mod - Mod Med. 2018;25:24–38. https://doi.org/10.31689/rmm.2018.25.1.24.
  • [79] Glat PM, Kubat WD, Hsu JF, Copty T, Burkey BA, Davis W, Goodwin I. Randomized clinical study of SilvaSorb® gel in comparison to Silvadene® silver sulfadiazine cream in the management of partial-thickness burns. J Burn Care Res. 2009;30:262–267. https://doi.org/10.1097/BCR.0b013e318198a2e8.
  • [80] Vig S, Dowsett C, Berg L, Caravaggi C, Rome P, Birke-Sorensen H, Bruhin A, Chariker M, Depoorter M, Dunn R, Duteille F, Ferreira F, Martínez JM, Grudzien G, Hudson D, Ichioka S, Ingemansson R, Jeffery S, Krug E, Lee C, Malmsjo M, Runkel N; International Expert Panel on Negative Pressure Wound Therapy [NPWT-EP]; Martin R, Smith J. Evidence-based recommendations for the use of negative pressure wound therapy in chronic wounds: steps towards an international consensus. J Tissue Viability. 2011;20 Suppl 1:S1–18. https://doi.org/10.1016/j.jtv.2011.07.002.
  • [81] Milne J, Smith J, Chowdhury T. Negative pressure wound therapy. Br J Nurs. 2017;26(Sup20):S30–S32. https://doi.org/10.12968/bjon.2017.26.sup20.s30.
  • [82] Bloemen MCT, Van Der Wal MBA, Verhaegen PDHM, Nieuwenhuis MK, Van Baar ME, Van Zuijlen PPM, Middedlkoop E. Clinical effectiveness of dermal substitution in burns by topical negative pressure: A multicenter randomized controlled trial. Wound Repair Regen. 2012;20:797–805. https://doi.org/10.1111/j.1524-475X.2012.00845.x.
  • [83] Harish V, Maitz PKM. Uninterrupted continuous negative pressure wound therapy is safe and can facilitate engraftment of dermal regeneration templates. J Plast Reconstr Aesthetic Surg. 2014;67:1011–1013. https://doi.org/10.1016/j.bjps.2014.01.028.
  • [84] Zhang F, Lv KY, Qiu XC, Luo PF, Zheng XF, Zhu SH. Using negative pressure wound therapy on microskin autograft wounds. J Surg Res. 2015;195:344–350. https://doi.org/10.1016/j.jss.2014.12.025.
  • [85] Liu Y, Zhou Q, Wang Y, Liu Z, Dong M, Wang Y, Hu D. Negative pressure wound therapy decreases mortality in a murine model of burn-wound sepsis involving pseudomonas aeruginosa infection. PLoS One. 2014;9:e90494. https://doi.org/10.1371/journal.pone.0090494.
  • [86] Merchant N, Smith K, Jeschke MG. An ounce of prevention saves tons of lives: Infection in burns. Surg Infect (Larchmt). 2015;16:380–387. https://doi.org/10.1089/sur.2013.135.
  • [87] Norbury W, Herndon DN, Tanksley J, Jeschke MG, Finnerty CC. Infection in burns. Surg Infect (Larchmt). 2016;17:250–255. https://doi.org/10.1089/sur.2013.134.
  • [88] D’Avignon LC, Hogan BK, Murray CK, Loo FL, Hospenthal DR, Cancio LC. Contribution of bacterial and viral infections to attributable mortality in patients with severe burns: An autopsy series. Burns. 2010;36:773–779. https://doi.org/10.1016/j.burns.2009.11.007.
  • [89] Bloemsma GC, Dokter J, Boxma H, Oen IMMH. Mortality and causes of death in a burn centre. Burns. 2008;34:1103–1107. https://doi.org/10.1016/j.burns.2008.02.010.
  • [90] Chipp E, Milner CS, Blackburn AV. Sepsis in burns: A review of current practice and future therapies. Ann Plast Surg. 2010;65:228–236. https://doi.org/10.1097/SAP.0b013e3181c9c35c.
  • [91] Williams FN, Herndon DN, Hawkins HK, Lee JO, Cox RA, Kulp GA. The leading causes of death after burn injury in a single pediatric burn center. Crit Care. 2009;13:R183. https://doi.org/10.1186/cc8170.
  • [92] Gurtner GC, Wong VW, Sorkin M, Glotzbach JP, Longaker MT. Surgical approaches to create murine models of human wound healing. J Biomed Biotechnol. 2011;2011:969618. https://doi.org/10.1155/2011/969618.
  • [93] Mestas J, Hughes CCW. Of mice and not men: Differences between mouse and human immunology. J Immunol. 2004;172:2731–2738. https://doi.org/10.4049/jimmunol.172.5.2731.
  • [94] Dahiya P. Burns as a model of SIRS. Front Biosci. 2009;14:4962–4967. https://doi.org/10.2741/3580.
  • [95] Abdullahi A, Amini-Nik S, Jeschke MG. Animal models in burn research. Cell Mol Life Sci. 2014;71:3241–3255. https://doi.org/10.1007/s00018-014-1612-5.
  • [96] Dorsett-Martin WA. Rat models of skin wound healing: A review. Wound Repair Regen. 2004;12:591–599. https://doi.org/10.1111/j.1067-1927.2004.12601.x.
  • [97] Padilla-Carlin DJ, McMurray DN, Hickey AJ. The guinea pig as a model of infectious diseases. Comp Med. 2008;58:324–340.
  • [98] Nicolai JP, Goris R. A guinea-pig model in burn research. Eur Surg Res. 1980;12:22–29. https://doi.org/10.1159/000128106.
  • [99] Sullivan TP, Eaglstein WH, Davis SC, Mertz P. The pig as a model for human wound healing. Wound Repair Regen. 2001;9:66–76. https://doi.org/10.1046/j.1524-475X.2001.00066.x.
  • [100] Hu RH, Yu YM, Costa D, Young VR, Ryan CM, Burke JF, Tompkins RG. A rabbit model for metabolic studies after burn injury. J Surg Res. 1998;75:153–160. https://doi.org/10.1006/jsre.1998.5274.
  • [101] Shen H, Yao P, Lee E, Greenhalgh D, Soulika AM. Interferon-gamma inhibits healing post scald burn injury. Wound Repair Regen. 2012;20:580–591. https://doi.org/10.1111/j.1524-475X.2012.00812.x.
  • [102] Zhang QH, Li JC, Dong N, Tang LM, Zhu XM, Sheng ZY, Yao YM. Burn injury induces gelsolin expression and cleavage in the brain of mice. Neuroscience. 2013;228:60–72. https://doi.org/10.1016/j.neuroscience.2012.10.013.
  • [103] Fan J, Meng Q, Guo G, Xie Y, Li X, Xiu Y, Li T, Ma L. Effects of early enteral nutrition supplemented with arginine on intestinal mucosal immunity in severely burned mice. Clin Nutr. 2010;29:124–130. https://doi.org/10.1016/j.clnu.2009.07.005.
  • [104] Beffa DC, Fischman AJ, Fagan SP, Hamrahi VF, Paul KW, Kaneki M, Yu YM, Tompkins RG, Carter EA. Simvastatin treatment improves survival in a murine model of burn sepsis: Role of interleukin 6. Burns. 2011;37:222–226. https://doi.org/10.1016/j.burns.2010.10.010.
  • [105] Bao C, Hu S, Zhou G, Tian Y, Wu Y, Sheng Z. Effect of carbachol on intestinal mucosal blood flow, activity of Na+-K+-ATPase, expression of aquaporin-1, and intestinal absorption rate during enteral resuscitation of burn shock in rats. J Burn Care Res. 2010;31:200–206. https://doi.org/10.1097/BCR.0b013e3181c89eba.
  • [106] De Oliveira F, Bevilacqua LR, Anaruma CA, De Campos Boldrini S, Liberti EA. Morphological changes in distant muscle fibers following thermal injury in Wistar rats. Acta Cir Bras. 2010;25:525–528. https://doi.org/10.1590/S0102-86502010000600012.
  • [107] Luo HM, Hu S, Zhou GY, Bai HY, Lv Y, Wang H Bin, Lin HY, Sheng ZY. The effects of ulinastatin on systemic inflammation, visceral vasopermeability and tissue water content in rats with scald injury. Burns. 2013;39:916–922. https://doi.org/10.1016/j.burns.2012.11.004.
  • [108] Al-Mousawi AM, Kulp GA, Branski LK, Kraft R, Mecott GA, Williams FN, Herndon DN, Jeschke MG. Impact of anesthesia, analgesia, and euthanasia technique on the inflammatory cytokine profile in a rodent model of severe burn injury. Shock. 2010;34:261–268. https://doi.org/10.1097/SHK.0b013e3181d8e2a6.
  • [109] Cuttle L, Kempf M, Phillips GE, Mill J, Hayes MT, Fraser JF, Wang XQ, Kimble RM. A porcine deep dermal partial thickness burn model with hypertrophic scarring. Burns. 2006;32:806–820. https://doi.org/10.1016/j.burns.2006.02.023.
  • [110] Brans TA, Dutrieux RP, Hoekstra MJ, Kreis RW, du Pont JS. Histopathological evaluation of scalds and contact burns in the pig model. Burns. 1994;20:S48–51. https://doi.org/10.1016/0305-4179(94)90090-6.
  • [111] Sheu SY, Wang WL, Fu YT, Lin SC, Lei YC, Liao JH, Tang NY, Kuo TF, Yao CH. The pig as an experimental model for mid-dermal burns research. Burns. 2014;40:1679–1688. https://doi.org/10.1016/j.burns.2014.04.023.
  • [112] Kaufman T, Lusthaus SN, Sagher U, Wexler MR. Deep partial skin thickness burns: A reproducible animal model to study burn wound healing. Burns. 1990;16:13–16. https://doi.org/10.1016/0305-4179(90)90199-7.
  • [113] Jalali FSS, Tajik H, Hadian M. Efficacy of topical application of alcoholic extract of yarrow in the healing process of experimental burn wounds in rabbit. Comp Clin Path. 2012;21:177–181. https://doi.org/10.1007/s00580-010-1081-7.
  • [114] Yang G, Espandar L, Mamalis N, Prestwich GD. A cross-linked hyaluronan gel accelerates healing of corneal epithelial abrasion and alkali burn injuries in rabbits. Vet Ophthalmol. 2010;13:144–150. https://doi.org/10.1111/j.1463-5224.2010.00771.x.
  • [115] Tamri P, Hemmati A, Boroujerdnia MG. Wound healing properties of quince seed mucilage: In vivo evaluation in rabbit full-thickness wound model. Int J Surg. 2014;12:843–847. https://doi.org/10.1016/j.ijsu.2014.06.016.
There are 115 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Delivery Technologies
Journal Section Articles
Authors

Ravish Patel This is me 0000-0002-8442-0349

Rashesh Desai This is me 0000-0003-3972-6039

Amit Patel This is me 0000-0001-8223-9311

Shailvi Shah This is me 0000-0003-1231-0332

Bhupendra Prajapati This is me 0000-0001-8242-4541

Viral Patel This is me 0000-0002-9098-0465

Amit Alexander This is me 0000-0003-0391-7650

Publication Date June 28, 2025
Published in Issue Year 2023 Volume: 27 Issue: 4

Cite

APA Patel, R., Desai, R., Patel, A., … Shah, S. (2025). Burn assessment: A critical review on care, advances in burn healing and pre-clinical animal studies. Journal of Research in Pharmacy, 27(4), 1577-1593.
AMA Patel R, Desai R, Patel A, et al. Burn assessment: A critical review on care, advances in burn healing and pre-clinical animal studies. J. Res. Pharm. July 2025;27(4):1577-1593.
Chicago Patel, Ravish, Rashesh Desai, Amit Patel, Shailvi Shah, Bhupendra Prajapati, Viral Patel, and Amit Alexander. “Burn Assessment: A Critical Review on Care, Advances in Burn Healing and Pre-Clinical Animal Studies”. Journal of Research in Pharmacy 27, no. 4 (July 2025): 1577-93.
EndNote Patel R, Desai R, Patel A, Shah S, Prajapati B, Patel V, Alexander A (July 1, 2025) Burn assessment: A critical review on care, advances in burn healing and pre-clinical animal studies. Journal of Research in Pharmacy 27 4 1577–1593.
IEEE R. Patel, R. Desai, A. Patel, S. Shah, B. Prajapati, V. Patel, and A. Alexander, “Burn assessment: A critical review on care, advances in burn healing and pre-clinical animal studies”, J. Res. Pharm., vol. 27, no. 4, pp. 1577–1593, 2025.
ISNAD Patel, Ravish et al. “Burn Assessment: A Critical Review on Care, Advances in Burn Healing and Pre-Clinical Animal Studies”. Journal of Research in Pharmacy 27/4 (July2025), 1577-1593.
JAMA Patel R, Desai R, Patel A, Shah S, Prajapati B, Patel V, Alexander A. Burn assessment: A critical review on care, advances in burn healing and pre-clinical animal studies. J. Res. Pharm. 2025;27:1577–1593.
MLA Patel, Ravish et al. “Burn Assessment: A Critical Review on Care, Advances in Burn Healing and Pre-Clinical Animal Studies”. Journal of Research in Pharmacy, vol. 27, no. 4, 2025, pp. 1577-93.
Vancouver Patel R, Desai R, Patel A, Shah S, Prajapati B, Patel V, et al. Burn assessment: A critical review on care, advances in burn healing and pre-clinical animal studies. J. Res. Pharm. 2025;27(4):1577-93.