Research Article
BibTex RIS Cite
Year 2019, Volume: 38 Issue: 2, 10 - 16, 18.12.2019
https://doi.org/10.30782/jrvm.606895

Abstract

References

  • Referans1 Haas HL, Sergeeva OA, Selbach O. Histamine in the Nervous System. Physiol Rev. 2008;88:1183–1241.
  • Referans2 Brown RE, Stevens DR, Haas HL. The physiology of brain histamine. Prog Neurobiol. 2001;63:637–672.
  • Referans3 Yalcin M, Savci V. J. Jochem Involvement of the cholinergic system in the central histamine-induced reversal of critical haemorrhagic hypotension in rats J Physiol Pharmacol. 2009;60:133-137.
  • Referans4 Altinbas B, Yilmaz MS, Savci V, et al. Centrally injected histamine increases posterior hypothalamic acetylcholine release in hemorrhage-hypotensive rats. Auton Neurosci. 2015;187:63–69.
  • Referans5 Altinbas B, Guvenc G, Erkan LG, et al. Histamine restores hemorrhage induced hypotension by activating cholinergic neurons in nucleus tractus solitarius. Brain Res. 2016;1649:132–140.
  • Referans6 Schwartz JC, Arrang JM, Garbarg M, et al. Histaminergic transmission in the mammalian brain. Physiol Rev. 1991;71:1–51.
  • Referans7 Bugajski J, Janusz Z. Central histaminergic stimulation of pituitary-adrenocortical response in the rat. Life Sci. 1983;33:1179–1189.
  • Referans8 Knigge U, Warberg J. Neuroendocrine functions of histamine. Agents Actions Suppl. 1991;33:29-53.
  • Referans9 Kjaer A, Larsen PJ, Knigge U, et al. Histaminergic activation of the hypothalamic-pituitary-adrenal axis. Endocrinology. 1994;135:1171-1177.
  • Referans10 Kjaer U, Knigge FW, Bach J, et al. Histamine- and stress-induced secretion of ACTH and beta-endorphin: involvement of corticotropin-releasing hormone and vasopressin. Neuroendocrinology. 1992;56:419-428.
  • Referans11 Mitsuma T, De Heng S, Nogimori T, et al. Effect of histamine and its blockers on plasma beta-endorphin-like immunoreactivity in rats. Endocrinol Exp. 1987;21:95-102.
  • Referans12 Knigge UP. Histaminergic regulation of prolactin secretion. Dan Med Bull. 1990;37:109-124.
  • Referans13 Radacs M, Galfi M, Juhasz A, et al. Histamine-induced enhancement of vasopressin and oxytocin secretion in rat neurohypophyseal tissue cultures. Regul Pept. 2006;134:82-88.
  • Referans14 Knigge U, Warberg J. The role of histamine in the neuroendocrine regulation of pituitary hormone secretion. Acta Endocrinol. 1991;124:609–619.
  • Referans15 Niaz N, Guvenc G, Altinbas B, et al. Intracerebroventricular injection of histamine induces the hypothalamic-pituitary-gonadal axis activation in male rats. Brain Res. 2018;1699:150-157.
  • Referans16 Jochem J. Cardiovascular effects of histamine administered intracerebroventricularly in critical haemorrhagic hypotension in rats. J Physiol Pharmacol. 2000;51:229–239.
  • Referans17 Jochem J. Central histamine-induced reversal of haemorrhagic shock versus volume resuscitation in rats. Inflamm Res. 2002;51:57–58.
  • Referans18 Jochem J. Endogenous central histamine-induced reversal of critical hemorrhagic hypotension in rats: studies with L-histidine. Shock. 2003;20:332–337.
  • Referans19 Attwell D, Miller B, Sarantis M. Arachidonic acid as a messenger in the central nervous system. Semin Neurosci. 1993;5:159-169.
  • Referans20 Bosetti F. Arachidonic acid metabolism in brain physiology and pathology: lessons from genetically altered mouse models J Neurochem. 2007;102:577-586.
  • Referans21 Katsuki H, Okuda S. Arachidonic acid as a neurotoxic and neurotrophic substance. Prog Neurobiol. 1995;46:607-636.
  • Referans22 Aydin C, Yalcin M. Peripheral mechanisms involved in the pressor and bradycardic effects of centrally administered arachidonic acid. Prostaglandins Leukot Essent Fatty Acids. 2008;78:361-368.
  • Referans23 Altinbas B, Topuz BB, İlhan T, et al. Activation of the central histaminergic system mediates arachidonic-acid-induced cardiovascular effects. Can J Physiol Pharmacol. 2014;92:645-654.
  • Referans24 Yalcin M. Central mechanism underlying pressor and bradycardic effect of intracerebroventricularly injected arachidonic acid. Can J Physiol Pharmacol. 2011;89:127-133.
  • Referans25 Yalcin M, Aydin C. Cardiovascular effects of centrally administered arachidonic acid in haemorrhage-induced hypotensive rats: investigation of a peripheral mechanism. Clin Exp Pharmacol Physiol. 2009;36:447-45.
  • Referans26 Yalcin M, Aydin C. The role of the central arachidonic acid-thromboxane A2 cascade in cardiovascular regulation during hemorrhagic shock in rats. Prostaglandins Leukot Essent Fatty Acids. 2011;85:61-66.
  • Referans27 Erkan LG, Guvenc G, Altinbas B, et al. The effects of centrally injected arachidonic acid on respiratory system: involvement of cyclooxygenase to thromboxane signaling pathway. Respir Physiol Neurobiol. 2016;225:1-7.
  • Referans28 Erkan LG, Altinbas B, Guvenc G, et al. The acute cardiorespiratory effects of centrally injected arachidonic acid; the mediation of prostaglandin E, D and F2α. Respir Physiol Neurobiol. 2017;242:117-124.
  • Referans29 Erkan LG, Altinbas B, Guvenc G, et al. Brain thromboxane A2 via arachidonic acid cascade induces the hypothalamic-pituitary-gonadal axis activation in rats. Auton Neurosci. 2015;189:50-55.
  • Referans30 Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates Fourth Edition. Academic Press, New York. 2005.
  • Referans31 Jochem J, Savci V, Filiz N, et al. Involvement of the histaminergic system in cytidine 5’-diphosphocholine-induced reversal of critical haemorrhagic hypotension in rats. J Physiol Pharmacol. 2010;61:37–43.
  • Referans32 Yokotani K, Wang M, Murakami Y, et al. Brain phospholipase A2-arachidonic acid cascade is involved in the activation of central sympatho-adrenomedullary outflow in rats. Eur J Pharmacol. 2000;398:341-347.
  • Referans33 Yalcin M, Ak F, Erturk M. The role of the central thromboxane A2 in cardiovascular effects of a phospholipase A2 activator melittin administrated intracerebroventricularly in normotensive conscious rats. Neuropetides. 2006;40:207-212.
  • Referans34 Yalcin M, Savci V. Cardiovascular effects of centrally injected melittin in hemorrhaged hypotensive rats: the investigation of peripheral mechanisms. Neuropeptides. 2007;41:465-475.
  • Referans35 Altinbas B, Topuz BB, Yilmaz MS, et al. The mediation of the central histaminergic system in the pressor effect of intracerebroventricularly injected melittin, a phospholipase A2 activator, in normotensive rats. Prostaglandins Leukot Essent Fatty Acids. 2012;87:153-158.
  • Referans36 Yalcin M, Savci V. Restoration of blood pressure by centrally injected U-46619, a thromboxane A2 analog, in haemorhaged hypotensive rats: investigation of different brain areas. Pharmacology. 2004;70:177-187.
  • Referans37 Yalcin M, Cavun S, Yilmaz MS, et al. Involvement of brain thromboxane A2 in hypotension induced by haemorrhagein rats. Clin Exp Pharmcol Physiol. 2005;32:960-967.
  • Referans38 Siren AL. Central cardiovascular and thermal effects of prostaglandin E2 in rats. Acta Physiol Scand. 1982;116:229-234.
  • Referans39 Siren AL. Central cardiovascular and thermal effects of prostaglandin D2 in rats. Prostaglandins Leukot Med. 1982;8:349-359.
  • Referans40 Ariumi H, Takano Y, Masumi A, et al. Roles of the central prostaglandin EP3 receptors in cardiovascular regulation in rats. Neurosci Lett. 2002;324:61-64.
  • Referans41 Siren AL. Differences in the central actions of arachidonic acid and prostaglandin F2α between spontaneously hypertensive and normotensive rats. Life Sci. 1982;30:503-513.
  • Referans42 Leffler CW, Busija DW. Prostanoids in cortical subarachnoid cerebrospinal fluid and pial arterial diameter in newborn pigs. Circ Res. 1985;57:689–694.
  • Referans43 Leffler CW, Busija DW, Beasley DG, et al. Maintenance of cerebral circulation during hemorrhagic hypotension in newborn pigs: role of prostanoids. Circ Res. 1986;59:562–567.
  • Referans44 Bucci MN, Black KL, Hoff JT. Arachidonic acid metabolite production following focal cerebral ischemia: time course and effect of meclofenamate. Surg Neurol. 1990;33:12–14.
  • Referans45 Panula P, Pirvola U, Auvienin MS, et al. Histamine immunoreactive nerve fibres in the rat brain. Neuroscience. 1989;28:585–610.
  • Referans46 Arrang JM. Pharmacological properties of histamine receptor subtypes. Cell Mol Biol. 1994;40:273–279.
  • Referans47 Leurs R, Smit MJ, Timmerman H. Molecular pharmacological aspects of histamine receptors. Pharmacol Ther. 1995;66:413–463.
  • Referans48 Van der Goot H, Timmerman H. Selective ligands as tools to study histamine receptors. Eur J Med Chem. 2000;35:5–20.
  • Referans49 Bugajski AJ, Thor P, Glod R, et al. Influence of cyclooxygenase inhibitors on the central histaminergic stimulations of hypothalamic–pituitary–adrenal axis. J Physiol Pharmacol. 2003;54:643–652.
  • Referans50 Karlstedt K, Senkas A, Ahman M, et al. Regional expression of the histamine H2 receptor in adult and developing rat brain. Neuroscience. 2001;102:201–208.
  • Referans51 Shimizu T, Okada S, Yamaguchi N, et al. Centrally administered histamine evokes the adrenal secretion of noradrenaline and adrenaline by brain cyclooxygenase-1- and thromboxane A2-mediated mechanisms in rats. Eur J Pharmacol. 2006;541:152–157.
  • Referans52 Shimizu T, Yamaguchi N, Okada S, et al. Roles of brain phosphatidylinositol-specific phospholipase C and diacylglycerol lipase in centrally administered histamine-induced adrenomedullary outflow in rats. Eur J Pharmacol. 2007;571:138-44.
  • Referans53 Ea Kim L, Sercombe R, Oudart N. Relaxation of rabbit middle cerebral arteries in vitro by H1 histaminergic agonists is inhibited by indomethacin and tranylcypromine. Fundam Clin Pharmacol. 1988;2:463–475.

Effect of Long-Term Centrally Injected Histamine and Its Receptors Antagonist on The Hypothalamic Cyclooxygenase and Lipoxygenase Enzymes in Rats

Year 2019, Volume: 38 Issue: 2, 10 - 16, 18.12.2019
https://doi.org/10.30782/jrvm.606895

Abstract

The current study was designed to determine the effect of centrally chronic-administrated
histamine and histaminergic receptors antagonist on the hypothalamic
cyclooxygenase (COX) and lipoxygenase (LOX) enzymes amount.



Studies were performed in male Sprague–Dawley rats. Histamine (100 nmol),
histaminergic H1 receptor antagonist chlorpheniramine (100 nmol), histaminergic
H2 receptor antagonist ranitidine (100 nmol) or histaminergic H3/H4 receptor
antagonist thioperamide (100 nmol) was injected intracerebroventricularly for 7
days. Central chronic histamine treatment caused an increase in all three
enzymes amount in the hypothalamus. Histaminergic receptors antagonist chronic-treatments
with chlorpheniramine, ranitidine and thioperamide produced to decrease in
hypothalamic COX-1 amount and to increase in hypothalamic COX-2 and LOX
amounts.



In conclusion, our findings show that the central histaminergic
system has a potential for effect the central COX and LOX pathways. This could
be interpreted that central histaminergic and central COX and LOX pathways have
an interaction to regulate in many central nervous system functions.

References

  • Referans1 Haas HL, Sergeeva OA, Selbach O. Histamine in the Nervous System. Physiol Rev. 2008;88:1183–1241.
  • Referans2 Brown RE, Stevens DR, Haas HL. The physiology of brain histamine. Prog Neurobiol. 2001;63:637–672.
  • Referans3 Yalcin M, Savci V. J. Jochem Involvement of the cholinergic system in the central histamine-induced reversal of critical haemorrhagic hypotension in rats J Physiol Pharmacol. 2009;60:133-137.
  • Referans4 Altinbas B, Yilmaz MS, Savci V, et al. Centrally injected histamine increases posterior hypothalamic acetylcholine release in hemorrhage-hypotensive rats. Auton Neurosci. 2015;187:63–69.
  • Referans5 Altinbas B, Guvenc G, Erkan LG, et al. Histamine restores hemorrhage induced hypotension by activating cholinergic neurons in nucleus tractus solitarius. Brain Res. 2016;1649:132–140.
  • Referans6 Schwartz JC, Arrang JM, Garbarg M, et al. Histaminergic transmission in the mammalian brain. Physiol Rev. 1991;71:1–51.
  • Referans7 Bugajski J, Janusz Z. Central histaminergic stimulation of pituitary-adrenocortical response in the rat. Life Sci. 1983;33:1179–1189.
  • Referans8 Knigge U, Warberg J. Neuroendocrine functions of histamine. Agents Actions Suppl. 1991;33:29-53.
  • Referans9 Kjaer A, Larsen PJ, Knigge U, et al. Histaminergic activation of the hypothalamic-pituitary-adrenal axis. Endocrinology. 1994;135:1171-1177.
  • Referans10 Kjaer U, Knigge FW, Bach J, et al. Histamine- and stress-induced secretion of ACTH and beta-endorphin: involvement of corticotropin-releasing hormone and vasopressin. Neuroendocrinology. 1992;56:419-428.
  • Referans11 Mitsuma T, De Heng S, Nogimori T, et al. Effect of histamine and its blockers on plasma beta-endorphin-like immunoreactivity in rats. Endocrinol Exp. 1987;21:95-102.
  • Referans12 Knigge UP. Histaminergic regulation of prolactin secretion. Dan Med Bull. 1990;37:109-124.
  • Referans13 Radacs M, Galfi M, Juhasz A, et al. Histamine-induced enhancement of vasopressin and oxytocin secretion in rat neurohypophyseal tissue cultures. Regul Pept. 2006;134:82-88.
  • Referans14 Knigge U, Warberg J. The role of histamine in the neuroendocrine regulation of pituitary hormone secretion. Acta Endocrinol. 1991;124:609–619.
  • Referans15 Niaz N, Guvenc G, Altinbas B, et al. Intracerebroventricular injection of histamine induces the hypothalamic-pituitary-gonadal axis activation in male rats. Brain Res. 2018;1699:150-157.
  • Referans16 Jochem J. Cardiovascular effects of histamine administered intracerebroventricularly in critical haemorrhagic hypotension in rats. J Physiol Pharmacol. 2000;51:229–239.
  • Referans17 Jochem J. Central histamine-induced reversal of haemorrhagic shock versus volume resuscitation in rats. Inflamm Res. 2002;51:57–58.
  • Referans18 Jochem J. Endogenous central histamine-induced reversal of critical hemorrhagic hypotension in rats: studies with L-histidine. Shock. 2003;20:332–337.
  • Referans19 Attwell D, Miller B, Sarantis M. Arachidonic acid as a messenger in the central nervous system. Semin Neurosci. 1993;5:159-169.
  • Referans20 Bosetti F. Arachidonic acid metabolism in brain physiology and pathology: lessons from genetically altered mouse models J Neurochem. 2007;102:577-586.
  • Referans21 Katsuki H, Okuda S. Arachidonic acid as a neurotoxic and neurotrophic substance. Prog Neurobiol. 1995;46:607-636.
  • Referans22 Aydin C, Yalcin M. Peripheral mechanisms involved in the pressor and bradycardic effects of centrally administered arachidonic acid. Prostaglandins Leukot Essent Fatty Acids. 2008;78:361-368.
  • Referans23 Altinbas B, Topuz BB, İlhan T, et al. Activation of the central histaminergic system mediates arachidonic-acid-induced cardiovascular effects. Can J Physiol Pharmacol. 2014;92:645-654.
  • Referans24 Yalcin M. Central mechanism underlying pressor and bradycardic effect of intracerebroventricularly injected arachidonic acid. Can J Physiol Pharmacol. 2011;89:127-133.
  • Referans25 Yalcin M, Aydin C. Cardiovascular effects of centrally administered arachidonic acid in haemorrhage-induced hypotensive rats: investigation of a peripheral mechanism. Clin Exp Pharmacol Physiol. 2009;36:447-45.
  • Referans26 Yalcin M, Aydin C. The role of the central arachidonic acid-thromboxane A2 cascade in cardiovascular regulation during hemorrhagic shock in rats. Prostaglandins Leukot Essent Fatty Acids. 2011;85:61-66.
  • Referans27 Erkan LG, Guvenc G, Altinbas B, et al. The effects of centrally injected arachidonic acid on respiratory system: involvement of cyclooxygenase to thromboxane signaling pathway. Respir Physiol Neurobiol. 2016;225:1-7.
  • Referans28 Erkan LG, Altinbas B, Guvenc G, et al. The acute cardiorespiratory effects of centrally injected arachidonic acid; the mediation of prostaglandin E, D and F2α. Respir Physiol Neurobiol. 2017;242:117-124.
  • Referans29 Erkan LG, Altinbas B, Guvenc G, et al. Brain thromboxane A2 via arachidonic acid cascade induces the hypothalamic-pituitary-gonadal axis activation in rats. Auton Neurosci. 2015;189:50-55.
  • Referans30 Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates Fourth Edition. Academic Press, New York. 2005.
  • Referans31 Jochem J, Savci V, Filiz N, et al. Involvement of the histaminergic system in cytidine 5’-diphosphocholine-induced reversal of critical haemorrhagic hypotension in rats. J Physiol Pharmacol. 2010;61:37–43.
  • Referans32 Yokotani K, Wang M, Murakami Y, et al. Brain phospholipase A2-arachidonic acid cascade is involved in the activation of central sympatho-adrenomedullary outflow in rats. Eur J Pharmacol. 2000;398:341-347.
  • Referans33 Yalcin M, Ak F, Erturk M. The role of the central thromboxane A2 in cardiovascular effects of a phospholipase A2 activator melittin administrated intracerebroventricularly in normotensive conscious rats. Neuropetides. 2006;40:207-212.
  • Referans34 Yalcin M, Savci V. Cardiovascular effects of centrally injected melittin in hemorrhaged hypotensive rats: the investigation of peripheral mechanisms. Neuropeptides. 2007;41:465-475.
  • Referans35 Altinbas B, Topuz BB, Yilmaz MS, et al. The mediation of the central histaminergic system in the pressor effect of intracerebroventricularly injected melittin, a phospholipase A2 activator, in normotensive rats. Prostaglandins Leukot Essent Fatty Acids. 2012;87:153-158.
  • Referans36 Yalcin M, Savci V. Restoration of blood pressure by centrally injected U-46619, a thromboxane A2 analog, in haemorhaged hypotensive rats: investigation of different brain areas. Pharmacology. 2004;70:177-187.
  • Referans37 Yalcin M, Cavun S, Yilmaz MS, et al. Involvement of brain thromboxane A2 in hypotension induced by haemorrhagein rats. Clin Exp Pharmcol Physiol. 2005;32:960-967.
  • Referans38 Siren AL. Central cardiovascular and thermal effects of prostaglandin E2 in rats. Acta Physiol Scand. 1982;116:229-234.
  • Referans39 Siren AL. Central cardiovascular and thermal effects of prostaglandin D2 in rats. Prostaglandins Leukot Med. 1982;8:349-359.
  • Referans40 Ariumi H, Takano Y, Masumi A, et al. Roles of the central prostaglandin EP3 receptors in cardiovascular regulation in rats. Neurosci Lett. 2002;324:61-64.
  • Referans41 Siren AL. Differences in the central actions of arachidonic acid and prostaglandin F2α between spontaneously hypertensive and normotensive rats. Life Sci. 1982;30:503-513.
  • Referans42 Leffler CW, Busija DW. Prostanoids in cortical subarachnoid cerebrospinal fluid and pial arterial diameter in newborn pigs. Circ Res. 1985;57:689–694.
  • Referans43 Leffler CW, Busija DW, Beasley DG, et al. Maintenance of cerebral circulation during hemorrhagic hypotension in newborn pigs: role of prostanoids. Circ Res. 1986;59:562–567.
  • Referans44 Bucci MN, Black KL, Hoff JT. Arachidonic acid metabolite production following focal cerebral ischemia: time course and effect of meclofenamate. Surg Neurol. 1990;33:12–14.
  • Referans45 Panula P, Pirvola U, Auvienin MS, et al. Histamine immunoreactive nerve fibres in the rat brain. Neuroscience. 1989;28:585–610.
  • Referans46 Arrang JM. Pharmacological properties of histamine receptor subtypes. Cell Mol Biol. 1994;40:273–279.
  • Referans47 Leurs R, Smit MJ, Timmerman H. Molecular pharmacological aspects of histamine receptors. Pharmacol Ther. 1995;66:413–463.
  • Referans48 Van der Goot H, Timmerman H. Selective ligands as tools to study histamine receptors. Eur J Med Chem. 2000;35:5–20.
  • Referans49 Bugajski AJ, Thor P, Glod R, et al. Influence of cyclooxygenase inhibitors on the central histaminergic stimulations of hypothalamic–pituitary–adrenal axis. J Physiol Pharmacol. 2003;54:643–652.
  • Referans50 Karlstedt K, Senkas A, Ahman M, et al. Regional expression of the histamine H2 receptor in adult and developing rat brain. Neuroscience. 2001;102:201–208.
  • Referans51 Shimizu T, Okada S, Yamaguchi N, et al. Centrally administered histamine evokes the adrenal secretion of noradrenaline and adrenaline by brain cyclooxygenase-1- and thromboxane A2-mediated mechanisms in rats. Eur J Pharmacol. 2006;541:152–157.
  • Referans52 Shimizu T, Yamaguchi N, Okada S, et al. Roles of brain phosphatidylinositol-specific phospholipase C and diacylglycerol lipase in centrally administered histamine-induced adrenomedullary outflow in rats. Eur J Pharmacol. 2007;571:138-44.
  • Referans53 Ea Kim L, Sercombe R, Oudart N. Relaxation of rabbit middle cerebral arteries in vitro by H1 histaminergic agonists is inhibited by indomethacin and tranylcypromine. Fundam Clin Pharmacol. 1988;2:463–475.
There are 53 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Research Articles
Authors

Aysenur Baş 0000-0002-7825-4823

Gokcen Guvenc Bayram This is me 0000-0002-1413-3651

Burcin Altinbas

Ebru Ozyurt 0000-0003-1591-510X

Ebru Yalcin 0000-0003-1756-1288

Burcu Erbaykent Tepedelen This is me 0000-0002-9565-6349

Figen Ersoy 0000-0003-2267-069X

Murat Yalçın 0000-0002-5600-8162

Publication Date December 18, 2019
Acceptance Date October 1, 2019
Published in Issue Year 2019 Volume: 38 Issue: 2

Cite

APA Baş, A., Guvenc Bayram, G., Altinbas, B., Ozyurt, E., et al. (2019). Effect of Long-Term Centrally Injected Histamine and Its Receptors Antagonist on The Hypothalamic Cyclooxygenase and Lipoxygenase Enzymes in Rats. Journal of Research in Veterinary Medicine, 38(2), 10-16. https://doi.org/10.30782/jrvm.606895
AMA Baş A, Guvenc Bayram G, Altinbas B, Ozyurt E, Yalcin E, Erbaykent Tepedelen B, Ersoy F, Yalçın M. Effect of Long-Term Centrally Injected Histamine and Its Receptors Antagonist on The Hypothalamic Cyclooxygenase and Lipoxygenase Enzymes in Rats. J Res Vet Med. December 2019;38(2):10-16. doi:10.30782/jrvm.606895
Chicago Baş, Aysenur, Gokcen Guvenc Bayram, Burcin Altinbas, Ebru Ozyurt, Ebru Yalcin, Burcu Erbaykent Tepedelen, Figen Ersoy, and Murat Yalçın. “Effect of Long-Term Centrally Injected Histamine and Its Receptors Antagonist on The Hypothalamic Cyclooxygenase and Lipoxygenase Enzymes in Rats”. Journal of Research in Veterinary Medicine 38, no. 2 (December 2019): 10-16. https://doi.org/10.30782/jrvm.606895.
EndNote Baş A, Guvenc Bayram G, Altinbas B, Ozyurt E, Yalcin E, Erbaykent Tepedelen B, Ersoy F, Yalçın M (December 1, 2019) Effect of Long-Term Centrally Injected Histamine and Its Receptors Antagonist on The Hypothalamic Cyclooxygenase and Lipoxygenase Enzymes in Rats. Journal of Research in Veterinary Medicine 38 2 10–16.
IEEE A. Baş, “Effect of Long-Term Centrally Injected Histamine and Its Receptors Antagonist on The Hypothalamic Cyclooxygenase and Lipoxygenase Enzymes in Rats”, J Res Vet Med, vol. 38, no. 2, pp. 10–16, 2019, doi: 10.30782/jrvm.606895.
ISNAD Baş, Aysenur et al. “Effect of Long-Term Centrally Injected Histamine and Its Receptors Antagonist on The Hypothalamic Cyclooxygenase and Lipoxygenase Enzymes in Rats”. Journal of Research in Veterinary Medicine 38/2 (December 2019), 10-16. https://doi.org/10.30782/jrvm.606895.
JAMA Baş A, Guvenc Bayram G, Altinbas B, Ozyurt E, Yalcin E, Erbaykent Tepedelen B, Ersoy F, Yalçın M. Effect of Long-Term Centrally Injected Histamine and Its Receptors Antagonist on The Hypothalamic Cyclooxygenase and Lipoxygenase Enzymes in Rats. J Res Vet Med. 2019;38:10–16.
MLA Baş, Aysenur et al. “Effect of Long-Term Centrally Injected Histamine and Its Receptors Antagonist on The Hypothalamic Cyclooxygenase and Lipoxygenase Enzymes in Rats”. Journal of Research in Veterinary Medicine, vol. 38, no. 2, 2019, pp. 10-16, doi:10.30782/jrvm.606895.
Vancouver Baş A, Guvenc Bayram G, Altinbas B, Ozyurt E, Yalcin E, Erbaykent Tepedelen B, Ersoy F, Yalçın M. Effect of Long-Term Centrally Injected Histamine and Its Receptors Antagonist on The Hypothalamic Cyclooxygenase and Lipoxygenase Enzymes in Rats. J Res Vet Med. 2019;38(2):10-6.