Review
BibTex RIS Cite
Year 2022, , 83 - 92, 28.12.2022
https://doi.org/10.55195/jscai.1216892

Abstract

References

  • N. Kabay, E. Güler, and M. Bryjak, “Boron in seawater and methods for its separation - A review,” Desalination, vol. 261, no. 3, pp. 212–217, 2010, doi: 10.1016/j.desal.2010.05.033.
  • E. MEYDAN, “Boron Compounds With Magnetic Properties and Their Application Areas in Industry,” J. Sci. Perspect., vol. 3, no. 1, pp. 11–20, Feb. 2019, doi: 10.26900/jsp.3.002.
  • K. M. Kadish, K. M. Smith, and R. Guilard, The Porphyrin Handbook: Inorganic, organometallic and coordination chemistry, vol. 7. 2000.
  • D. E. Garrett, “Borate Minerals and the Origin of Borate Deposits,” in Borates, vol. 36, no. 05, Elsevier, 1998, pp. 1–50. doi: 10.1016/B978-012276060-0/50002-4.
  • H. Çelikkan, M. Şahin, M. L. Aksu, and T. Nejat Veziroǧlu, “The investigation of the electrooxidation of sodium borohydride on various metal electrodes in aqueous basic solutions,” Int. J. Hydrogen Energy, vol. 32, no. 5, pp. 588–593, Apr. 2007, doi: 10.1016/j.ijhydene.2006.06.065.
  • E. T. Sandall, J. Kalman, J. N. Quigley, S. Munro, and T. D. Hedman, “A study of solid ramjet fuel containing boron–magnesium mixtures,” Propuls. Power Res., vol. 6, no. 4, pp. 243–252, 2017, doi: 10.1016/j.jppr.2017.11.004.
  • E. Larsson, P. Olander, and S. Jacobson, “Boric acid as fuel additive – Friction experiments and reflections around its effect on fuel saving,” Tribol. Int., vol. 128, pp. 302–312, Dec. 2018, doi: 10.1016/j.triboint.2018.07.004.
  • A. Eslami, S. G. Hosseini, and S. M. Pourmortazavi, “Thermoanalytical investigation on some boron-fuelled binary pyrotechnic systems,” Fuel, vol. 87, no. 15–16, pp. 3339–3343, Nov. 2008, doi: 10.1016/j.fuel.2008.05.020.
  • X. tian feng E et al., “Jet fuel containing ligand-protecting energetic nanoparticles: A case study of boron in JP-10,” Chem. Eng. Sci., vol. 129, pp. 9–13, Jun. 2015, doi: 10.1016/j.ces.2015.02.018.
  • H. Ji et al., “Silicotungstic acid immobilized on lamellar hexagonal boron nitride for oxidative desulfurization of fuel components,” Fuel, vol. 213, pp. 12–21, Feb. 2018, doi: 10.1016/j.fuel.2017.08.076.
  • Y. Zhu, S. Gao, and N. S. Hosmane, “Boron-enriched advanced energy materials,” Inorganica Chimica Acta, vol. 471. Elsevier S.A., pp. 577–586, Feb. 24, 2018. doi: 10.1016/j.ica.2017.11.037.
  • S. Z. Li and X. J. Liu, “Development of boron tracking and boron hideout (CRUD) model based on subchannel approach,” Nucl. Eng. Des., vol. 338, pp. 166–175, Nov. 2018, doi: 10.1016/j.nucengdes.2018.08.023.
  • W. D. Tennyson et al., “Bottom up synthesis of boron-doped graphene for stable intermediate temperature fuel cell electrodes,” Carbon N. Y., vol. 123, pp. 605–615, Oct. 2017, doi: 10.1016/j.carbon.2017.08.002.
  • F. J. Owens, “Prediction of electrocatalytic activity of boron nanostructures,” Chem. Phys. Lett., vol. 691, pp. 131–134, Jan. 2018, doi: 10.1016/j.cplett.2017.11.007.
  • Y. Gan, Y. S. Lim, and L. Qiao, “Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations,” Combust. Flame, vol. 159, no. 4, pp. 1732–1740, Apr. 2012, doi: 10.1016/j.combustflame.2011.12.008.
  • S. A. Hashim, S. Karmakar, A. Roy, and S. K. Srivastava, “Regression rates and burning characteristics of boron-loaded paraffin-wax solid fuels in ducted rocket applications,” Combust. Flame, vol. 191, pp. 287–297, May 2018, doi: 10.1016/j.combustflame.2018.01.018.
  • B. Pajot, A. Chari, M. Aucouturier, M. Astier, and A. Chantre, “Experimental evidence for boron-hydrogen interaction in boron-doped silicon passivated with hydrogen,” Solid State Commun., vol. 67, no. 9, pp. 855–858, Sep. 1988, doi: 10.1016/0038-1098(88)90117-2.
  • K. L. Chintersingh, M. Schoenitz, and E. L. Dreizin, “Boron doped with iron: Preparation and combustion in air,” Combust. Flame, vol. 200, pp. 286–295, Feb. 2019, doi: 10.1016/j.combustflame.2018.11.031.
  • M. Du and G. Li, “Preparation of silane-capped boron nanoparticles with enhanced dispersibility in hydrocarbon fuels,” Fuel, vol. 194, pp. 75–82, 2017, doi: 10.1016/j.fuel.2017.01.001.
  • Y. Pal and V. R. Kumar, “Thermal decomposition study of paraffin based hybrid rocket fuel containing Aluminum and Boron additives,” Thermochim. Acta, vol. 655, pp. 63–75, Sep. 2017, doi: 10.1016/j.tca.2017.06.002.
  • O. V. Klimov et al., “CoMoB/Al2O3 catalysts for hydrotreating of diesel fuel. The effect of the way of the boron addition to a support or an impregnating solution,” Catal. Today, vol. 305, pp. 192–202, May 2018, doi: 10.1016/j.cattod.2017.07.004.
  • P. K. Ojha and S. Karmakar, “Boron for liquid fuel Engines-A review on synthesis, dispersion stability in liquid fuel, and combustion aspects,” Prog. Aerosp. Sci., vol. 100, pp. 18–45, 2018, doi: 10.1016/j.paerosci.2018.05.003.
  • D. Liang, R. Xiao, J. Liu, and Y. Wang, “Ignition and heterogeneous combustion of aluminum boride and boron–aluminum blend,” Aerosp. Sci. Technol., vol. 84, pp. 1081–1091, Jan. 2019, doi: 10.1016/j.ast.2018.11.046.
  • T. A. Saleh, S. A. AL-Hammadi, and A. M. Al-Amer, “Effect of boron on the efficiency of MoCo catalysts supported on alumina for the hydrodesulfurization of liquid fuels,” Process Saf. Environ. Prot., vol. 121, pp. 165–174, Jan. 2019, doi: 10.1016/j.psep.2018.10.019.
  • C. Zheng, “Examining the Benefits of Using Boron Compounds in Lithium Batteries: A Comprehensive Review of Literature,” Batteries, vol. 8, no. 10. MDPI, Oct. 01, 2022. doi: 10.3390/batteries8100187.
  • A. M. Alexander and J. S. J. Hargreaves, “Alternative catalytic materials: carbides, nitrides, phosphides and amorphous boron alloys,” Chem. Soc. Rev., vol. 39, no. 11, pp. 4388–4401, 2010, doi: 10.1039/b916787k.
  • N. S. Hosmane, Ed., Boron Science. CRC Press, 2016. doi: 10.1201/b11199.
  • R. N. Muthu, S. Rajashabala, and R. Kannan, “Hydrogen storage performance of lithium borohydride decorated activated hexagonal boron nitride nanocomposite for fuel cell applications,” Int. J. Hydrogen Energy, vol. 42, no. 23, pp. 15586–15596, Jun. 2017, doi: 10.1016/j.ijhydene.2017.04.240.
  • L. Vinet and A. Zhedanov, A “missing” family of classical orthogonal polynomials, vol. 44, no. 8. Springer, 2011. doi: 10.1088/1751-8113/44/8/085201.
  • J. J. Croat, Rapidly solidified neodymium-iron-boron permanent magnets. Elsevier, 2017. doi: 10.1016/C2016-0-04355-3.
  • A. W. Thornton, A. Ahmed, M. Mainak, H. B. Park, and A. J. Hill, Ultrafast transport in nanotubes and nanosheets. CRC Press, 2015. doi: 10.1201/b18073.
  • Gerhart K. Gaulé, Boron: Volume 2: Preparation, Properties, and Applications. Springer, 2013. [Online]. Available: https://books.google.com.tr/books?id=GHgECAAAQBAJ&dq=%5B33%5D.%09Gaulé,+G.+K.+(2013).+Boron:+Volume+2:+Preparation,+Properties,+and+Applications.+Springer.&lr=&hl=tr&source=gbs_navlinks_s
  • D. She, J. Zhang, B. Xia, C. Wei, F. Li, and X. Jing, “Study on OTTO fueling schemes of the HTR-PM with boron burnable particles,” Nucl. Eng. Des., vol. 329, pp. 198–203, Apr. 2018, doi: 10.1016/j.nucengdes.2017.09.011.
  • A. Demirbaş, “Hydrogen and boron as recent alternative motor fuels,” Energy Sources, vol. 27, no. 8, pp. 741–748, Jun. 2005, doi: 10.1080/00908310490450836.
  • M. Balat, “Boron as an alternate engine fuel,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 29, no. 1, pp. 79–83, Jan. 2007, doi: 10.1080/009083190934013.
  • H. Su, H. Wen, X. Zheng, and J. Su, “Development of a Super High Efficiency Motor with Boron Aluminum Alloy Rotor,” Procedia Eng., vol. 174, pp. 1221–1228, 2017, doi: 10.1016/j.proeng.2017.01.288.
  • Y. Kimura, T. Wakabayashi, K. Okada, T. Wada, and H. Nishikawa, “Boron nitride as a lubricant additive,” 1999. doi: 10.1016/S0043-1648(99)00146-5.
  • F. Mahvash, E. Paradis, D. Drouin, T. Szkopek, and M. Siaj, “Space-Charge Limited Transport in Large-Area Monolayer Hexagonal Boron Nitride,” Nano Lett., vol. 15, no. 4, pp. 2263–2268, Apr. 2015, doi: 10.1021/nl504197c.
  • M. I. H. Chua Abdullah, M. F. Bin Abdollah, N. Tamaldin, H. Amiruddin, and N. R. M. Nuri, “Effect of hexagonal boron nitride nanoparticles as an additive on the extreme pressure properties of engine oil,” Ind. Lubr. Tribol., vol. 68, no. 4, pp. 441–445, Jun. 2016, doi: 10.1108/ILT-10-2015-0157.
  • A. Hosokawa, K. Takagi, T. Kuriiwa, Y. Inoue, and K. Ozaki, “Severe plastic deformation of Nd-Fe-B nanocomposite magnets at room temperature,” J. Magn. Magn. Mater., vol. 473, pp. 51–60, Mar. 2019, doi: 10.1016/j.jmmm.2018.10.032.
  • D. Prosperi et al., “Performance comparison of motors fitted with magnet-to-magnet recycled or conventionally manufactured sintered NdFeB,” J. Magn. Magn. Mater., vol. 460, pp. 448–453, Aug. 2018, doi: 10.1016/j.jmmm.2018.04.034.
  • A. Walton et al., “The use of hydrogen to separate and recycle neodymium-iron-boron-type magnets from electronic waste,” J. Clean. Prod., vol. 104, pp. 236–241, Oct. 2015, doi: 10.1016/j.jclepro.2015.05.033.
  • H. Jin, B. D. Song, Y. Yih, and J. W. Sutherland, “A bi-objective network design for value recovery of neodymium-iron-boron magnets: A case study of the United States,” J. Clean. Prod., vol. 211, pp. 257–269, Feb. 2019, doi: 10.1016/j.jclepro.2018.11.101.
  • Z. Xiang, C. Xu, T. Wang, Y. Song, H. Yang, and W. Lu, “Enhanced magnetization and energy product in isotropic nanocrystalline Mn55Al45 alloys with boron doping,” Intermetallics, vol. 101, pp. 13–17, Oct. 2018, doi: 10.1016/j.intermet.2018.07.003.
  • E. Aradi, S. R. Naidoo, F. Cummings, I. Motochi, and T. E. Derry, “Cross-sectional transmission electron microscopy studies of boron ion implantation in hexagonal boron nitride,” Diam. Relat. Mater., vol. 92, pp. 168–173, Feb. 2019, doi: 10.1016/j.diamond.2018.12.020.
  • M. Mehedi, Y. Jiang, B. Ma, and J. P. Wang, “Nitriding and martensitic phase transformation of the copper and boron doped iron nitride magnet,” Acta Mater., vol. 167, pp. 80–88, Apr. 2019, doi: 10.1016/j.actamat.2019.01.034.
  • M. Li et al., “Texture and microstructure improvement of hot-deformed magnets with platelet-like nano h-BN addition,” Scr. Mater., vol. 152, pp. 127–131, Jul. 2018, doi: 10.1016/j.scriptamat.2018.04.032.
  • A. Nordelöf, E. Grunditz, S. Lundmark, A. M. Tillman, M. Alatalo, and T. Thiringer, “Life cycle assessment of permanent magnet electric traction motors,” Transp. Res. Part D Transp. Environ., vol. 67, pp. 263–274, Feb. 2019, doi: 10.1016/j.trd.2018.11.004.
  • D. Wang, J. Zhou, J. Li, X. Jiang, Y. Wang, and F. Gao, “Cobalt-boron nanoparticles anchored on graphene as anode of lithium ion batteries,” Chem. Eng. J., vol. 360, pp. 271–279, Mar. 2019, doi: 10.1016/j.cej.2018.11.238.
  • C. Cummings, Brent C. (Lyons, “Radiation shielding for spacecraft components.” US Patent, 1994. [Online]. Available: https://www.freepatentsonline.com/5324952.pdf
  • C. G. Pope, “X-ray diffraction and the bragg equation,” J. Chem. Educ., vol. 74, no. 1, pp. 129–131, 1997, doi: 10.1021/ed074p129.
  • X. G. Chen, G. Dube, and N. Steward, “Neutron absorption effectiveness for boron content aluminum materials,” 2008 [Online]. Available: https://patents.google.com/patent/US20080050270A1/en
  • Guy M. Decroix, Dominique Gosset, and Bernard Kryger, “Neutron-absorbing material and its production process,” 5590393, 1996 [Online]. Available: https://patentimages.storage.googleapis.com/79/ee/7c/3ecaae91b80ee6/US5590393.pdf
  • A. K. Suri, C. Subramanian, J. K. Sonber, and T. S. R. Ch Murthy, “Synthesis and consolidation of boron carbide: A review,” International Materials Reviews, vol. 55, no. 1. pp. 4–38, Jan. 2010. doi: 10.1179/095066009X12506721665211.
  • D. Simeone, X. Deschanels, P. Cheminant, and P. Herter, “Behaviour of Different Boron Rich Solids as Promising Absorbers for PWR,” in Control Assemble Materials for water reactors: Experience, performance and perspectives, 2000, pp. 103–106. [Online]. Available: http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/31/008/31008489.pdf
  • B. Rebensdorff and G. Bart, “Material Operating Behaviour of ABB BWR Control Rods,” in Control Assemble Materials for water reactors: Experience, performance and perspectives, 2000, pp. 65–76. [Online]. Available: https://inis.iaea.org/collection/NCLCollectionStore/_Public/31/008/31008486.pdf
  • A. G. Ruggiero, “Nuclear fusion of protons with ions of boron,” in Il Nuovo Cimento A, 1993, vol. 106, no. 12, pp. 1959–1963. doi: 10.1007/BF02780602.
  • T. S. R. C. M. C.Subramanian, A.K.Suri, “Development of Boron-based materials for nuclear applications,” in Technology Development Article, 2010, no. 313, pp. 14–22.
  • J. T. A. Roberts, Structural Materials in Nuclear Power Systems, vol. 80, no. 1. Boston, MA: Springer US, 1981. doi: 10.1007/978-1-4684-7194-6.
  • G. I. Risovany, V. D., Zakharov, A. V., Klochkov, E. P., Osipenko, A. G., Kosulin, N. S., & Mikhailichenko, “Reprocessing of the irradiated boron carbide enriched by boron-10 isotope and its reuse in the control rods of the fast breeder reactors,” Int. At. Energy Agency, IAEA-TECDOC--884, vol. 4, no. June, pp. 47–52, 1996, [Online]. Available: http://link.springer.com/10.1007/978-1-4684-7194-6
  • V. Troyanov, A. Pomeschikov, V. Sougonjaev, V. Ponomarkenko, and A. Scheglov, “High Temperature Study of the Control Rod Behaviour Under Accident Conditions,” Control Assem. Mater. water React. Exp. Perform. Perspect., pp. 245–258, 1998, [Online]. Available: https://www.ptonline.com/articles/how-to-get-better-mfi-results
  • P. O. K. V.G. DATE, “Status of control assembly materials in Indian water reactors,” Cycle, no. December, pp. 40–55, 1993, [Online]. Available: carden, RA. 1997.Metal matrix compositions for neutron shielding applications. Patent 5,700,962.

The Critical Significance of Boron Mine in Future Energy Technologies

Year 2022, , 83 - 92, 28.12.2022
https://doi.org/10.55195/jscai.1216892

Abstract

The boron element forms more than 600 compounds with different element roots and shows very different properties. Boron compounds with these different properties deserve to be the most crucial strategic feature in the world as they meet the demands above the targeted standards in industries such as energy, structure, chemistry, weapons, and space. Today, the industries of developed countries have begun to take advantage of these energy sources due to the reduction of fossil energy resources, the inability of the industry to store enough electricity for an entire facility, and the limitations imposed on environmental policies. Developing countries continue to use fossil resources, but health and environmental costs are increasing. Whether they are developed or developing countries, they have attached importance to the research of energy systems that can replace fossil energy systems, which are environmentally friendly, sustainable, and high-performance. Boron has an essential role in the energy field for the isolation, high energy value retention, fuel and ion batteries, solar panels, and high-temperature transistors. In this study, the desired properties of boron compounds in energy studies were investigated by considering the positive effects of boron on the energy demand.

References

  • N. Kabay, E. Güler, and M. Bryjak, “Boron in seawater and methods for its separation - A review,” Desalination, vol. 261, no. 3, pp. 212–217, 2010, doi: 10.1016/j.desal.2010.05.033.
  • E. MEYDAN, “Boron Compounds With Magnetic Properties and Their Application Areas in Industry,” J. Sci. Perspect., vol. 3, no. 1, pp. 11–20, Feb. 2019, doi: 10.26900/jsp.3.002.
  • K. M. Kadish, K. M. Smith, and R. Guilard, The Porphyrin Handbook: Inorganic, organometallic and coordination chemistry, vol. 7. 2000.
  • D. E. Garrett, “Borate Minerals and the Origin of Borate Deposits,” in Borates, vol. 36, no. 05, Elsevier, 1998, pp. 1–50. doi: 10.1016/B978-012276060-0/50002-4.
  • H. Çelikkan, M. Şahin, M. L. Aksu, and T. Nejat Veziroǧlu, “The investigation of the electrooxidation of sodium borohydride on various metal electrodes in aqueous basic solutions,” Int. J. Hydrogen Energy, vol. 32, no. 5, pp. 588–593, Apr. 2007, doi: 10.1016/j.ijhydene.2006.06.065.
  • E. T. Sandall, J. Kalman, J. N. Quigley, S. Munro, and T. D. Hedman, “A study of solid ramjet fuel containing boron–magnesium mixtures,” Propuls. Power Res., vol. 6, no. 4, pp. 243–252, 2017, doi: 10.1016/j.jppr.2017.11.004.
  • E. Larsson, P. Olander, and S. Jacobson, “Boric acid as fuel additive – Friction experiments and reflections around its effect on fuel saving,” Tribol. Int., vol. 128, pp. 302–312, Dec. 2018, doi: 10.1016/j.triboint.2018.07.004.
  • A. Eslami, S. G. Hosseini, and S. M. Pourmortazavi, “Thermoanalytical investigation on some boron-fuelled binary pyrotechnic systems,” Fuel, vol. 87, no. 15–16, pp. 3339–3343, Nov. 2008, doi: 10.1016/j.fuel.2008.05.020.
  • X. tian feng E et al., “Jet fuel containing ligand-protecting energetic nanoparticles: A case study of boron in JP-10,” Chem. Eng. Sci., vol. 129, pp. 9–13, Jun. 2015, doi: 10.1016/j.ces.2015.02.018.
  • H. Ji et al., “Silicotungstic acid immobilized on lamellar hexagonal boron nitride for oxidative desulfurization of fuel components,” Fuel, vol. 213, pp. 12–21, Feb. 2018, doi: 10.1016/j.fuel.2017.08.076.
  • Y. Zhu, S. Gao, and N. S. Hosmane, “Boron-enriched advanced energy materials,” Inorganica Chimica Acta, vol. 471. Elsevier S.A., pp. 577–586, Feb. 24, 2018. doi: 10.1016/j.ica.2017.11.037.
  • S. Z. Li and X. J. Liu, “Development of boron tracking and boron hideout (CRUD) model based on subchannel approach,” Nucl. Eng. Des., vol. 338, pp. 166–175, Nov. 2018, doi: 10.1016/j.nucengdes.2018.08.023.
  • W. D. Tennyson et al., “Bottom up synthesis of boron-doped graphene for stable intermediate temperature fuel cell electrodes,” Carbon N. Y., vol. 123, pp. 605–615, Oct. 2017, doi: 10.1016/j.carbon.2017.08.002.
  • F. J. Owens, “Prediction of electrocatalytic activity of boron nanostructures,” Chem. Phys. Lett., vol. 691, pp. 131–134, Jan. 2018, doi: 10.1016/j.cplett.2017.11.007.
  • Y. Gan, Y. S. Lim, and L. Qiao, “Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations,” Combust. Flame, vol. 159, no. 4, pp. 1732–1740, Apr. 2012, doi: 10.1016/j.combustflame.2011.12.008.
  • S. A. Hashim, S. Karmakar, A. Roy, and S. K. Srivastava, “Regression rates and burning characteristics of boron-loaded paraffin-wax solid fuels in ducted rocket applications,” Combust. Flame, vol. 191, pp. 287–297, May 2018, doi: 10.1016/j.combustflame.2018.01.018.
  • B. Pajot, A. Chari, M. Aucouturier, M. Astier, and A. Chantre, “Experimental evidence for boron-hydrogen interaction in boron-doped silicon passivated with hydrogen,” Solid State Commun., vol. 67, no. 9, pp. 855–858, Sep. 1988, doi: 10.1016/0038-1098(88)90117-2.
  • K. L. Chintersingh, M. Schoenitz, and E. L. Dreizin, “Boron doped with iron: Preparation and combustion in air,” Combust. Flame, vol. 200, pp. 286–295, Feb. 2019, doi: 10.1016/j.combustflame.2018.11.031.
  • M. Du and G. Li, “Preparation of silane-capped boron nanoparticles with enhanced dispersibility in hydrocarbon fuels,” Fuel, vol. 194, pp. 75–82, 2017, doi: 10.1016/j.fuel.2017.01.001.
  • Y. Pal and V. R. Kumar, “Thermal decomposition study of paraffin based hybrid rocket fuel containing Aluminum and Boron additives,” Thermochim. Acta, vol. 655, pp. 63–75, Sep. 2017, doi: 10.1016/j.tca.2017.06.002.
  • O. V. Klimov et al., “CoMoB/Al2O3 catalysts for hydrotreating of diesel fuel. The effect of the way of the boron addition to a support or an impregnating solution,” Catal. Today, vol. 305, pp. 192–202, May 2018, doi: 10.1016/j.cattod.2017.07.004.
  • P. K. Ojha and S. Karmakar, “Boron for liquid fuel Engines-A review on synthesis, dispersion stability in liquid fuel, and combustion aspects,” Prog. Aerosp. Sci., vol. 100, pp. 18–45, 2018, doi: 10.1016/j.paerosci.2018.05.003.
  • D. Liang, R. Xiao, J. Liu, and Y. Wang, “Ignition and heterogeneous combustion of aluminum boride and boron–aluminum blend,” Aerosp. Sci. Technol., vol. 84, pp. 1081–1091, Jan. 2019, doi: 10.1016/j.ast.2018.11.046.
  • T. A. Saleh, S. A. AL-Hammadi, and A. M. Al-Amer, “Effect of boron on the efficiency of MoCo catalysts supported on alumina for the hydrodesulfurization of liquid fuels,” Process Saf. Environ. Prot., vol. 121, pp. 165–174, Jan. 2019, doi: 10.1016/j.psep.2018.10.019.
  • C. Zheng, “Examining the Benefits of Using Boron Compounds in Lithium Batteries: A Comprehensive Review of Literature,” Batteries, vol. 8, no. 10. MDPI, Oct. 01, 2022. doi: 10.3390/batteries8100187.
  • A. M. Alexander and J. S. J. Hargreaves, “Alternative catalytic materials: carbides, nitrides, phosphides and amorphous boron alloys,” Chem. Soc. Rev., vol. 39, no. 11, pp. 4388–4401, 2010, doi: 10.1039/b916787k.
  • N. S. Hosmane, Ed., Boron Science. CRC Press, 2016. doi: 10.1201/b11199.
  • R. N. Muthu, S. Rajashabala, and R. Kannan, “Hydrogen storage performance of lithium borohydride decorated activated hexagonal boron nitride nanocomposite for fuel cell applications,” Int. J. Hydrogen Energy, vol. 42, no. 23, pp. 15586–15596, Jun. 2017, doi: 10.1016/j.ijhydene.2017.04.240.
  • L. Vinet and A. Zhedanov, A “missing” family of classical orthogonal polynomials, vol. 44, no. 8. Springer, 2011. doi: 10.1088/1751-8113/44/8/085201.
  • J. J. Croat, Rapidly solidified neodymium-iron-boron permanent magnets. Elsevier, 2017. doi: 10.1016/C2016-0-04355-3.
  • A. W. Thornton, A. Ahmed, M. Mainak, H. B. Park, and A. J. Hill, Ultrafast transport in nanotubes and nanosheets. CRC Press, 2015. doi: 10.1201/b18073.
  • Gerhart K. Gaulé, Boron: Volume 2: Preparation, Properties, and Applications. Springer, 2013. [Online]. Available: https://books.google.com.tr/books?id=GHgECAAAQBAJ&dq=%5B33%5D.%09Gaulé,+G.+K.+(2013).+Boron:+Volume+2:+Preparation,+Properties,+and+Applications.+Springer.&lr=&hl=tr&source=gbs_navlinks_s
  • D. She, J. Zhang, B. Xia, C. Wei, F. Li, and X. Jing, “Study on OTTO fueling schemes of the HTR-PM with boron burnable particles,” Nucl. Eng. Des., vol. 329, pp. 198–203, Apr. 2018, doi: 10.1016/j.nucengdes.2017.09.011.
  • A. Demirbaş, “Hydrogen and boron as recent alternative motor fuels,” Energy Sources, vol. 27, no. 8, pp. 741–748, Jun. 2005, doi: 10.1080/00908310490450836.
  • M. Balat, “Boron as an alternate engine fuel,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 29, no. 1, pp. 79–83, Jan. 2007, doi: 10.1080/009083190934013.
  • H. Su, H. Wen, X. Zheng, and J. Su, “Development of a Super High Efficiency Motor with Boron Aluminum Alloy Rotor,” Procedia Eng., vol. 174, pp. 1221–1228, 2017, doi: 10.1016/j.proeng.2017.01.288.
  • Y. Kimura, T. Wakabayashi, K. Okada, T. Wada, and H. Nishikawa, “Boron nitride as a lubricant additive,” 1999. doi: 10.1016/S0043-1648(99)00146-5.
  • F. Mahvash, E. Paradis, D. Drouin, T. Szkopek, and M. Siaj, “Space-Charge Limited Transport in Large-Area Monolayer Hexagonal Boron Nitride,” Nano Lett., vol. 15, no. 4, pp. 2263–2268, Apr. 2015, doi: 10.1021/nl504197c.
  • M. I. H. Chua Abdullah, M. F. Bin Abdollah, N. Tamaldin, H. Amiruddin, and N. R. M. Nuri, “Effect of hexagonal boron nitride nanoparticles as an additive on the extreme pressure properties of engine oil,” Ind. Lubr. Tribol., vol. 68, no. 4, pp. 441–445, Jun. 2016, doi: 10.1108/ILT-10-2015-0157.
  • A. Hosokawa, K. Takagi, T. Kuriiwa, Y. Inoue, and K. Ozaki, “Severe plastic deformation of Nd-Fe-B nanocomposite magnets at room temperature,” J. Magn. Magn. Mater., vol. 473, pp. 51–60, Mar. 2019, doi: 10.1016/j.jmmm.2018.10.032.
  • D. Prosperi et al., “Performance comparison of motors fitted with magnet-to-magnet recycled or conventionally manufactured sintered NdFeB,” J. Magn. Magn. Mater., vol. 460, pp. 448–453, Aug. 2018, doi: 10.1016/j.jmmm.2018.04.034.
  • A. Walton et al., “The use of hydrogen to separate and recycle neodymium-iron-boron-type magnets from electronic waste,” J. Clean. Prod., vol. 104, pp. 236–241, Oct. 2015, doi: 10.1016/j.jclepro.2015.05.033.
  • H. Jin, B. D. Song, Y. Yih, and J. W. Sutherland, “A bi-objective network design for value recovery of neodymium-iron-boron magnets: A case study of the United States,” J. Clean. Prod., vol. 211, pp. 257–269, Feb. 2019, doi: 10.1016/j.jclepro.2018.11.101.
  • Z. Xiang, C. Xu, T. Wang, Y. Song, H. Yang, and W. Lu, “Enhanced magnetization and energy product in isotropic nanocrystalline Mn55Al45 alloys with boron doping,” Intermetallics, vol. 101, pp. 13–17, Oct. 2018, doi: 10.1016/j.intermet.2018.07.003.
  • E. Aradi, S. R. Naidoo, F. Cummings, I. Motochi, and T. E. Derry, “Cross-sectional transmission electron microscopy studies of boron ion implantation in hexagonal boron nitride,” Diam. Relat. Mater., vol. 92, pp. 168–173, Feb. 2019, doi: 10.1016/j.diamond.2018.12.020.
  • M. Mehedi, Y. Jiang, B. Ma, and J. P. Wang, “Nitriding and martensitic phase transformation of the copper and boron doped iron nitride magnet,” Acta Mater., vol. 167, pp. 80–88, Apr. 2019, doi: 10.1016/j.actamat.2019.01.034.
  • M. Li et al., “Texture and microstructure improvement of hot-deformed magnets with platelet-like nano h-BN addition,” Scr. Mater., vol. 152, pp. 127–131, Jul. 2018, doi: 10.1016/j.scriptamat.2018.04.032.
  • A. Nordelöf, E. Grunditz, S. Lundmark, A. M. Tillman, M. Alatalo, and T. Thiringer, “Life cycle assessment of permanent magnet electric traction motors,” Transp. Res. Part D Transp. Environ., vol. 67, pp. 263–274, Feb. 2019, doi: 10.1016/j.trd.2018.11.004.
  • D. Wang, J. Zhou, J. Li, X. Jiang, Y. Wang, and F. Gao, “Cobalt-boron nanoparticles anchored on graphene as anode of lithium ion batteries,” Chem. Eng. J., vol. 360, pp. 271–279, Mar. 2019, doi: 10.1016/j.cej.2018.11.238.
  • C. Cummings, Brent C. (Lyons, “Radiation shielding for spacecraft components.” US Patent, 1994. [Online]. Available: https://www.freepatentsonline.com/5324952.pdf
  • C. G. Pope, “X-ray diffraction and the bragg equation,” J. Chem. Educ., vol. 74, no. 1, pp. 129–131, 1997, doi: 10.1021/ed074p129.
  • X. G. Chen, G. Dube, and N. Steward, “Neutron absorption effectiveness for boron content aluminum materials,” 2008 [Online]. Available: https://patents.google.com/patent/US20080050270A1/en
  • Guy M. Decroix, Dominique Gosset, and Bernard Kryger, “Neutron-absorbing material and its production process,” 5590393, 1996 [Online]. Available: https://patentimages.storage.googleapis.com/79/ee/7c/3ecaae91b80ee6/US5590393.pdf
  • A. K. Suri, C. Subramanian, J. K. Sonber, and T. S. R. Ch Murthy, “Synthesis and consolidation of boron carbide: A review,” International Materials Reviews, vol. 55, no. 1. pp. 4–38, Jan. 2010. doi: 10.1179/095066009X12506721665211.
  • D. Simeone, X. Deschanels, P. Cheminant, and P. Herter, “Behaviour of Different Boron Rich Solids as Promising Absorbers for PWR,” in Control Assemble Materials for water reactors: Experience, performance and perspectives, 2000, pp. 103–106. [Online]. Available: http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/31/008/31008489.pdf
  • B. Rebensdorff and G. Bart, “Material Operating Behaviour of ABB BWR Control Rods,” in Control Assemble Materials for water reactors: Experience, performance and perspectives, 2000, pp. 65–76. [Online]. Available: https://inis.iaea.org/collection/NCLCollectionStore/_Public/31/008/31008486.pdf
  • A. G. Ruggiero, “Nuclear fusion of protons with ions of boron,” in Il Nuovo Cimento A, 1993, vol. 106, no. 12, pp. 1959–1963. doi: 10.1007/BF02780602.
  • T. S. R. C. M. C.Subramanian, A.K.Suri, “Development of Boron-based materials for nuclear applications,” in Technology Development Article, 2010, no. 313, pp. 14–22.
  • J. T. A. Roberts, Structural Materials in Nuclear Power Systems, vol. 80, no. 1. Boston, MA: Springer US, 1981. doi: 10.1007/978-1-4684-7194-6.
  • G. I. Risovany, V. D., Zakharov, A. V., Klochkov, E. P., Osipenko, A. G., Kosulin, N. S., & Mikhailichenko, “Reprocessing of the irradiated boron carbide enriched by boron-10 isotope and its reuse in the control rods of the fast breeder reactors,” Int. At. Energy Agency, IAEA-TECDOC--884, vol. 4, no. June, pp. 47–52, 1996, [Online]. Available: http://link.springer.com/10.1007/978-1-4684-7194-6
  • V. Troyanov, A. Pomeschikov, V. Sougonjaev, V. Ponomarkenko, and A. Scheglov, “High Temperature Study of the Control Rod Behaviour Under Accident Conditions,” Control Assem. Mater. water React. Exp. Perform. Perspect., pp. 245–258, 1998, [Online]. Available: https://www.ptonline.com/articles/how-to-get-better-mfi-results
  • P. O. K. V.G. DATE, “Status of control assembly materials in Indian water reactors,” Cycle, no. December, pp. 40–55, 1993, [Online]. Available: carden, RA. 1997.Metal matrix compositions for neutron shielding applications. Patent 5,700,962.
There are 62 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Fatih Arlı 0000-0002-0899-3460

Publication Date December 28, 2022
Submission Date December 9, 2022
Published in Issue Year 2022

Cite

APA Arlı, F. (2022). The Critical Significance of Boron Mine in Future Energy Technologies. Journal of Soft Computing and Artificial Intelligence, 3(2), 83-92. https://doi.org/10.55195/jscai.1216892
AMA Arlı F. The Critical Significance of Boron Mine in Future Energy Technologies. JSCAI. December 2022;3(2):83-92. doi:10.55195/jscai.1216892
Chicago Arlı, Fatih. “The Critical Significance of Boron Mine in Future Energy Technologies”. Journal of Soft Computing and Artificial Intelligence 3, no. 2 (December 2022): 83-92. https://doi.org/10.55195/jscai.1216892.
EndNote Arlı F (December 1, 2022) The Critical Significance of Boron Mine in Future Energy Technologies. Journal of Soft Computing and Artificial Intelligence 3 2 83–92.
IEEE F. Arlı, “The Critical Significance of Boron Mine in Future Energy Technologies”, JSCAI, vol. 3, no. 2, pp. 83–92, 2022, doi: 10.55195/jscai.1216892.
ISNAD Arlı, Fatih. “The Critical Significance of Boron Mine in Future Energy Technologies”. Journal of Soft Computing and Artificial Intelligence 3/2 (December 2022), 83-92. https://doi.org/10.55195/jscai.1216892.
JAMA Arlı F. The Critical Significance of Boron Mine in Future Energy Technologies. JSCAI. 2022;3:83–92.
MLA Arlı, Fatih. “The Critical Significance of Boron Mine in Future Energy Technologies”. Journal of Soft Computing and Artificial Intelligence, vol. 3, no. 2, 2022, pp. 83-92, doi:10.55195/jscai.1216892.
Vancouver Arlı F. The Critical Significance of Boron Mine in Future Energy Technologies. JSCAI. 2022;3(2):83-92.