Research Article
BibTex RIS Cite

Mechanical behavior of large-diameter pipe elbows under low-cyclic loading

Year 2023, Volume: 8 Issue: 3, 243 - 250, 03.10.2023
https://doi.org/10.47481/jscmt.1330168

Abstract

Large-diameter steel pipes are often used for transmitting and distributing water, gas, and oil products from the source to the end user. These pipelines are mainly oriented by using pipe el- bows due to their high flexibility along their routes. It is important to understand the mechani- cal behavior of these critical infrastructure components to promote material sustainability. For this purpose, a rigorous 3D finite element model is employed to investigate the mechanical behavior of large-diameter pipe elbows with varying elbow angles such as 90°, 60°, and 30°. Moreover, geometrical and material nonlinearities capture the pipes’ ratcheting behavior even under pressurized and unpressurized scenarios. It is seen that the pipes with a larger elbow angle can endure a higher number of cycles before they reach their limit states. In addition, pipe elbows behave similarly to straight pipes as the elbow angle decreases and becomes more vulnerable to plastic deformations such as kink and buckling under bending loads.

References

  • Vazouras, P., & Karamanos, S. A. (2017). Structural behavior of buried pipe bends and their effect on pipeline response in fault crossing areas. Bulletin of Earthquake Engineering, 15, 4999-5024.
  • Vathi, M., Karamanos, S. A., Kapogiannis, I. A., & Spiliopoulos, K. V. (2017). Performance criteria for liquid storage tanks and piping systems subjected to seismic loading. Journal of pressure vessel technology, 139(5), 051801. [CrossRef]
  • Kim, S. W., Jeon, B. G., Hahm, D. G., & Kim, M. K. (2023). Failure criteria evaluation of steel pipe elbows in nuclear power plant piping systems using cumulative damage models. Thin-Walled Structures, 182, 110250. [CrossRef]
  • Varelis, G. E., Karamanos, S. A., & Gresnigt, A. M. (2013). Pipe elbows under strong cyclic loading. Journal of Pressure Vessel Technology, 135(1), 011207. [CrossRef]
  • Daliri, A. K., & Naimi, S. (2016). Dynamic analysis of fixed marine risers with 1st and 5th order Rogue Waves. Journal of Engineering Research, 4(3), 43-56.
  • Daliri, A. K., & Naimi, S. (2018). Transient dynamic analysis of the high-specific-strength steel jacket with extreme wave and vessel impact load. Acta Scientiarum. Technology, 40. [CrossRef]
  • Futura Sciences. (2023). Sustainable development. Gas pipeline. http://www.futura-sciences.us/dico/d/sustainable-development-gas-pipeline-50000943/
  • Hydrocarbons Technology. Midship Natural Gas Pipeline. (2023). https://www.hydrocarbons-technology.com/projects/midship-natural-gas-pipeline-oklahoma-usa/
  • Sobel, L. H., & Newman, S. Z. (1980). Comparison of experimental and simplified analytical results for the in-plane plastic bending and buckling of an elbow. J Pressure Vessel Technology, 102, 400-409. [CrossRef]
  • Suzuki, N., & Nasu, M. (1989). Non-linear analysis of welded elbows subjected to in-plane bending. Computers & Structures, 32(3-4), 871-881. [CrossRef]
  • Chattopadhyay, J., Nathani, D. K., Dutta, B. K., & Kushwaha, H. S. (2000). Closed-form collapse moment equations of elbows under combined internal pressure and in-plane bending moment. J. Pressure Vessel Technol., 122(4), 431-436. [CrossRef]
  • Karamanos, S. A., Tsouvalas, D., & Gresnigt, A. M. (2006). Ultimate bending capacity and buckling of pressurized 90 deg steel elbows. Journal of Pressure Vessel Technology, 138(4), 041203. [CrossRef]
  • Takahashi, K., Tsunoi, S., Hara, T., Ueno, T., Mikami, A., Takada, H., & Shiratori, M. (2010). Experimental study of low-cycle fatigue of pipe elbows with local wall thinning and life estimation using finite element analysis. International Journal of Pressure Vessels and Piping, 87(5), 211-219. [CrossRef]
  • Karamanos, S. A. (2016). Mechanical behavior of steel pipe bends an overview. Journal of Pressure Vessel Technology, 138(4), 041203. [CrossRef]
  • Yoshizaki, K., O’Rourke, T. D., & Hamada, M. (2003). Large scale experiments of buried steel pipelines with elbows subjected to permanent ground deformation. Structural Engineering/Earthquake Engineering, 20(1), 1-11. [CrossRef]
  • Cheong, T. P., Soga, K., & Robert, D. J. (2011). 3D FE analyses of buried pipeline with elbows subjected to lateral loading. Journal of Geotechnical and Geoenvironmental Engineering, 137(10), 939-948. [CrossRef]
  • Kaya, E. S., Uçkan, E., O'Rourke, M. J., Karamanos, S. A., Akbas, B., Cakir, F., & Cheng, Y. (2017). Failure analysis of a welded steel pipe at Kullar fault crossing. Engineering Failure Analysis, 71, 43-62. [CrossRef]
  • Kaya, E. Ş. (2023). Eksenel basınç kuvveti ve eğilme momentine maruz çelik boruların performans kriterlerinin saptanması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(4), 2107-2118. [CrossRef]
  • Uckan, E., Akbas, B., Kaya, E.S., Cakir, F., Cengiz, I., Makaraci, M., & Ataoglu, S. (2016). Design issues of buried pipelines at permanent ground deformation zones. Disaster Science and Engineering, 2(2), 53-58.
  • Kaya, E. S., Uckan, E., Cakir, F., & Akbas, B. (2016). A 3D nonlinear numerical analysis of buried steel pipes at strike-slip fault crossings. Građevinar, 68(10), 815-823.
  • Simulia. (2014). ABAQUS Theory Manual, Version 6.14, Dassault Systèmes.
  • Lim, K. S., Azraai, S. N. A., Yahaya, N., Noor, N. M., Zardasti, L., & Kim, J. H. J. (2019). Behaviour of steel pipelines with composite repairs analysed using experimental and numerical approaches. Thin-Walled Structures, 139, 321-333. [CrossRef]
  • ALA. (2005). American Lifelines Alliance Guidelines for the Design of Buried Steel Pipe. https://www.americanlifelinesalliance.com/pdf/Update061305.pdf.
  • D.G. Honegger, & D.J. Nyman. (2004). Guidelines for the seismic design and assessment of natural gas and liquid hydrocarbon pipelines, prepared for the Pipeline Design Construction & Operations Technical Committee of Pipeline Research Council International, Inc., Catalog No. L51927. [CrossRef]
  • Gresnigt, A.M. (1986). Plastic design of buried steel pipelines in settlement areas, HERON, 31(4), 1-113.
Year 2023, Volume: 8 Issue: 3, 243 - 250, 03.10.2023
https://doi.org/10.47481/jscmt.1330168

Abstract

References

  • Vazouras, P., & Karamanos, S. A. (2017). Structural behavior of buried pipe bends and their effect on pipeline response in fault crossing areas. Bulletin of Earthquake Engineering, 15, 4999-5024.
  • Vathi, M., Karamanos, S. A., Kapogiannis, I. A., & Spiliopoulos, K. V. (2017). Performance criteria for liquid storage tanks and piping systems subjected to seismic loading. Journal of pressure vessel technology, 139(5), 051801. [CrossRef]
  • Kim, S. W., Jeon, B. G., Hahm, D. G., & Kim, M. K. (2023). Failure criteria evaluation of steel pipe elbows in nuclear power plant piping systems using cumulative damage models. Thin-Walled Structures, 182, 110250. [CrossRef]
  • Varelis, G. E., Karamanos, S. A., & Gresnigt, A. M. (2013). Pipe elbows under strong cyclic loading. Journal of Pressure Vessel Technology, 135(1), 011207. [CrossRef]
  • Daliri, A. K., & Naimi, S. (2016). Dynamic analysis of fixed marine risers with 1st and 5th order Rogue Waves. Journal of Engineering Research, 4(3), 43-56.
  • Daliri, A. K., & Naimi, S. (2018). Transient dynamic analysis of the high-specific-strength steel jacket with extreme wave and vessel impact load. Acta Scientiarum. Technology, 40. [CrossRef]
  • Futura Sciences. (2023). Sustainable development. Gas pipeline. http://www.futura-sciences.us/dico/d/sustainable-development-gas-pipeline-50000943/
  • Hydrocarbons Technology. Midship Natural Gas Pipeline. (2023). https://www.hydrocarbons-technology.com/projects/midship-natural-gas-pipeline-oklahoma-usa/
  • Sobel, L. H., & Newman, S. Z. (1980). Comparison of experimental and simplified analytical results for the in-plane plastic bending and buckling of an elbow. J Pressure Vessel Technology, 102, 400-409. [CrossRef]
  • Suzuki, N., & Nasu, M. (1989). Non-linear analysis of welded elbows subjected to in-plane bending. Computers & Structures, 32(3-4), 871-881. [CrossRef]
  • Chattopadhyay, J., Nathani, D. K., Dutta, B. K., & Kushwaha, H. S. (2000). Closed-form collapse moment equations of elbows under combined internal pressure and in-plane bending moment. J. Pressure Vessel Technol., 122(4), 431-436. [CrossRef]
  • Karamanos, S. A., Tsouvalas, D., & Gresnigt, A. M. (2006). Ultimate bending capacity and buckling of pressurized 90 deg steel elbows. Journal of Pressure Vessel Technology, 138(4), 041203. [CrossRef]
  • Takahashi, K., Tsunoi, S., Hara, T., Ueno, T., Mikami, A., Takada, H., & Shiratori, M. (2010). Experimental study of low-cycle fatigue of pipe elbows with local wall thinning and life estimation using finite element analysis. International Journal of Pressure Vessels and Piping, 87(5), 211-219. [CrossRef]
  • Karamanos, S. A. (2016). Mechanical behavior of steel pipe bends an overview. Journal of Pressure Vessel Technology, 138(4), 041203. [CrossRef]
  • Yoshizaki, K., O’Rourke, T. D., & Hamada, M. (2003). Large scale experiments of buried steel pipelines with elbows subjected to permanent ground deformation. Structural Engineering/Earthquake Engineering, 20(1), 1-11. [CrossRef]
  • Cheong, T. P., Soga, K., & Robert, D. J. (2011). 3D FE analyses of buried pipeline with elbows subjected to lateral loading. Journal of Geotechnical and Geoenvironmental Engineering, 137(10), 939-948. [CrossRef]
  • Kaya, E. S., Uçkan, E., O'Rourke, M. J., Karamanos, S. A., Akbas, B., Cakir, F., & Cheng, Y. (2017). Failure analysis of a welded steel pipe at Kullar fault crossing. Engineering Failure Analysis, 71, 43-62. [CrossRef]
  • Kaya, E. Ş. (2023). Eksenel basınç kuvveti ve eğilme momentine maruz çelik boruların performans kriterlerinin saptanması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(4), 2107-2118. [CrossRef]
  • Uckan, E., Akbas, B., Kaya, E.S., Cakir, F., Cengiz, I., Makaraci, M., & Ataoglu, S. (2016). Design issues of buried pipelines at permanent ground deformation zones. Disaster Science and Engineering, 2(2), 53-58.
  • Kaya, E. S., Uckan, E., Cakir, F., & Akbas, B. (2016). A 3D nonlinear numerical analysis of buried steel pipes at strike-slip fault crossings. Građevinar, 68(10), 815-823.
  • Simulia. (2014). ABAQUS Theory Manual, Version 6.14, Dassault Systèmes.
  • Lim, K. S., Azraai, S. N. A., Yahaya, N., Noor, N. M., Zardasti, L., & Kim, J. H. J. (2019). Behaviour of steel pipelines with composite repairs analysed using experimental and numerical approaches. Thin-Walled Structures, 139, 321-333. [CrossRef]
  • ALA. (2005). American Lifelines Alliance Guidelines for the Design of Buried Steel Pipe. https://www.americanlifelinesalliance.com/pdf/Update061305.pdf.
  • D.G. Honegger, & D.J. Nyman. (2004). Guidelines for the seismic design and assessment of natural gas and liquid hydrocarbon pipelines, prepared for the Pipeline Design Construction & Operations Technical Committee of Pipeline Research Council International, Inc., Catalog No. L51927. [CrossRef]
  • Gresnigt, A.M. (1986). Plastic design of buried steel pipelines in settlement areas, HERON, 31(4), 1-113.
There are 25 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Research Articles
Authors

Ercan Şerif Kaya 0000-0002-1098-6534

Early Pub Date September 30, 2023
Publication Date October 3, 2023
Submission Date July 20, 2023
Acceptance Date August 18, 2023
Published in Issue Year 2023 Volume: 8 Issue: 3

Cite

APA Kaya, E. Ş. (2023). Mechanical behavior of large-diameter pipe elbows under low-cyclic loading. Journal of Sustainable Construction Materials and Technologies, 8(3), 243-250. https://doi.org/10.47481/jscmt.1330168

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr