Research Article
BibTex RIS Cite
Year 2024, Volume: 9 Issue: 3, 280 - 293, 30.09.2024
https://doi.org/10.47481/jscmt.1554809

Abstract

References

  • 1. Kim, K., & Milstein, F. (1987). Relation between hardness and compressive strength of polymer concrete. Constr Build Mater, 1(4), 209–214. [CrossRef]
  • 2. Chandramouli, K., Rao, P. S. R., Narayanan, P., Tirumala, S. S., & Sravana, P. (2010). Strength properties of glass fiber concrete. ARPN J Eng Appl Sci, 5, 1–6.
  • 3. Bartos, P. J. M. (2017). Glassfibre reinforced concrete: A review. IOP Conf Ser Mater Sci Eng, 246, 012002. [CrossRef]
  • 4. Lalinde, L. F., Mellado, A., Borrachero, M. V., Monzó, J., & Payá, J. (2022). Durability of glass fiber reinforced cement (GRC) containing a high proportion of pozzolans. Appl Sci, 12(7), 3696. [CrossRef]
  • 5. Karimipour, A., Ghalehnovi, M., & de Brito, J. (2020). Mechanical and durability properties of steel fibre-reinforced rubberised concrete. Constr Build Mater, 257, 119463. [CrossRef]
  • 6. Babaloo, F., Majd, A., Arbabian, S., Sharifnia, F., & Ghanati, F. (2018). The effect of magnetized water on some characteristics of growth and chemical constituent in rice (Oryza sativa L.)Var Hashemi. EurAsian J Biosci, 12, 129–137.
  • 7. Cai, R., Yang, H., He, J., & Zhu, W. (2009). The effects of magnetic fields on water molecular hydrogen bonds. J Mol Struct, 938(1–3), 15–19. [CrossRef]
  • 8. Inaba, H., Saitou, T., Tozaki, K., & Hayashi, H. (2004). Effect of the magnetic field on the melting transition of H2O and D2O measured by a high resolution and supersensitive differential scanning calorimeter. J Appl Phys, 96(11), 6127–6132. [CrossRef]
  • 9. Shukla, S. K., Barai, S. V., & Mehta, A. (2020). Advances in sustainable construction materials and geotechnical engineering (Vol. 35). Springer Singapore. [CrossRef]
  • 10. Kimura, T. (2003). Study of the effect of magnetic fields on polymeric materials and its application. Polym J, 35(11), 823–843. [CrossRef]
  • 11. Ahmed, H. I. (2017). Behavior of magnetic concrete incorporated with Egyptian nano alumina. Constr Build Mater, 150, 404–408. [CrossRef]
  • 12. Gholhaki, M., Kheyroddin, A., Hajforoush, M., & Kazemi, M. (2018). An investigation on the fresh and hardened properties of self-compacting concrete incorporating magnetic water with various pozzolanic materials. Constr Build Mater, 158, 173–180. [CrossRef]
  • 13. Wei, H., Wang, Y., & Luo, J. (2017). Influence of magnetic water on early-age shrinkage cracking of concrete. Constr Build Mater, 147, 91–100. [CrossRef]
  • 14. Marasli, M., Subasi, S., & Dehghanpour, H. (2022). Development of a maturity method for GFRC shell concretes with different fiber ratios. Eur J Environ Civ Eng, 26(10):119. [CrossRef]
  • 15. Subasi, S., Dehghanpour, H., & Marasli, M. (2022). Production and characterization of GRC-SWCNT composites for shell elements. Mater Sci, 28(4), 423433. [CrossRef]
  • 16. TS EN 196-1. (2005). Methods of testing cement–Part 1: Determination of strength. Turkish Standards.
  • 17. ASTM A956. (2006). Standard test method for Leeb hardness testing of steel products. ASTM International.
  • 18. TS EN 1170-4. (1999). Precast concrete products-test method for glass-fibre reinforced cement-part 4: Determination of flexural strength. Turkish Standards.
  • 19. ASTM C597. (2009). Standard test method for pulse velocity through concrete. ASTM International.
  • 20. Guo, Y. Z., Yin, D. C., Cao, H. L., Shi, J. Y., Zhang, C. Y., Liu, Y. M., Huang, H. H., Liu, Y., Wang, Y., Guo, W. H., Qian, A. R. & Shang, P. (2012). Evaporation rate of water as a function of a magnetic field and field gradient. Int J Mol Sci, 13(12), 16916–16928. [CrossRef]
  • 21. Ghorbani, S., Ghorbani, S., Tao, Z., de Brito, J., & Tavakkolizadeh, M. (2019). Effect of magnetized water on foam stability and compressive strength of foam concrete. Constr Build Mater, 197, 280–290. [CrossRef]
  • 22. Su, N., Wu, Y. H., & Mar, C. Y. (2000). Effect of magnetic water on the engineering properties of concrete containing granulated blast-furnace slag. Cem Concr Res, 30(4), 599–605. [CrossRef]
  • 23. Keshta, M. M., Yousry Elshikh, M. M., Kaloop, M. R., Hu, J. W., & ELMohsen, I. A. (2022). Effect of magnetized water on characteristics of sustainable concrete using volcanic ash. Constr Build Mater, 361, 129640. [CrossRef]
  • 24. Ghorbani, S., Gholizadeh, M., & de Brito, J. (2020). Effect of magnetized mixing water on the fresh and hardened state properties of steel fibre reinforced self-compacting concrete. Constr Build Mater, 248, 118660. [CrossRef]
  • 25. Hu, H. X., & Deng, C. (2021). Effect of magnetized water on the stability and consolidation compressive strength of cement grout. Mater Basel, 14(2), 275. [CrossRef]
  • 26. Ramalingam, M., Narayanan, K., Masilamani, A., Kathirvel, P., Murali, G., & Vatin, N. I. (2022). Influence of magnetic water on concrete properties with different magnetic field exposure times. Mater Basel, 15(12), 4291. [CrossRef]
  • 27. Elkerany, A. M., Yousry Elshikh, M. M., Elshami, A. A., & Youssf, O. (2023). Effect of water magnetization technique on the properties of metakaolin-based sustainable concrete. Constr Mater, 3(4), 434–448. [CrossRef]
  • 28. Ghorbani, S., Gholizadeh, M., & de Brito, J. (2018). Effect of magnetized water on the mechanical and durability properties of concrete block pavers. Mater Basel, 11(9), 1647. [CrossRef]
  • 29. Kong, D., Huang, S., Corr, D., Yang, Y., & Shah, S. P. (2018). Whether do nano-particles act as nucleation sites for C-S-H gel growth during cement hydration? Cem Concr Compos, 87, 98–109. [CrossRef]
  • 30. Mohammadnezhad, A., Azizi, S., Sousanabadi, H. F., Tashan, J., & Habibnejad, A. K. (2022). Understanding the magnetizing process of water and its effects on cementitious materials: A critical review. Constr Build Mater, 356, 129076. [CrossRef]
  • 31. Al-Gemeel, A. N., Zhuge, Y., & Youssf, O. (2018). Use of hollow glass microspheres and hybrid fibres to improve the mechanical properties of engineered cementitious composite. Constr Build Mater, 171, 858–870. [CrossRef]
  • 32. Shafei, B., Kazemian, M., Dopko, M., & Najimi, M. (2021). State-of-the-art review of capabilities and limitations of polymer and glass fibers used for fiber-reinforced concrete. Mater Basel, 14(2), 409. [CrossRef]
  • 33. Yan, F., Lin, Z., Zhang, D., Gao, Z., & Li, M. (2017). Experimental study on bond durability of glass fiber reinforced polymer bars in concrete exposed to harsh environmental agents: Freeze-thaw cycles and alkaline-saline solution. Compos Part B Eng, 116, 406–421. [CrossRef]
  • 34. Marasli, M., Subasi, S., & Dehghanpour, H. (2022). Development of a maturity method for GFRC shell concretes with different fiber ratios. Eur J Environ Civ Eng, 26(10), 1–19. [CrossRef]
  • 35. Wu, C., He, X., Zhao, X., He, L., Song, Y., & Zhang, X. (2022). Effect of fiber content on mechanical properties and microstructural characteristics of alkali resistant glass fiber reinforced concrete. Adv Mater Sci Eng, 2022, 1–19. [CrossRef]
  • 36. Chen, H., Wang, P., Pan, J., Lawi, A. S., & Zhu, Y. (2021). Effect of alkali-resistant glass fiber and silica fume on mechanical and shrinkage properties of cement-based mortars. Constr Build Mater, 307, 125054. [CrossRef]
  • 37. Balea, A., Fuente, E., Monte, M. C., Blanco, Á., & Negro, C. (2021). Fiber reinforced cement based composites. In Fiber reinforced composites (pp. 597–648). Elsevier. [CrossRef]
  • 38. Dehghanpour, H., Subasi, S., Guntepe, S., Emiroglu, M., & Marasli, M. (2022). Investigation of fracture mechanics, physical and dynamic properties of UHPCs containing PVA, glass and steel fibers. Constr Build Mater, 328, 127079. [CrossRef]
  • 39. Khan, S., Qing, L., Ahmad, I., Mu, R., & Bi, M. (2022). Investigation on fracture behavior of cementitious composites reinforced with aligned hooked-end steel fibers. Mater Basel, 15(2), 542. [CrossRef]
  • 40. Kim, W., & Lee, T. (2023). A study to improve the reliability of high-strength concrete strength evaluation using an ultrasonic velocity method. Mater Basel, 16(20), 6800. [CrossRef]
  • 41. Yousry, O. M. M., Abdallah, M. A., Ghazy, M. F., Taman, M. H., & Kaloop, M. R. (2020). A study for improving compressive strength of cementitious mortar utilizing magnetic water. Mater Basel, 13(8), 1971. [CrossRef]
  • 42. Constantinides, G., & Ulm, F. J. (2004). The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cem Concr Res, 34(1), 67–80. [CrossRef]
  • 43. Lafhaj, Z., Goueygou, M., Djerbi, A., & Kaczmarek, M. (2006). Correlation between porosity, permeability and ultrasonic parameters of mortar with variable water/cement ratio and water content. Cem Concr Res, 36(4), 625–633. [CrossRef]
  • 44. Mishra, D. A., & Basu, A. (2013). Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system. Eng Geol, 160, 54–68. [CrossRef]
  • 45. Tassew, S. T., & Lubell, A. S. (2014). Mechanical properties of glass fiber reinforced ceramic concrete. Constr Build Mater, 51, 215–224. [CrossRef]
  • 46. Amran, Y. H. M., Farzadnia, N., & Abang Ali, A. A. (2015). Properties and applications of foamed concrete: A review. Constr Build Mater, 101, 990–1005. [CrossRef]
  • 47. Yusuf, M. O. (2023). Bond characterization in cementitious material binders using Fourier-transform infrared spectroscopy. Appl Sci, 13(5), 3353. [CrossRef]
  • 48. Sun, H., Ding, Y., Jiang, P., Wang, B., Zhang, A., & Wang, D. (2019). Study on the interaction mechanism in the hardening process of cement-asphalt mortar. Constr Build Mater, 227, 116663. [CrossRef]
  • 49. Cosentino, A. G. M., Silva, F. C., da Silva, G., Sciamareli, J., & da Costa Mattos, E. (2020). A short review about aerospace materials characterization – Bonding agents and thermal insulation. Propellants Explos Pyrotech, 45(8), 1175–1184. [CrossRef]
  • 50. Muthu, M., Yang, E. H., & Unluer, C. (2021). Effect of graphene oxide on the deterioration of cement pastes exposed to citric and sulfuric acids. Cem Concr Compos, 124, 104252. [CrossRef]
  • 51. Ng, C., Alengaram, U. J., Wong, L. S., Mo, K. H., Jumaat, M. Z., & Ramesh, S. (2018). A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete. Constr Build Mater, 186, 550–576. [CrossRef]
  • 52. Caggiani, M. C., Occhipinti, R., Finocchiaro, C., Fugazzotto, M., Stroscio, A., Mazzoleni, P., & Barone, G. (2022). Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) as a potential on site tool to test geopolymerization reaction. Talanta, 250, 123721. [CrossRef]
  • 53. Benavent, V., Steins, P., Sobrados, I., Sanz, J., Lambertin, D., Frizon, F., Rossignol, S., & Poulesquen, A. (2016). Impact of aluminum on the structure of geopolymers from the early stages to consolidated material. Cem Concr Res, 90, 27–35. [CrossRef]
  • 54. Duxson, P., Provis, J. L., Lukey, G. C., Separovic, F., & van Deventer, J. S. J. (2005). 29Si NMR study of structural ordering in aluminosilicate geopolymer gels. Langmuir, 21(7), 3028–3036. [CrossRef]
  • 55. Schroeder, R. A., & Lyons, L. L. (1966). Infra-red spectra of the crystalline inorganic aluminates. J Inorg Nucl Chem, 28(5), 1155–1163. [CrossRef]
  • 56. Qu, J., Zhang, J., Li, H., Li, S., Hou, Z., Chang, R., & Zhang, Y. (2024). Coal gasification slag-derived highly reactive silica for high modulus sodium silicate synthesis: Process and mechanism. Chem Eng J, 479, 147771. [CrossRef]
  • 57. Wang, Y., Liu, Z., He, F., Zhuo, W., Yuan, Q., Chen, C., & Yang, J. (2021). Study on water instability of magnesium potassium phosphate cement mortar based on low-field 1H nuclear magnetic resonance. Measurement, 180, 109523. [CrossRef]
  • 58. Blanc, P., Bourbon, X., Lassin, A., & Gaucher, E. C. (2010). Chemical model for cement-based materials: Temperature dependence of thermodynamic functions for nanocrystalline and crystalline C–S–H phases. Cem Concr Res, 40(6), 851–866. [CrossRef]
  • 59. Deboucha, W., Leklou, N., Khelidj, A., & Oudjit, M. N. (2017). Hydration development of mineral additives blended cement using thermogravimetric analysis (TGA): Methodology of calculating the degree of hydration. Constr Build Mater, 146, 687–701. [CrossRef]
  • 60. Kim, J. J., Foley, E. M., & Reda Taha, M. M. (2013). Nano-mechanical characterization of synthetic calcium–silicate–hydrate (C–S–H) with varying CaO/SiO2 mixture ratios. Cem Concr Compos, 36, 65–70. [CrossRef]
  • 61. Loukili, A., Khelidj, A., & Richard, P. (1999). Hydration kinetics, change of relative humidity, and autogenous shrinkage of ultra-high-strength concrete. Cem Concr Res, 29(4), 577–584. [CrossRef]
  • 62. Heikal, M. (2016). Characteristics, textural properties and fire resistance of cement pastes containing Fe2O3 nano-particles. J Therm Anal Calorim, 126(3), 1077–1087. [CrossRef]
  • 63. Saraya, M. E. S. I. (2014). Study physico-chemical properties of blended cements containing fixed amount of silica fume, blast furnace slag, basalt and limestone, a comparative study. Constr Build Mater, 72, 104–112. [CrossRef]
  • 64. Zhang, Q., & Ye, G. (2011). Microstructure analysis of heated Portland cement paste. Procedia Eng, 14, 830–836. [CrossRef]

Experimental investigation of mechanical and physical properties of glass fiber reinforced concretes produced with different magnetized waters

Year 2024, Volume: 9 Issue: 3, 280 - 293, 30.09.2024
https://doi.org/10.47481/jscmt.1554809

Abstract

Magnetized water may act as a thickener in cementitious mixtures due to its slippery effect. Therefore, it can be beneficial for the mixture to settle easily and to improve its strength. This study investigated the effects of magnetized water passing through pipes with magnetic field intensity (MFI) 8 and 10 on glass fiber reinforced concrete (GFRC). Three different mixtures, the GFRC mixture produced with regular tap water, were obtained, and the properties of the produced GFRC samples, such as 7, 14, and 28 days H-Leeb hardness, density, Ultrasonic pulse velocity (UPV), flexural strength, compressive strength, and fracture mechanics were investigated. In addition, SEM, EDS, FTIR, and TGA analyses were carried out to investigate the change in surface tension in the internal structures of GFRCs produced with magnetized water. Overall, the results were promising. Results showed a proportional H-Leep hardness increase with curing time and density variations. Magnetized water reduced air voids, enhancing sound transmission speeds. Flexural and compressive strength improved with magnetic water. The study suggests significant contributions to energy savings and reduced production costs, highlighting the efficient use of energy resources.

References

  • 1. Kim, K., & Milstein, F. (1987). Relation between hardness and compressive strength of polymer concrete. Constr Build Mater, 1(4), 209–214. [CrossRef]
  • 2. Chandramouli, K., Rao, P. S. R., Narayanan, P., Tirumala, S. S., & Sravana, P. (2010). Strength properties of glass fiber concrete. ARPN J Eng Appl Sci, 5, 1–6.
  • 3. Bartos, P. J. M. (2017). Glassfibre reinforced concrete: A review. IOP Conf Ser Mater Sci Eng, 246, 012002. [CrossRef]
  • 4. Lalinde, L. F., Mellado, A., Borrachero, M. V., Monzó, J., & Payá, J. (2022). Durability of glass fiber reinforced cement (GRC) containing a high proportion of pozzolans. Appl Sci, 12(7), 3696. [CrossRef]
  • 5. Karimipour, A., Ghalehnovi, M., & de Brito, J. (2020). Mechanical and durability properties of steel fibre-reinforced rubberised concrete. Constr Build Mater, 257, 119463. [CrossRef]
  • 6. Babaloo, F., Majd, A., Arbabian, S., Sharifnia, F., & Ghanati, F. (2018). The effect of magnetized water on some characteristics of growth and chemical constituent in rice (Oryza sativa L.)Var Hashemi. EurAsian J Biosci, 12, 129–137.
  • 7. Cai, R., Yang, H., He, J., & Zhu, W. (2009). The effects of magnetic fields on water molecular hydrogen bonds. J Mol Struct, 938(1–3), 15–19. [CrossRef]
  • 8. Inaba, H., Saitou, T., Tozaki, K., & Hayashi, H. (2004). Effect of the magnetic field on the melting transition of H2O and D2O measured by a high resolution and supersensitive differential scanning calorimeter. J Appl Phys, 96(11), 6127–6132. [CrossRef]
  • 9. Shukla, S. K., Barai, S. V., & Mehta, A. (2020). Advances in sustainable construction materials and geotechnical engineering (Vol. 35). Springer Singapore. [CrossRef]
  • 10. Kimura, T. (2003). Study of the effect of magnetic fields on polymeric materials and its application. Polym J, 35(11), 823–843. [CrossRef]
  • 11. Ahmed, H. I. (2017). Behavior of magnetic concrete incorporated with Egyptian nano alumina. Constr Build Mater, 150, 404–408. [CrossRef]
  • 12. Gholhaki, M., Kheyroddin, A., Hajforoush, M., & Kazemi, M. (2018). An investigation on the fresh and hardened properties of self-compacting concrete incorporating magnetic water with various pozzolanic materials. Constr Build Mater, 158, 173–180. [CrossRef]
  • 13. Wei, H., Wang, Y., & Luo, J. (2017). Influence of magnetic water on early-age shrinkage cracking of concrete. Constr Build Mater, 147, 91–100. [CrossRef]
  • 14. Marasli, M., Subasi, S., & Dehghanpour, H. (2022). Development of a maturity method for GFRC shell concretes with different fiber ratios. Eur J Environ Civ Eng, 26(10):119. [CrossRef]
  • 15. Subasi, S., Dehghanpour, H., & Marasli, M. (2022). Production and characterization of GRC-SWCNT composites for shell elements. Mater Sci, 28(4), 423433. [CrossRef]
  • 16. TS EN 196-1. (2005). Methods of testing cement–Part 1: Determination of strength. Turkish Standards.
  • 17. ASTM A956. (2006). Standard test method for Leeb hardness testing of steel products. ASTM International.
  • 18. TS EN 1170-4. (1999). Precast concrete products-test method for glass-fibre reinforced cement-part 4: Determination of flexural strength. Turkish Standards.
  • 19. ASTM C597. (2009). Standard test method for pulse velocity through concrete. ASTM International.
  • 20. Guo, Y. Z., Yin, D. C., Cao, H. L., Shi, J. Y., Zhang, C. Y., Liu, Y. M., Huang, H. H., Liu, Y., Wang, Y., Guo, W. H., Qian, A. R. & Shang, P. (2012). Evaporation rate of water as a function of a magnetic field and field gradient. Int J Mol Sci, 13(12), 16916–16928. [CrossRef]
  • 21. Ghorbani, S., Ghorbani, S., Tao, Z., de Brito, J., & Tavakkolizadeh, M. (2019). Effect of magnetized water on foam stability and compressive strength of foam concrete. Constr Build Mater, 197, 280–290. [CrossRef]
  • 22. Su, N., Wu, Y. H., & Mar, C. Y. (2000). Effect of magnetic water on the engineering properties of concrete containing granulated blast-furnace slag. Cem Concr Res, 30(4), 599–605. [CrossRef]
  • 23. Keshta, M. M., Yousry Elshikh, M. M., Kaloop, M. R., Hu, J. W., & ELMohsen, I. A. (2022). Effect of magnetized water on characteristics of sustainable concrete using volcanic ash. Constr Build Mater, 361, 129640. [CrossRef]
  • 24. Ghorbani, S., Gholizadeh, M., & de Brito, J. (2020). Effect of magnetized mixing water on the fresh and hardened state properties of steel fibre reinforced self-compacting concrete. Constr Build Mater, 248, 118660. [CrossRef]
  • 25. Hu, H. X., & Deng, C. (2021). Effect of magnetized water on the stability and consolidation compressive strength of cement grout. Mater Basel, 14(2), 275. [CrossRef]
  • 26. Ramalingam, M., Narayanan, K., Masilamani, A., Kathirvel, P., Murali, G., & Vatin, N. I. (2022). Influence of magnetic water on concrete properties with different magnetic field exposure times. Mater Basel, 15(12), 4291. [CrossRef]
  • 27. Elkerany, A. M., Yousry Elshikh, M. M., Elshami, A. A., & Youssf, O. (2023). Effect of water magnetization technique on the properties of metakaolin-based sustainable concrete. Constr Mater, 3(4), 434–448. [CrossRef]
  • 28. Ghorbani, S., Gholizadeh, M., & de Brito, J. (2018). Effect of magnetized water on the mechanical and durability properties of concrete block pavers. Mater Basel, 11(9), 1647. [CrossRef]
  • 29. Kong, D., Huang, S., Corr, D., Yang, Y., & Shah, S. P. (2018). Whether do nano-particles act as nucleation sites for C-S-H gel growth during cement hydration? Cem Concr Compos, 87, 98–109. [CrossRef]
  • 30. Mohammadnezhad, A., Azizi, S., Sousanabadi, H. F., Tashan, J., & Habibnejad, A. K. (2022). Understanding the magnetizing process of water and its effects on cementitious materials: A critical review. Constr Build Mater, 356, 129076. [CrossRef]
  • 31. Al-Gemeel, A. N., Zhuge, Y., & Youssf, O. (2018). Use of hollow glass microspheres and hybrid fibres to improve the mechanical properties of engineered cementitious composite. Constr Build Mater, 171, 858–870. [CrossRef]
  • 32. Shafei, B., Kazemian, M., Dopko, M., & Najimi, M. (2021). State-of-the-art review of capabilities and limitations of polymer and glass fibers used for fiber-reinforced concrete. Mater Basel, 14(2), 409. [CrossRef]
  • 33. Yan, F., Lin, Z., Zhang, D., Gao, Z., & Li, M. (2017). Experimental study on bond durability of glass fiber reinforced polymer bars in concrete exposed to harsh environmental agents: Freeze-thaw cycles and alkaline-saline solution. Compos Part B Eng, 116, 406–421. [CrossRef]
  • 34. Marasli, M., Subasi, S., & Dehghanpour, H. (2022). Development of a maturity method for GFRC shell concretes with different fiber ratios. Eur J Environ Civ Eng, 26(10), 1–19. [CrossRef]
  • 35. Wu, C., He, X., Zhao, X., He, L., Song, Y., & Zhang, X. (2022). Effect of fiber content on mechanical properties and microstructural characteristics of alkali resistant glass fiber reinforced concrete. Adv Mater Sci Eng, 2022, 1–19. [CrossRef]
  • 36. Chen, H., Wang, P., Pan, J., Lawi, A. S., & Zhu, Y. (2021). Effect of alkali-resistant glass fiber and silica fume on mechanical and shrinkage properties of cement-based mortars. Constr Build Mater, 307, 125054. [CrossRef]
  • 37. Balea, A., Fuente, E., Monte, M. C., Blanco, Á., & Negro, C. (2021). Fiber reinforced cement based composites. In Fiber reinforced composites (pp. 597–648). Elsevier. [CrossRef]
  • 38. Dehghanpour, H., Subasi, S., Guntepe, S., Emiroglu, M., & Marasli, M. (2022). Investigation of fracture mechanics, physical and dynamic properties of UHPCs containing PVA, glass and steel fibers. Constr Build Mater, 328, 127079. [CrossRef]
  • 39. Khan, S., Qing, L., Ahmad, I., Mu, R., & Bi, M. (2022). Investigation on fracture behavior of cementitious composites reinforced with aligned hooked-end steel fibers. Mater Basel, 15(2), 542. [CrossRef]
  • 40. Kim, W., & Lee, T. (2023). A study to improve the reliability of high-strength concrete strength evaluation using an ultrasonic velocity method. Mater Basel, 16(20), 6800. [CrossRef]
  • 41. Yousry, O. M. M., Abdallah, M. A., Ghazy, M. F., Taman, M. H., & Kaloop, M. R. (2020). A study for improving compressive strength of cementitious mortar utilizing magnetic water. Mater Basel, 13(8), 1971. [CrossRef]
  • 42. Constantinides, G., & Ulm, F. J. (2004). The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cem Concr Res, 34(1), 67–80. [CrossRef]
  • 43. Lafhaj, Z., Goueygou, M., Djerbi, A., & Kaczmarek, M. (2006). Correlation between porosity, permeability and ultrasonic parameters of mortar with variable water/cement ratio and water content. Cem Concr Res, 36(4), 625–633. [CrossRef]
  • 44. Mishra, D. A., & Basu, A. (2013). Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system. Eng Geol, 160, 54–68. [CrossRef]
  • 45. Tassew, S. T., & Lubell, A. S. (2014). Mechanical properties of glass fiber reinforced ceramic concrete. Constr Build Mater, 51, 215–224. [CrossRef]
  • 46. Amran, Y. H. M., Farzadnia, N., & Abang Ali, A. A. (2015). Properties and applications of foamed concrete: A review. Constr Build Mater, 101, 990–1005. [CrossRef]
  • 47. Yusuf, M. O. (2023). Bond characterization in cementitious material binders using Fourier-transform infrared spectroscopy. Appl Sci, 13(5), 3353. [CrossRef]
  • 48. Sun, H., Ding, Y., Jiang, P., Wang, B., Zhang, A., & Wang, D. (2019). Study on the interaction mechanism in the hardening process of cement-asphalt mortar. Constr Build Mater, 227, 116663. [CrossRef]
  • 49. Cosentino, A. G. M., Silva, F. C., da Silva, G., Sciamareli, J., & da Costa Mattos, E. (2020). A short review about aerospace materials characterization – Bonding agents and thermal insulation. Propellants Explos Pyrotech, 45(8), 1175–1184. [CrossRef]
  • 50. Muthu, M., Yang, E. H., & Unluer, C. (2021). Effect of graphene oxide on the deterioration of cement pastes exposed to citric and sulfuric acids. Cem Concr Compos, 124, 104252. [CrossRef]
  • 51. Ng, C., Alengaram, U. J., Wong, L. S., Mo, K. H., Jumaat, M. Z., & Ramesh, S. (2018). A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete. Constr Build Mater, 186, 550–576. [CrossRef]
  • 52. Caggiani, M. C., Occhipinti, R., Finocchiaro, C., Fugazzotto, M., Stroscio, A., Mazzoleni, P., & Barone, G. (2022). Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) as a potential on site tool to test geopolymerization reaction. Talanta, 250, 123721. [CrossRef]
  • 53. Benavent, V., Steins, P., Sobrados, I., Sanz, J., Lambertin, D., Frizon, F., Rossignol, S., & Poulesquen, A. (2016). Impact of aluminum on the structure of geopolymers from the early stages to consolidated material. Cem Concr Res, 90, 27–35. [CrossRef]
  • 54. Duxson, P., Provis, J. L., Lukey, G. C., Separovic, F., & van Deventer, J. S. J. (2005). 29Si NMR study of structural ordering in aluminosilicate geopolymer gels. Langmuir, 21(7), 3028–3036. [CrossRef]
  • 55. Schroeder, R. A., & Lyons, L. L. (1966). Infra-red spectra of the crystalline inorganic aluminates. J Inorg Nucl Chem, 28(5), 1155–1163. [CrossRef]
  • 56. Qu, J., Zhang, J., Li, H., Li, S., Hou, Z., Chang, R., & Zhang, Y. (2024). Coal gasification slag-derived highly reactive silica for high modulus sodium silicate synthesis: Process and mechanism. Chem Eng J, 479, 147771. [CrossRef]
  • 57. Wang, Y., Liu, Z., He, F., Zhuo, W., Yuan, Q., Chen, C., & Yang, J. (2021). Study on water instability of magnesium potassium phosphate cement mortar based on low-field 1H nuclear magnetic resonance. Measurement, 180, 109523. [CrossRef]
  • 58. Blanc, P., Bourbon, X., Lassin, A., & Gaucher, E. C. (2010). Chemical model for cement-based materials: Temperature dependence of thermodynamic functions for nanocrystalline and crystalline C–S–H phases. Cem Concr Res, 40(6), 851–866. [CrossRef]
  • 59. Deboucha, W., Leklou, N., Khelidj, A., & Oudjit, M. N. (2017). Hydration development of mineral additives blended cement using thermogravimetric analysis (TGA): Methodology of calculating the degree of hydration. Constr Build Mater, 146, 687–701. [CrossRef]
  • 60. Kim, J. J., Foley, E. M., & Reda Taha, M. M. (2013). Nano-mechanical characterization of synthetic calcium–silicate–hydrate (C–S–H) with varying CaO/SiO2 mixture ratios. Cem Concr Compos, 36, 65–70. [CrossRef]
  • 61. Loukili, A., Khelidj, A., & Richard, P. (1999). Hydration kinetics, change of relative humidity, and autogenous shrinkage of ultra-high-strength concrete. Cem Concr Res, 29(4), 577–584. [CrossRef]
  • 62. Heikal, M. (2016). Characteristics, textural properties and fire resistance of cement pastes containing Fe2O3 nano-particles. J Therm Anal Calorim, 126(3), 1077–1087. [CrossRef]
  • 63. Saraya, M. E. S. I. (2014). Study physico-chemical properties of blended cements containing fixed amount of silica fume, blast furnace slag, basalt and limestone, a comparative study. Constr Build Mater, 72, 104–112. [CrossRef]
  • 64. Zhang, Q., & Ye, G. (2011). Microstructure analysis of heated Portland cement paste. Procedia Eng, 14, 830–836. [CrossRef]
There are 64 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Research Articles
Authors

Serkan Subaşı 0000-0001-7826-1348

Doğu Ramazanoğlu 0000-0002-6356-5792

Muhammed Maraşlı 0000-0003-2684-1003

Volkan Ozdal 0000-0003-0033-0563

Yasemin Hatipoğlu 0000-0003-1045-9264

Heydar Dehghanpour 0000-0001-7801-2288

Early Pub Date September 30, 2024
Publication Date September 30, 2024
Submission Date May 21, 2024
Acceptance Date June 8, 2024
Published in Issue Year 2024 Volume: 9 Issue: 3

Cite

APA Subaşı, S., Ramazanoğlu, D., Maraşlı, M., Ozdal, V., et al. (2024). Experimental investigation of mechanical and physical properties of glass fiber reinforced concretes produced with different magnetized waters. Journal of Sustainable Construction Materials and Technologies, 9(3), 280-293. https://doi.org/10.47481/jscmt.1554809

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr