Research Article
BibTex RIS Cite

PERFORMANCE ANALYSIS of DIFFERENT SOLAR TRACKING SYSTEMS for OFF-GRID PHOTOVOLTAIC POWER SYSTEM in BİLECİK, TURKEY USING PVSYST SOFTWARE

Year 2022, Issue: 051, 192 - 210, 31.12.2022

Abstract

It is planned to install an off-grid photovoltaic system of 550Wp to meet the energy needs of the energy measurement laboratory at Bilecik Şeyh Edebali University in Bilecik, Turkey. In this study, the performance of different solar tracking systems in the off-grid photovoltaic system that will be installed in Bilecik, was compared. Monthly available solar energy, E_missing, y_a, y_r, y_f, 〖 P〗_r, 〖 l〗_a and 〖 l〗_s were compared in analysis of different solar tracking systems. The analyzed solar tracking systems are fixed tilted, seasonal tilted, horizontal axis, vertical axis and double axis. PVsyst 7.2 is widely used simulation software for analyzing the efficiency of photovoltaic systems and optimizing system design. Monthly average irradiation and panel temperature data used for analysis are obtained from PVsyst database. The minimum available energy and the maximum missing energy in the fixed tilted tracking with tilt angle of 40° and an azimuth angle of 0°, are 764.77 kWh/y and 93.36 kWh/y respectively. The maximum available solar energy and the minimum lost energy in the double axis tracking system are 1049.9 kWh/y and 57.03 kWh/y in July respectively. The highest average monthly performance ratio is 0.778 for the fixed axis system and the lowest is 0.558 for the double axis system. The results of this study show the performance analysis of the off-grid photovoltaic systems power generation, and can serve for the successful development of the photovoltaic system in real application situation.

Supporting Institution

Bilecik Şeyh Edebali Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

2020-01.BŞEÜ.03-07.

Thanks

The authors thank the Scientific Research Projects Coordinatorship of Bilecik Şeyh Edebali University for their support for the project titled Implementation of Photovoltaic Energy System with Solar Tracking in Bilecik Seyh Edebali University Central Campus, numbered 2020-01.BŞEÜ.03-07.

References

  • [1] Dey, D. and Subudhi, B., (2020), Design, simulation and economic evaluation of 90 kW grid connected Photovoltaic system, Energy Reports, 6, 1778-1787. doi: 10.1016/j.egyr.2020.04.027
  • [2] Owusu, P. A. and Asumadu-Sarkodie, S., (2016), A review of renewable energy sources, sustainability issues and climate change mitigation, Cogent Engineering, 3(1), 1-14. doi: 10.1080/23311916.2016.1167990
  • [3] Akinsipe, O. C., Moya, D. and Kaparaju, P., (2021), Design and economic analysis of off-grid solar PV system in Jos-Nigeria, Journal of Cleaner Production, 287, 1-11. doi:10.1016/j.jclepro.2020.125055
  • [4] Li, C., Zhou, D., Yu, W., Wang, H., Zhu, D., Sun, M. and Li, G., (2017), Performance of off-grid residential solar photovoltaic power systems using five solar tracking modes in Kunming, China, International Journal of Hydrogen Energy, 42, 6502-6510. doi: 10.1016/j.ijhydene.2017.01.033
  • [5] Eldin, S. S., Abd-Elhady, M. S. and Kandil, H. A., (2016), Feasibility of solar tracking systems for PV panels in hot and cold regions, Renewable Energy, 85, 228-233. doi: 10.1016/j.renene.2015.06.051
  • [6] Kılcı, O. and Koklu, M., (2019), The importance of fixed and variable angle in solar power plants analysis, International Journal of Applied Mathematics Electronics and Computers, 7, 75-83. doi:10.18100/ijamec.653371
  • [7] Amrollahi, M. H. and Bathaee, S. M. T., (2017), Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response, Applied energy, 202, 66-77. doi: 10.1016/j.apenergy.2017.05.116
  • [8] Umar, N., Bora, B., Banerjee, C. and Panwar, B. S., (2018), Comparison of different PV power simulation softwares: case study on performance analysis of 1 MW grid-connected PV solar power plant. International Journal of Engineering Science Invention, 7, 11-24.
  • [9] Mermoud, A. and Wittmer, B., (2014), PVSYST user’s manual, Switzerland, January.
  • [10] Kumar, R., Rajoria, C. S., Sharma, A. and Suhag, S., (2021), Design and simulation of standalone solar PV system using PVsyst Software: A case study. Materials Today: Proceedings, 46, 5322-5328. doi: doi.org/10.1016/j.csite.2019.100409
  • [11] Mandelli, S., Brivio, C., Colombo, E. and Merlo, M., (2016), A sizing methodology based on Levelized Cost of Supplied and Lost Energy for off-grid rural electrification systems, Renewable Energy, 89, 475-488. doi: 10.1016/j.renene.2015.12.032
  • [12] Smiles, M. J., Law, A. M., Urwick, A. N., Thomas, L., Irvine, L. A., Pilot, M. T. and Walker, A. B., (2022), Next steps in the footprint project: A feasibility study of installing solar panels on Bath Abbey, Energy Science & Engineering, 10, 892–902. doi:10.1002/ese3.1069
  • [13] Limem, F. and Sezen, S., (2021), Comparative Analysis of Different Photovoltaic Simulation Software: Case Study on Analyzing the Performance of a 5, 1 kWp Grid Connected Photovoltaic System, Avrupa Bilim ve Teknoloji Dergisi, 32, 816-826. doi: 10.31590/ejosat.1040126
  • [14] Jagadale, P. R., Choudhari, A. B. and Jadhav, S. S., (2021), Design and Simulation of Grid Connected Solar Si-Poly Photovoltaic Plant using PVsyst for Pune, Renewable Energy Research and Applications, 3(1), 41-49. doi: 10.22044/rera.2021.11057.1069
  • [15] Baqir, M. and Channi, H. K., (2022), Analysis and design of solar PV system using Pvsyst software, Materials Today: Proceedings, 48(5), 1332-1338. doi: 10.1016/j.matpr.2021.09.029
  • [16] Mohammed, A., Ghaithan, A., Al-Hanbali, A., Attia, A. M., Saleh, H. and Alsawafy, O., (2022), Performance evaluation and feasibility analysis of 10 kWp PV system for residential buildings in Saudi Arabia, Sustainable Energy Technologies and Assessments, 51, 1-14. doi:10.1016/j.seta.2021.101920
  • [17] Ghafoor, A. and Munir, A., (2015), Design and economics analysis of an off-grid PV system for household electrification, Renewable and Sustainable Energy Reviews, 42, 496-502. doi: 10.1016/j.rser.2014.10.012
  • [18] Sözen, A., Arcaklioğlu, E., Özalp, M. and Kanit, E. G., (2005), Solar-energy potential in Turkey. Applied Energy, 80(4), 367-381. doi: 10.1016/j.apenergy.2004.06.001
  • [19] Sharma, V., & Chandel, S. S. (2013). Performance analysis of a 190 kWp grid interactive solar photovoltaic power plant in India. Energy, 55, 476-485. doi: 10.1016/j.energy.2013.03.075
  • [20] Tripathi, B., Yadav, P., Rathod, S. and Kumar, M., (2014), Performance analysis and comparison of two silicon material based photovoltaic technologies under actual climatic conditions in Western India, Energy Conversion and Management, 80, 97-102. doi: 10.1016/j.enconman.2014.01.013
  • [21] Adaramola, M. S. and Vågnes, E. E., (2015), Preliminary assessment of a small-scale rooftop PV-grid tied in Norwegian climatic conditions, Energy Conversion and Management, 90, 458-465. doi: 10.1016/j.enconman.2014.11.028
  • [22] Kumar, N. M., Kumar, M. R., Rejoice, P. R. and Mathew, M., (2017), Performance analysis of 100 kWp grid connected Si-poly photovoltaic system using PVsyst simulation tool, Energy Procedia, 117, 180-189. doi: 10.1016/j.egypro.2017.05.121
  • [23] Okello, D., Van Dyk, E. E. and Vorster, F. J., (2015), Analysis of measured and simulated performance data of a 3.2 kWp grid-connected PV system in Port Elizabeth, South Africa, Energy conversion and management, 100, 10-15. doi: 10.1016/j.enconman.2015.04.064
  • [24] Qoaider, L. and Steinbrecht, D., (2010), Photovoltaic systems: A cost competitive option to supply energy to off-grid agricultural communities in arid region, Applied Energy, 87(2), 427-435. doi: 10.1016/j.apenergy.2009.06.012
  • [25] Singh, G. K., (2013), Solar power generation by PV (photovoltaic) technology: A review, Energy, 53, 1-13. doi: 10.1016/j.energy.2013.02.057
  • [26] Ozbay, H., Karafil, A., Onal, Y., Kesler, M. and Parmaksiz, H., (2017), The monitoring of monthly, seasonal and yearly optimum tilt angles by raspberry pi card for Bilecik city, Turkey, Energy Procedia, 113, 311-318. doi: 10.1016/j.egypro.2017.04.071
Year 2022, Issue: 051, 192 - 210, 31.12.2022

Abstract

Project Number

2020-01.BŞEÜ.03-07.

References

  • [1] Dey, D. and Subudhi, B., (2020), Design, simulation and economic evaluation of 90 kW grid connected Photovoltaic system, Energy Reports, 6, 1778-1787. doi: 10.1016/j.egyr.2020.04.027
  • [2] Owusu, P. A. and Asumadu-Sarkodie, S., (2016), A review of renewable energy sources, sustainability issues and climate change mitigation, Cogent Engineering, 3(1), 1-14. doi: 10.1080/23311916.2016.1167990
  • [3] Akinsipe, O. C., Moya, D. and Kaparaju, P., (2021), Design and economic analysis of off-grid solar PV system in Jos-Nigeria, Journal of Cleaner Production, 287, 1-11. doi:10.1016/j.jclepro.2020.125055
  • [4] Li, C., Zhou, D., Yu, W., Wang, H., Zhu, D., Sun, M. and Li, G., (2017), Performance of off-grid residential solar photovoltaic power systems using five solar tracking modes in Kunming, China, International Journal of Hydrogen Energy, 42, 6502-6510. doi: 10.1016/j.ijhydene.2017.01.033
  • [5] Eldin, S. S., Abd-Elhady, M. S. and Kandil, H. A., (2016), Feasibility of solar tracking systems for PV panels in hot and cold regions, Renewable Energy, 85, 228-233. doi: 10.1016/j.renene.2015.06.051
  • [6] Kılcı, O. and Koklu, M., (2019), The importance of fixed and variable angle in solar power plants analysis, International Journal of Applied Mathematics Electronics and Computers, 7, 75-83. doi:10.18100/ijamec.653371
  • [7] Amrollahi, M. H. and Bathaee, S. M. T., (2017), Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response, Applied energy, 202, 66-77. doi: 10.1016/j.apenergy.2017.05.116
  • [8] Umar, N., Bora, B., Banerjee, C. and Panwar, B. S., (2018), Comparison of different PV power simulation softwares: case study on performance analysis of 1 MW grid-connected PV solar power plant. International Journal of Engineering Science Invention, 7, 11-24.
  • [9] Mermoud, A. and Wittmer, B., (2014), PVSYST user’s manual, Switzerland, January.
  • [10] Kumar, R., Rajoria, C. S., Sharma, A. and Suhag, S., (2021), Design and simulation of standalone solar PV system using PVsyst Software: A case study. Materials Today: Proceedings, 46, 5322-5328. doi: doi.org/10.1016/j.csite.2019.100409
  • [11] Mandelli, S., Brivio, C., Colombo, E. and Merlo, M., (2016), A sizing methodology based on Levelized Cost of Supplied and Lost Energy for off-grid rural electrification systems, Renewable Energy, 89, 475-488. doi: 10.1016/j.renene.2015.12.032
  • [12] Smiles, M. J., Law, A. M., Urwick, A. N., Thomas, L., Irvine, L. A., Pilot, M. T. and Walker, A. B., (2022), Next steps in the footprint project: A feasibility study of installing solar panels on Bath Abbey, Energy Science & Engineering, 10, 892–902. doi:10.1002/ese3.1069
  • [13] Limem, F. and Sezen, S., (2021), Comparative Analysis of Different Photovoltaic Simulation Software: Case Study on Analyzing the Performance of a 5, 1 kWp Grid Connected Photovoltaic System, Avrupa Bilim ve Teknoloji Dergisi, 32, 816-826. doi: 10.31590/ejosat.1040126
  • [14] Jagadale, P. R., Choudhari, A. B. and Jadhav, S. S., (2021), Design and Simulation of Grid Connected Solar Si-Poly Photovoltaic Plant using PVsyst for Pune, Renewable Energy Research and Applications, 3(1), 41-49. doi: 10.22044/rera.2021.11057.1069
  • [15] Baqir, M. and Channi, H. K., (2022), Analysis and design of solar PV system using Pvsyst software, Materials Today: Proceedings, 48(5), 1332-1338. doi: 10.1016/j.matpr.2021.09.029
  • [16] Mohammed, A., Ghaithan, A., Al-Hanbali, A., Attia, A. M., Saleh, H. and Alsawafy, O., (2022), Performance evaluation and feasibility analysis of 10 kWp PV system for residential buildings in Saudi Arabia, Sustainable Energy Technologies and Assessments, 51, 1-14. doi:10.1016/j.seta.2021.101920
  • [17] Ghafoor, A. and Munir, A., (2015), Design and economics analysis of an off-grid PV system for household electrification, Renewable and Sustainable Energy Reviews, 42, 496-502. doi: 10.1016/j.rser.2014.10.012
  • [18] Sözen, A., Arcaklioğlu, E., Özalp, M. and Kanit, E. G., (2005), Solar-energy potential in Turkey. Applied Energy, 80(4), 367-381. doi: 10.1016/j.apenergy.2004.06.001
  • [19] Sharma, V., & Chandel, S. S. (2013). Performance analysis of a 190 kWp grid interactive solar photovoltaic power plant in India. Energy, 55, 476-485. doi: 10.1016/j.energy.2013.03.075
  • [20] Tripathi, B., Yadav, P., Rathod, S. and Kumar, M., (2014), Performance analysis and comparison of two silicon material based photovoltaic technologies under actual climatic conditions in Western India, Energy Conversion and Management, 80, 97-102. doi: 10.1016/j.enconman.2014.01.013
  • [21] Adaramola, M. S. and Vågnes, E. E., (2015), Preliminary assessment of a small-scale rooftop PV-grid tied in Norwegian climatic conditions, Energy Conversion and Management, 90, 458-465. doi: 10.1016/j.enconman.2014.11.028
  • [22] Kumar, N. M., Kumar, M. R., Rejoice, P. R. and Mathew, M., (2017), Performance analysis of 100 kWp grid connected Si-poly photovoltaic system using PVsyst simulation tool, Energy Procedia, 117, 180-189. doi: 10.1016/j.egypro.2017.05.121
  • [23] Okello, D., Van Dyk, E. E. and Vorster, F. J., (2015), Analysis of measured and simulated performance data of a 3.2 kWp grid-connected PV system in Port Elizabeth, South Africa, Energy conversion and management, 100, 10-15. doi: 10.1016/j.enconman.2015.04.064
  • [24] Qoaider, L. and Steinbrecht, D., (2010), Photovoltaic systems: A cost competitive option to supply energy to off-grid agricultural communities in arid region, Applied Energy, 87(2), 427-435. doi: 10.1016/j.apenergy.2009.06.012
  • [25] Singh, G. K., (2013), Solar power generation by PV (photovoltaic) technology: A review, Energy, 53, 1-13. doi: 10.1016/j.energy.2013.02.057
  • [26] Ozbay, H., Karafil, A., Onal, Y., Kesler, M. and Parmaksiz, H., (2017), The monitoring of monthly, seasonal and yearly optimum tilt angles by raspberry pi card for Bilecik city, Turkey, Energy Procedia, 113, 311-318. doi: 10.1016/j.egypro.2017.04.071
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Hülya Çınaroğlu 0000-0001-8775-1445

Yasemin Önal 0000-0003-0173-0948

Project Number 2020-01.BŞEÜ.03-07.
Publication Date December 31, 2022
Submission Date October 20, 2022
Published in Issue Year 2022 Issue: 051

Cite

IEEE H. Çınaroğlu and Y. Önal, “PERFORMANCE ANALYSIS of DIFFERENT SOLAR TRACKING SYSTEMS for OFF-GRID PHOTOVOLTAIC POWER SYSTEM in BİLECİK, TURKEY USING PVSYST SOFTWARE”, JSR-A, no. 051, pp. 192–210, December 2022.