Research Article
BibTex RIS Cite

First Cluster Second Route Approach with Collaboration Unmanned Aerial Vehicle in Post-Disaster Humanitarian Logistic

Year 2023, Volume: 8 Issue: 2, 97 - 111, 18.01.2024
https://doi.org/10.26650/JTL.2023.1372701

Abstract

It is vital that post-disaster interventions are fast and effective. At this point, the integration of unmanned aerial vehicles in post-disaster logistics, mapping operations, assessment, search and rescue operations has the potential for process optimization. Unmanned aerial vehicles make a significant contribution to these operations by reaching hard-to-reach areas, detecting damage, identifying people trapped under submerged debris, and ensuring the rapid delivery of relief aid, so it is critical to integrate unmanned aerial vehicles in these areas. In this study, a multi-depot vehicle routing model is proposed for application in disaster logistics. Unlike the previous studies in this field, this study contributes to the literature by incorporating unmanned aerial vehicles into logistics vehicles and implementing a first cluster second route approach. This proposed model, which minimizes the time required for humanitarian relief after a disaster, is solved by mixing integer programing with the GAMS/CPLEX solver.

References

  • Adiguzel, S. (2019). Logistics management in disaster. Journal of Management Marketing and Logistics, 6(4), 212-224. Retrieved from https://dergipark.org.tr/en/pub/jmml/issue/51259/667138 google scholar
  • Adsanver, B., Coban, E., & Balcik, B. (2021). Drone routing for post-disaster damage assessment. Dynamics of disasters: Impact, risk, resilience, and solutions, 1-29. Doi: https://doi.org/10.1007/978-3-030-64973-9_1 google scholar
  • Alsamhi, S. H., Shvetsov, A. V., Kumar, S., Shvetsova, S. V., Alhartomi, M. A., Hawbani, A., ... & Nyangaresi, V. O. (2022). UAV computing-assisted search and rescue mission framework for disaster and harsh environment mitigation. Drones, 6(7), 154. Doi:https://doi.org/10.3390/drones6070154 google scholar
  • Bravo, R., & Leiras, A. (2015). Literature review of the application of UAVs in humanitarian relief. Proceedings of the XXXV Encontro Nacional de Engenharia de Producao, Fortaleza, Brazil, 13-16. Retrieved from https://www.researchgate.net/publication/303938866 google scholar
  • Calamoneri, T., Coro, F., & Mancini, S. (2022). Multi-Depot Multi-Trip Vehicle Routing with Total Completion Time Minimization. arXiv preprint arXiv:2207.06155. Doi : https://doi.org/10.48550/arXiv.2207.06155 google scholar
  • Chowdhury, S., Shahvari, O., Marufuzzaman, M., Li, X., & Bian, L. (2021). Drone routing and optimization for post-disaster inspection.Computers & Industrial Engineering, 159, 107495. Doi: https://doi.org/10.1016/j.cie.2021.107495 google scholar
  • Arca, D. (2012). Afet yönetiminde coğrafi bilgi sistemi ve uzaktan algılama. Karaelmas Fen ve Mühendislik Dergisi, 2(2), 53-61. Retrieved fromhttps://dergipark.org.tr/en/pub/karaelmasfen/issue/57130/806051 google scholar
  • Martins, L. D., Hirsch, P., & Juan, A. A. (2021). Agile optimization of a two-echelon vehicle routing problem with pickup and delivery. International Transactions in Operational Research, 28(1), 201-221. Doi: https://doi.org/10.1111/itor.12796 google scholar
  • Eligüzel, İ. M., & Özceylan, E. (2021). Application of an improved discrete crow search algorithm with local search and elitism on a humanitarian relief case. Artificial Intelligence Review, 54, 4591-4617. Doi: https://doi.org/10.1007/s10462-021-10006-2 google scholar
  • Estrada, M. A. R., & Ndoma, A. (2019). The uses of unmanned aerial vehicles-UAV’s-(or drones) in social logistic: Natural disasters response and humanitarian relief aid. Procedia Computer Science, 149, 375-383. Doi: https://doi.org/10.1016/j.procs.2019.01.151 google scholar
  • Faiz, T. I., Vogiatzis, C., & Noor-E-Alam, M. (2024). Computational approaches for solving two-echelon vehicle and UAV routing problems for post-disaster humanitarian operations. Expert Systems with Applications, 237, 121473. Doi: https://doi.org/10.1016/j.eswa.2023.121473 google scholar
  • Faulin, J., Juan, A., Lera, F., & Grasman, S. (2011). Solving the capacitated vehicle routing problem with environmental crite-ria based on real estimations in road transportation: a case study. Procedia-social and behavioral sciences, 20, 323-334. Doi: https://doi.org/10.1016/j.sbspro.2011.08.038 google scholar
  • Grogan, S., Perrier, N., Gamache, M., & Pellerin, R. (2022). Location of disaster assessment UAVs using historical tornado data. Geomatics, Natural Hazards and Risk, 13(1), 2385-2404. Doi: https://doi.org/10.1080/19475705.2022.2115407 google scholar
  • Hachiya, D., Mas, E., & Koshimura, S. (2022). A reinforcement learning model of multiple UAVs for transporting emergency relief supplies. Applied Sciences, 12(20), 10427. Doi: https://doi.org/10.3390/app122010427 google scholar
  • Han, Y. Q., Li, J. Q., Liu, Z., Liu, C., & Tian, J. (2020). Metaheuristic algorithm for solving the multi-objective vehicle rout-ing problem with time window and drones. International Journal of Advanced Robotic Systems, 17(2), 1729881420920031. Doi:https://doi.org/10.1177/1729881420920031 google scholar
  • Eligüzel, İ. M., & Özceylan, E. (2020). P-median and maximum coverage models for optimization of distribution plans: A case of United Nations Humanitarian response depots. Smart and Sustainable Supply Chain and Logistics-Trends, Challenges, Methods and Best Practices: Volume 1, 225-246. Doi: https://doi.org/10.1007/978-3-030-61947-3_15 google scholar
  • Kula, U., Tozanli, O., & Tarakcio, S. (2012). Emergency vehicle routing in disaster response operations. In POMS 23rd Annual Conference, Chicago (April 20-23). Retrieved from https://www.pomsmeetings.org/confpapers/025/025-1259.pdf google scholar
  • Li, X., Li, P., Zhao, Y., Zhang, L., & Dong, Y. (2021). A hybrid large neighborhood search algorithm for solving the multi depot UAV swarm routing problem. IEEE Access, 9, 104115-104126. Doi: https://doi.org/10.1109/ACCESS.2021.3098863 google scholar
  • Liperda, R. I., Redi, A. P., Sekaringtyas, N. N., Astiana, H. B., Sopha, B. M., & Asih, A. M. S. (2020, December). Simulated annealing algorithm performance on two-echelon vehicle routing problem-mapping operation with drones. In 2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 1142-1146). IEEE. Doi: https://doi.org/10.1109/IEEM45057.2020.9309923 google scholar
  • Lu, Y., Yang, C., & Yang, J. (2022). A multi-objective humanitarian pickup and delivery vehicle routing problem with drones. Annals of Operations Research, 319(1), 291-353. Doi: https://doi.org/10.1007/s10479-022-04816-y google scholar
  • Rabta, B., Wankmüller, C., & Reiner, G. (2018). A drone fleet model for last-mile distribution in disaster relief operations. International Journal of Disaster Risk Reduction, 28, 107-112. Doi: https://doi.org/10.1016/j.ijdrr.2018.02.020 google scholar
  • Redi, A. A. N. P., Sopha, B. M., Asih, A. M. S., & Liperda, R. I. (2021). Collaborative hybrid aerial and ground vehicle routing for post-disaster assessment. Sustainability, 13(22), 12841. Doi: https://doi.org/10.3390/su132212841 google scholar
  • Redi, A. P., Liperda, R. I., Sopha, B. M., Asih, A. M. S., Sekaringtyas, N. N., & Astiana, H. B. (2020, September). Relief Mapping Assessment using Two-Echelon Vehicle Routing Problem with Drone. In 2020 6th International Conference on Science and Technology (ICST) (Vol. 1, pp. 1-5). IEEE. Doi: https://doi.org/10.1109/ICST50505.2020.9732812 google scholar
  • ReVelle, C. S., & Swain, R. W. (1970). Central facilities location. Geographical analysis, 2(1), 30-42. Doi: https://doi.org/10.1111/j.1538-4632.1970.tb00142.x google scholar
  • Ribeiro, R. G., Cota, L. P., Euzebio, T. A., Ramirez, J. A., & Guimarâes, F. G. (2021). Unmanned-aerial-vehicle routing problem with mobile charging stations for assisting search and rescue missions in postdisaster scenarios. IEEE transactions on systems, man, and cybernetics: Systems, 52(11), 6682-6696. Doi: https://doi.org/10.1109/TSMC.2021.3088776 google scholar
  • Shadlou, M. S., Ranjbar, M., & Salari, M. (2023). A logic-based Benders decomposition algorithm for a repair crew routing and drone scheduling problem after a natural disaster. Computers & Industrial Engineering, 183, 109542. Doi: https://doi.org/10.1016/j.cie.2023.109542 google scholar
  • Han, S. , Özer, B. , Alioğlu, B. , Polat, Ö. & Aktin, A. T. (2019). A mathematical model for the delivery routing problem via drones . Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25 (1), 89-97. Retrieved from https://dergipark.org.tr/en/pub/pajes/issue/43460/532193 google scholar
  • Yan, R., Zhu, X., Zhu, X., & Peng, R. (2023). Joint optimisation of task abortions and routes of truck-and-drone systems under random attacks. Reliability Engineering & System Safety, 235, 109249. Doi: https://doi.org/10.1016/j.ress.2023.109249 google scholar
  • Yin, Y., Yang, Y., Yu, Y., Wang, D., & Cheng, T. C. E. (2023). Robust vehicle routing with drones under uncertain demands and truck travel times in humanitarian logistics. Transportation Research Part B: Methodological, 174, 102781. Doi: https://doi.org/10.1016/j.trb.2023.102781 google scholar
  • Zhang, G., Jia, N., Zhu, N., Adulyasak, Y., & Ma, S. (2023). Robust drone selective routing in humanitarian transportation network assessment. European Journal of Operational Research, 305(1), 400-428. Doi: https://doi.org/10.1016/j.ejor.2022.05.046 google scholar
  • Zhang, G., Zhu, N., Ma, S., & Xia, J. (2021). Humanitarian relief network assessment using collaborative truck-and-drone system. Transportation Research Part E: Logistics and Transportation Review, 152, 102417. Doi: https://doi.org/10.1016/j.tre.2021.102417 google scholar
  • Zhang, J., Zhu, Y., Li, X., Ming, M., Wang, W., & Wang, T. (2022). Multi-Trip Time-Dependent Vehicle Routing Problem with Split Delivery. Mathematics, 10(19), 3527. Doi: https://doi.org/10.3390/math10193527 google scholar
Year 2023, Volume: 8 Issue: 2, 97 - 111, 18.01.2024
https://doi.org/10.26650/JTL.2023.1372701

Abstract

References

  • Adiguzel, S. (2019). Logistics management in disaster. Journal of Management Marketing and Logistics, 6(4), 212-224. Retrieved from https://dergipark.org.tr/en/pub/jmml/issue/51259/667138 google scholar
  • Adsanver, B., Coban, E., & Balcik, B. (2021). Drone routing for post-disaster damage assessment. Dynamics of disasters: Impact, risk, resilience, and solutions, 1-29. Doi: https://doi.org/10.1007/978-3-030-64973-9_1 google scholar
  • Alsamhi, S. H., Shvetsov, A. V., Kumar, S., Shvetsova, S. V., Alhartomi, M. A., Hawbani, A., ... & Nyangaresi, V. O. (2022). UAV computing-assisted search and rescue mission framework for disaster and harsh environment mitigation. Drones, 6(7), 154. Doi:https://doi.org/10.3390/drones6070154 google scholar
  • Bravo, R., & Leiras, A. (2015). Literature review of the application of UAVs in humanitarian relief. Proceedings of the XXXV Encontro Nacional de Engenharia de Producao, Fortaleza, Brazil, 13-16. Retrieved from https://www.researchgate.net/publication/303938866 google scholar
  • Calamoneri, T., Coro, F., & Mancini, S. (2022). Multi-Depot Multi-Trip Vehicle Routing with Total Completion Time Minimization. arXiv preprint arXiv:2207.06155. Doi : https://doi.org/10.48550/arXiv.2207.06155 google scholar
  • Chowdhury, S., Shahvari, O., Marufuzzaman, M., Li, X., & Bian, L. (2021). Drone routing and optimization for post-disaster inspection.Computers & Industrial Engineering, 159, 107495. Doi: https://doi.org/10.1016/j.cie.2021.107495 google scholar
  • Arca, D. (2012). Afet yönetiminde coğrafi bilgi sistemi ve uzaktan algılama. Karaelmas Fen ve Mühendislik Dergisi, 2(2), 53-61. Retrieved fromhttps://dergipark.org.tr/en/pub/karaelmasfen/issue/57130/806051 google scholar
  • Martins, L. D., Hirsch, P., & Juan, A. A. (2021). Agile optimization of a two-echelon vehicle routing problem with pickup and delivery. International Transactions in Operational Research, 28(1), 201-221. Doi: https://doi.org/10.1111/itor.12796 google scholar
  • Eligüzel, İ. M., & Özceylan, E. (2021). Application of an improved discrete crow search algorithm with local search and elitism on a humanitarian relief case. Artificial Intelligence Review, 54, 4591-4617. Doi: https://doi.org/10.1007/s10462-021-10006-2 google scholar
  • Estrada, M. A. R., & Ndoma, A. (2019). The uses of unmanned aerial vehicles-UAV’s-(or drones) in social logistic: Natural disasters response and humanitarian relief aid. Procedia Computer Science, 149, 375-383. Doi: https://doi.org/10.1016/j.procs.2019.01.151 google scholar
  • Faiz, T. I., Vogiatzis, C., & Noor-E-Alam, M. (2024). Computational approaches for solving two-echelon vehicle and UAV routing problems for post-disaster humanitarian operations. Expert Systems with Applications, 237, 121473. Doi: https://doi.org/10.1016/j.eswa.2023.121473 google scholar
  • Faulin, J., Juan, A., Lera, F., & Grasman, S. (2011). Solving the capacitated vehicle routing problem with environmental crite-ria based on real estimations in road transportation: a case study. Procedia-social and behavioral sciences, 20, 323-334. Doi: https://doi.org/10.1016/j.sbspro.2011.08.038 google scholar
  • Grogan, S., Perrier, N., Gamache, M., & Pellerin, R. (2022). Location of disaster assessment UAVs using historical tornado data. Geomatics, Natural Hazards and Risk, 13(1), 2385-2404. Doi: https://doi.org/10.1080/19475705.2022.2115407 google scholar
  • Hachiya, D., Mas, E., & Koshimura, S. (2022). A reinforcement learning model of multiple UAVs for transporting emergency relief supplies. Applied Sciences, 12(20), 10427. Doi: https://doi.org/10.3390/app122010427 google scholar
  • Han, Y. Q., Li, J. Q., Liu, Z., Liu, C., & Tian, J. (2020). Metaheuristic algorithm for solving the multi-objective vehicle rout-ing problem with time window and drones. International Journal of Advanced Robotic Systems, 17(2), 1729881420920031. Doi:https://doi.org/10.1177/1729881420920031 google scholar
  • Eligüzel, İ. M., & Özceylan, E. (2020). P-median and maximum coverage models for optimization of distribution plans: A case of United Nations Humanitarian response depots. Smart and Sustainable Supply Chain and Logistics-Trends, Challenges, Methods and Best Practices: Volume 1, 225-246. Doi: https://doi.org/10.1007/978-3-030-61947-3_15 google scholar
  • Kula, U., Tozanli, O., & Tarakcio, S. (2012). Emergency vehicle routing in disaster response operations. In POMS 23rd Annual Conference, Chicago (April 20-23). Retrieved from https://www.pomsmeetings.org/confpapers/025/025-1259.pdf google scholar
  • Li, X., Li, P., Zhao, Y., Zhang, L., & Dong, Y. (2021). A hybrid large neighborhood search algorithm for solving the multi depot UAV swarm routing problem. IEEE Access, 9, 104115-104126. Doi: https://doi.org/10.1109/ACCESS.2021.3098863 google scholar
  • Liperda, R. I., Redi, A. P., Sekaringtyas, N. N., Astiana, H. B., Sopha, B. M., & Asih, A. M. S. (2020, December). Simulated annealing algorithm performance on two-echelon vehicle routing problem-mapping operation with drones. In 2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 1142-1146). IEEE. Doi: https://doi.org/10.1109/IEEM45057.2020.9309923 google scholar
  • Lu, Y., Yang, C., & Yang, J. (2022). A multi-objective humanitarian pickup and delivery vehicle routing problem with drones. Annals of Operations Research, 319(1), 291-353. Doi: https://doi.org/10.1007/s10479-022-04816-y google scholar
  • Rabta, B., Wankmüller, C., & Reiner, G. (2018). A drone fleet model for last-mile distribution in disaster relief operations. International Journal of Disaster Risk Reduction, 28, 107-112. Doi: https://doi.org/10.1016/j.ijdrr.2018.02.020 google scholar
  • Redi, A. A. N. P., Sopha, B. M., Asih, A. M. S., & Liperda, R. I. (2021). Collaborative hybrid aerial and ground vehicle routing for post-disaster assessment. Sustainability, 13(22), 12841. Doi: https://doi.org/10.3390/su132212841 google scholar
  • Redi, A. P., Liperda, R. I., Sopha, B. M., Asih, A. M. S., Sekaringtyas, N. N., & Astiana, H. B. (2020, September). Relief Mapping Assessment using Two-Echelon Vehicle Routing Problem with Drone. In 2020 6th International Conference on Science and Technology (ICST) (Vol. 1, pp. 1-5). IEEE. Doi: https://doi.org/10.1109/ICST50505.2020.9732812 google scholar
  • ReVelle, C. S., & Swain, R. W. (1970). Central facilities location. Geographical analysis, 2(1), 30-42. Doi: https://doi.org/10.1111/j.1538-4632.1970.tb00142.x google scholar
  • Ribeiro, R. G., Cota, L. P., Euzebio, T. A., Ramirez, J. A., & Guimarâes, F. G. (2021). Unmanned-aerial-vehicle routing problem with mobile charging stations for assisting search and rescue missions in postdisaster scenarios. IEEE transactions on systems, man, and cybernetics: Systems, 52(11), 6682-6696. Doi: https://doi.org/10.1109/TSMC.2021.3088776 google scholar
  • Shadlou, M. S., Ranjbar, M., & Salari, M. (2023). A logic-based Benders decomposition algorithm for a repair crew routing and drone scheduling problem after a natural disaster. Computers & Industrial Engineering, 183, 109542. Doi: https://doi.org/10.1016/j.cie.2023.109542 google scholar
  • Han, S. , Özer, B. , Alioğlu, B. , Polat, Ö. & Aktin, A. T. (2019). A mathematical model for the delivery routing problem via drones . Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25 (1), 89-97. Retrieved from https://dergipark.org.tr/en/pub/pajes/issue/43460/532193 google scholar
  • Yan, R., Zhu, X., Zhu, X., & Peng, R. (2023). Joint optimisation of task abortions and routes of truck-and-drone systems under random attacks. Reliability Engineering & System Safety, 235, 109249. Doi: https://doi.org/10.1016/j.ress.2023.109249 google scholar
  • Yin, Y., Yang, Y., Yu, Y., Wang, D., & Cheng, T. C. E. (2023). Robust vehicle routing with drones under uncertain demands and truck travel times in humanitarian logistics. Transportation Research Part B: Methodological, 174, 102781. Doi: https://doi.org/10.1016/j.trb.2023.102781 google scholar
  • Zhang, G., Jia, N., Zhu, N., Adulyasak, Y., & Ma, S. (2023). Robust drone selective routing in humanitarian transportation network assessment. European Journal of Operational Research, 305(1), 400-428. Doi: https://doi.org/10.1016/j.ejor.2022.05.046 google scholar
  • Zhang, G., Zhu, N., Ma, S., & Xia, J. (2021). Humanitarian relief network assessment using collaborative truck-and-drone system. Transportation Research Part E: Logistics and Transportation Review, 152, 102417. Doi: https://doi.org/10.1016/j.tre.2021.102417 google scholar
  • Zhang, J., Zhu, Y., Li, X., Ming, M., Wang, W., & Wang, T. (2022). Multi-Trip Time-Dependent Vehicle Routing Problem with Split Delivery. Mathematics, 10(19), 3527. Doi: https://doi.org/10.3390/math10193527 google scholar
There are 32 citations in total.

Details

Primary Language English
Subjects Transportation, Logistics and Supply Chains (Other)
Journal Section Research Article
Authors

Zeynep Yüksel 0009-0006-8201-372X

Dursun Emre Epcim 0009-0005-0082-8750

Suleyman Mete 0000-0001-7631-5584

Publication Date January 18, 2024
Submission Date October 7, 2023
Acceptance Date October 23, 2023
Published in Issue Year 2023 Volume: 8 Issue: 2

Cite

APA Yüksel, Z., Epcim, D. E., & Mete, S. (2024). First Cluster Second Route Approach with Collaboration Unmanned Aerial Vehicle in Post-Disaster Humanitarian Logistic. Journal of Transportation and Logistics, 8(2), 97-111. https://doi.org/10.26650/JTL.2023.1372701
AMA Yüksel Z, Epcim DE, Mete S. First Cluster Second Route Approach with Collaboration Unmanned Aerial Vehicle in Post-Disaster Humanitarian Logistic. JTL. January 2024;8(2):97-111. doi:10.26650/JTL.2023.1372701
Chicago Yüksel, Zeynep, Dursun Emre Epcim, and Suleyman Mete. “First Cluster Second Route Approach With Collaboration Unmanned Aerial Vehicle in Post-Disaster Humanitarian Logistic”. Journal of Transportation and Logistics 8, no. 2 (January 2024): 97-111. https://doi.org/10.26650/JTL.2023.1372701.
EndNote Yüksel Z, Epcim DE, Mete S (January 1, 2024) First Cluster Second Route Approach with Collaboration Unmanned Aerial Vehicle in Post-Disaster Humanitarian Logistic. Journal of Transportation and Logistics 8 2 97–111.
IEEE Z. Yüksel, D. E. Epcim, and S. Mete, “First Cluster Second Route Approach with Collaboration Unmanned Aerial Vehicle in Post-Disaster Humanitarian Logistic”, JTL, vol. 8, no. 2, pp. 97–111, 2024, doi: 10.26650/JTL.2023.1372701.
ISNAD Yüksel, Zeynep et al. “First Cluster Second Route Approach With Collaboration Unmanned Aerial Vehicle in Post-Disaster Humanitarian Logistic”. Journal of Transportation and Logistics 8/2 (January 2024), 97-111. https://doi.org/10.26650/JTL.2023.1372701.
JAMA Yüksel Z, Epcim DE, Mete S. First Cluster Second Route Approach with Collaboration Unmanned Aerial Vehicle in Post-Disaster Humanitarian Logistic. JTL. 2024;8:97–111.
MLA Yüksel, Zeynep et al. “First Cluster Second Route Approach With Collaboration Unmanned Aerial Vehicle in Post-Disaster Humanitarian Logistic”. Journal of Transportation and Logistics, vol. 8, no. 2, 2024, pp. 97-111, doi:10.26650/JTL.2023.1372701.
Vancouver Yüksel Z, Epcim DE, Mete S. First Cluster Second Route Approach with Collaboration Unmanned Aerial Vehicle in Post-Disaster Humanitarian Logistic. JTL. 2024;8(2):97-111.



The JTL is being published twice (in April and October of) a year, as an official international peer-reviewed journal of the School of Transportation and Logistics at Istanbul University.