BibTex RIS Cite
Year 2017, Volume: 1 Issue: 1, 51 - 66, 01.12.2017

Abstract

Electronic card holder systems have great importance to provide flight safety. Since these systems are high-cost sytems, the design phase should be carried out in a planned manner. Reducing the design cost of electronic card holder systems and enhancing their functional performance characteristics is highly regarded and studied extensively by aircraft manufacturers. Many experts work in the design phase and therefore subjective judgements and evaluations bring uncertainities. In this context, the use of fuzzy set theory together with Quality Function Deployment (QFD) in the design phase will increase the performance of the QFD which will provide more accurate solutions. In the study, efficiency of the design process is tried to increase by using two phase Fuzzy OFD (FQFD) in the design process of electronic card holder systems based on company requirements. It is aimed to decrease production tolerances in electronic card holder systems. In the first phase, relative absolute weight of company’s requirements and relative importance weights of engineering metrics are identified. In the second phase, it was decided which piece characteristics will be changed in the new design. As a result, the need for minimum compression force among technical requirements and the ability to dissipate heat among company’s requirements are identifed as the most important issues. According to these, it was decided to make changes on control box guard

References

  • Azadnia, A. H. & Ghadimi, P. (2018). An Integrated Approach of Fuzzy Quality Function Deployment and Fuzzy Multi-Objective Programming Tosustainable Supplier Selection and Order Allocation. Journal of Optimization in Industrial Engineering, 11(1): 191-200.
  • Bellman, R. E. & Zadeh, L. A. (1977). Local and fuzzy logics. Modern uses of multiple-valued logic, 103- 165.
  • Bevan, N. (1999). Quality in use: meeting user needs for quality. The Journal of Systems and Software, 49(1): 89-96).
  • Büyüközkan, G. & Çifçi, G. (2015). An extended quality function deployment incorporating fuzzy logic and GDM under different preference structures. International Journal of Computational Intelligence Systems, 8(3): 438-454.
  • Chen, L. H. & Weng, M. C. (2003). A Fuzzy Model for Exploiting Quality Function Deployment. Mathematical and Computer Modelling, 38 (5–6): 559–570.
  • Dubois, D. & Prade, H. (1980). Systems of linear fuzzy constraints. Fuzzy sets and systems, 3(1): 37-48.
  • Kağnıcıoğlu, H.C. (2002). Ürün Tasarımında Kalite Fonksiyon Yayılımı.İktisadi ve İdari Bilimler Fakültesi Dergisi. Uludağ Üniversitesi, 1:177–188.
  • Klir, G.J. & Yuan, B. Fuzzy Sets and Fuzzy Logics. Prentice Hall PTR. 1995.
  • Ko, W. C. & Chen, L. H. (2014). An approach of new product planning using quality function deployment and fuzzy linear programming model. International Journal of Production Research, 52(6): 1728-1743.
  • Lima-Junior, F.R. & Carpinetti, L.C.R. (2016). A multicriteria approach based on fuzzy QFD for choosing criteria for supplier selection. Computers and Industrial Engineering, 201:269-285..
  • Onar, S.Ç., Büyüközkan, G., Öztayşi, B., Kahraman, C. (2016). A new hesitant fuzzy QFD approach: An application to computer workstation selection. Applied Soft Computing, 46:1-16.
  • Raut, R. D. & Mahajan, V. C. (2015). A new strategic approach of fuzzy-quality function deployment and analytical hierarchy process in construction industry.
  • International Journal of Logistics Systems and Management, 20(2). 260-290.
  • Vinodh, S., Manjunatheshwara, K. J.. Sundaram, S. K. & Kirthivasan, V. (2017). Application of fuzzy quality function deployment for sustainable design of consumer electronics products: a case study. Clean Technologies and Environmental Policy. 19(4). 1021-1030.
  • Wu, S. M., Liu, H. C. & Wang, L. E. (2017). Hesitant fuzzy integrated MCDM approach for quality function deployment: a case study in electric vehicle. International Journal of Production Research, 55(15): 4436- 4449.
  • Wu, X., Nie. L. & Xu, M. (2017). Robust fuzzy quality function deployment based on the mean-end-chain concept: service station evaluation problem for rail catering services. European Journal of Operational Research.
  • Wu, Y. H. & Ho, C. C. (2015). Integration of green quality function deployment and fuzzy theory: a case study on green mobile phone design. Journal of Cleaner Production, 108: 271-280.
  • Yan, H. B.. & Ma, T. (2015). A group decision-making approach to uncertain quality function deployment based on fuzzy preference relation and fuzzy majority. European Journal of Operational Research, 241(3). 815-829.
  • Zadeh, L. A. (1987). Fuzzy sets and applications: selected papers.
  • Zadeh, L.A. (1965). Fuzzy Sets. Information and Control, 8: 338-353.
  • Zaim, S., Sevkli, M., Akdağ, H.C., Demirel, Ö.F., Yayla, A.Y. (2016). Use of ANP weighted crisp and fuzzy QFD for product development. Expert Systems with Applications. 41:4464-4474.

BULANIK KALİTE FONKSİYON YAYILIMI (BKFY) TEMELLİ TASARIM GELİŞTİRME YAKLAŞIMI

Year 2017, Volume: 1 Issue: 1, 51 - 66, 01.12.2017

Abstract

Elektronik kart tutucu sistemleri uçuş güvenliğinin sağlanması açısından büyük öneme sahiptir. Bu sistemler, yüksek maliyetli sistemler oldukları için tasarım aşaması planlı bir şekilde yürütülmelidir. Elektronik kart tutucu sistemlerinin tasarım maliyetlerini azaltmak ve fonksiyonel performans özelliklerini arttırmak, uçak üreticileri tarafından oldukça önemsenmekte ve üzerinde yoğun bir şekilde çalışılmaktadır. Tasarım aşamasında birçok uzman görev almakta ve bu nedenle sübjektif yargılar ve değerlendirmeler belirsizlikleri de beraberinde getirmektedir. Bu kapsamda, tasarım aşamasında KFY ile bulanık küme teorisinin birlikte kullanılması daha hassas çözümler elde edilmesini sağlayacak ve KFY’nin performansını arttıracaktır. Çalışmada, elektronik kart tutucu sistemlerinin tasarlanması sürecinde firma istekleri temelinde iki aşamalı bulanık kalite fonksiyon yayılımı (BKFY) yaklaşımı kullanılarak sürecin etkinliği arttırılmaya çalışılmıştır. Burada amaç, elektronik kart tutucu sistemlerindeki üretim toleranslarını azaltmaktır. Birinci aşamada, firma isteklerinin göreli mutlak ağırlıkları ve mühendislik metriklerinin göreli önem ağırlıkları belirlenmiştir. İkinci aşamada ise yeni tasarımda hangi parça karakteristikleri üzerinde değişim yapılacağına karar verilmiştir. Sonuç olarak; teknik gereksinimler arasından minimum sıkıştırma kuvvetine ihtiyaç duyulması gereksinimi, firma istekleri arasından da ısıyı yayabilme özelliğinin olması en önemli unsurlar olarak belirlenmiştir. Buna göre kontrol kutusu muhafazasının üzerinde tasarım değişikliğinin yapılması gerektiği belirlenmiştir

References

  • Azadnia, A. H. & Ghadimi, P. (2018). An Integrated Approach of Fuzzy Quality Function Deployment and Fuzzy Multi-Objective Programming Tosustainable Supplier Selection and Order Allocation. Journal of Optimization in Industrial Engineering, 11(1): 191-200.
  • Bellman, R. E. & Zadeh, L. A. (1977). Local and fuzzy logics. Modern uses of multiple-valued logic, 103- 165.
  • Bevan, N. (1999). Quality in use: meeting user needs for quality. The Journal of Systems and Software, 49(1): 89-96).
  • Büyüközkan, G. & Çifçi, G. (2015). An extended quality function deployment incorporating fuzzy logic and GDM under different preference structures. International Journal of Computational Intelligence Systems, 8(3): 438-454.
  • Chen, L. H. & Weng, M. C. (2003). A Fuzzy Model for Exploiting Quality Function Deployment. Mathematical and Computer Modelling, 38 (5–6): 559–570.
  • Dubois, D. & Prade, H. (1980). Systems of linear fuzzy constraints. Fuzzy sets and systems, 3(1): 37-48.
  • Kağnıcıoğlu, H.C. (2002). Ürün Tasarımında Kalite Fonksiyon Yayılımı.İktisadi ve İdari Bilimler Fakültesi Dergisi. Uludağ Üniversitesi, 1:177–188.
  • Klir, G.J. & Yuan, B. Fuzzy Sets and Fuzzy Logics. Prentice Hall PTR. 1995.
  • Ko, W. C. & Chen, L. H. (2014). An approach of new product planning using quality function deployment and fuzzy linear programming model. International Journal of Production Research, 52(6): 1728-1743.
  • Lima-Junior, F.R. & Carpinetti, L.C.R. (2016). A multicriteria approach based on fuzzy QFD for choosing criteria for supplier selection. Computers and Industrial Engineering, 201:269-285..
  • Onar, S.Ç., Büyüközkan, G., Öztayşi, B., Kahraman, C. (2016). A new hesitant fuzzy QFD approach: An application to computer workstation selection. Applied Soft Computing, 46:1-16.
  • Raut, R. D. & Mahajan, V. C. (2015). A new strategic approach of fuzzy-quality function deployment and analytical hierarchy process in construction industry.
  • International Journal of Logistics Systems and Management, 20(2). 260-290.
  • Vinodh, S., Manjunatheshwara, K. J.. Sundaram, S. K. & Kirthivasan, V. (2017). Application of fuzzy quality function deployment for sustainable design of consumer electronics products: a case study. Clean Technologies and Environmental Policy. 19(4). 1021-1030.
  • Wu, S. M., Liu, H. C. & Wang, L. E. (2017). Hesitant fuzzy integrated MCDM approach for quality function deployment: a case study in electric vehicle. International Journal of Production Research, 55(15): 4436- 4449.
  • Wu, X., Nie. L. & Xu, M. (2017). Robust fuzzy quality function deployment based on the mean-end-chain concept: service station evaluation problem for rail catering services. European Journal of Operational Research.
  • Wu, Y. H. & Ho, C. C. (2015). Integration of green quality function deployment and fuzzy theory: a case study on green mobile phone design. Journal of Cleaner Production, 108: 271-280.
  • Yan, H. B.. & Ma, T. (2015). A group decision-making approach to uncertain quality function deployment based on fuzzy preference relation and fuzzy majority. European Journal of Operational Research, 241(3). 815-829.
  • Zadeh, L. A. (1987). Fuzzy sets and applications: selected papers.
  • Zadeh, L.A. (1965). Fuzzy Sets. Information and Control, 8: 338-353.
  • Zaim, S., Sevkli, M., Akdağ, H.C., Demirel, Ö.F., Yayla, A.Y. (2016). Use of ANP weighted crisp and fuzzy QFD for product development. Expert Systems with Applications. 41:4464-4474.
There are 21 citations in total.

Details

Other ID JA75DS94VY
Journal Section Research Article
Authors

Gülin Feryal Can This is me

Kumru Didem Atalay This is me

Ergün Eraslan This is me

Publication Date December 1, 2017
Submission Date January 1, 2017
Published in Issue Year 2017 Volume: 1 Issue: 1

Cite

APA Can, G. F., Atalay, K. D., & Eraslan, E. (2017). BULANIK KALİTE FONKSİYON YAYILIMI (BKFY) TEMELLİ TASARIM GELİŞTİRME YAKLAŞIMI. Journal of Turkish Operations Management, 1(1), 51-66.
AMA Can GF, Atalay KD, Eraslan E. BULANIK KALİTE FONKSİYON YAYILIMI (BKFY) TEMELLİ TASARIM GELİŞTİRME YAKLAŞIMI. JTOM. December 2017;1(1):51-66.
Chicago Can, Gülin Feryal, Kumru Didem Atalay, and Ergün Eraslan. “BULANIK KALİTE FONKSİYON YAYILIMI (BKFY) TEMELLİ TASARIM GELİŞTİRME YAKLAŞIMI”. Journal of Turkish Operations Management 1, no. 1 (December 2017): 51-66.
EndNote Can GF, Atalay KD, Eraslan E (December 1, 2017) BULANIK KALİTE FONKSİYON YAYILIMI (BKFY) TEMELLİ TASARIM GELİŞTİRME YAKLAŞIMI. Journal of Turkish Operations Management 1 1 51–66.
IEEE G. F. Can, K. D. Atalay, and E. Eraslan, “BULANIK KALİTE FONKSİYON YAYILIMI (BKFY) TEMELLİ TASARIM GELİŞTİRME YAKLAŞIMI”, JTOM, vol. 1, no. 1, pp. 51–66, 2017.
ISNAD Can, Gülin Feryal et al. “BULANIK KALİTE FONKSİYON YAYILIMI (BKFY) TEMELLİ TASARIM GELİŞTİRME YAKLAŞIMI”. Journal of Turkish Operations Management 1/1 (December 2017), 51-66.
JAMA Can GF, Atalay KD, Eraslan E. BULANIK KALİTE FONKSİYON YAYILIMI (BKFY) TEMELLİ TASARIM GELİŞTİRME YAKLAŞIMI. JTOM. 2017;1:51–66.
MLA Can, Gülin Feryal et al. “BULANIK KALİTE FONKSİYON YAYILIMI (BKFY) TEMELLİ TASARIM GELİŞTİRME YAKLAŞIMI”. Journal of Turkish Operations Management, vol. 1, no. 1, 2017, pp. 51-66.
Vancouver Can GF, Atalay KD, Eraslan E. BULANIK KALİTE FONKSİYON YAYILIMI (BKFY) TEMELLİ TASARIM GELİŞTİRME YAKLAŞIMI. JTOM. 2017;1(1):51-66.

2229319697  logo   logo-minik.png 200311739617396