Research Article
BibTex RIS Cite
Year 2021, Volume: 4 Issue: 2, 140 - 156, 31.07.2021
https://doi.org/10.33773/jum.956862

Abstract

References

  • H.H. Hacısalihoglu, The Motion Geometry and Quatenions Theory (in Turkish), Gazi University Publications, (1983).
  • M. Turgut and S. Yılmaz, Smarandache Curves in Minkowski Space-time, International Journal of Mathematical Combinatorics, 3, 51-55, (2008).
  • A. T. Ali, Special Smarandache Curves in the Euclidean Space, International Journal of Mathematical Combinatorics, 2, 30-36, (2010).
  • S. Şenyurt and S. Sivas, An Application of Smarandache Curve, Ordu Univ. J. Sci. Tech. 3(1), 46-60, (2013).
  • K. Taşköprü and M. Tosun, Smarandache Curves on S2, Boletim da Sociedade paranaense de Matematica 3 serie, 32(1):51-59, (2014).
  • M. Çetin, Y. Tuncer, M.K. Karacan, Smarandache curves according to Bishop frame in Euclidean 3-space. General Mathematics Notes, 20:50-66 (2014).
  • N. Bayrak, Ö. Bektaş, S. Yüce, Special Smarandache curves in E3 1, Communications Faculty of Sciences University of Ankara Series A1:Mathematics and Statistics, 65(2): 143-160, (2016).
  • Ü. Çelik, Smarandache Curves of Bertrand Curve Pair According to Frenet Frame, Master’s Thesis, University of Ordu, (2016).
  • B. Uzunoğlu, I. Gök and Y. Yaylı, A New Approach on Curves of Constant Precession, Appl. Math. Comput. 275, 317-323, (2016).

SMARANDACHE CURVES ACCORDING TO ALTERNATIVE FRAME IN E^3

Year 2021, Volume: 4 Issue: 2, 140 - 156, 31.07.2021
https://doi.org/10.33773/jum.956862

Abstract

In this study, we focus on Smarandache curves which is a special class of curves. These curves have previously been studied by many authors in different spaces. We will
re-characterize these curves with the help of an alternative frame different from Frenet frame. Also, we will obtain frame elements, curvature and torsion of these curves.

References

  • H.H. Hacısalihoglu, The Motion Geometry and Quatenions Theory (in Turkish), Gazi University Publications, (1983).
  • M. Turgut and S. Yılmaz, Smarandache Curves in Minkowski Space-time, International Journal of Mathematical Combinatorics, 3, 51-55, (2008).
  • A. T. Ali, Special Smarandache Curves in the Euclidean Space, International Journal of Mathematical Combinatorics, 2, 30-36, (2010).
  • S. Şenyurt and S. Sivas, An Application of Smarandache Curve, Ordu Univ. J. Sci. Tech. 3(1), 46-60, (2013).
  • K. Taşköprü and M. Tosun, Smarandache Curves on S2, Boletim da Sociedade paranaense de Matematica 3 serie, 32(1):51-59, (2014).
  • M. Çetin, Y. Tuncer, M.K. Karacan, Smarandache curves according to Bishop frame in Euclidean 3-space. General Mathematics Notes, 20:50-66 (2014).
  • N. Bayrak, Ö. Bektaş, S. Yüce, Special Smarandache curves in E3 1, Communications Faculty of Sciences University of Ankara Series A1:Mathematics and Statistics, 65(2): 143-160, (2016).
  • Ü. Çelik, Smarandache Curves of Bertrand Curve Pair According to Frenet Frame, Master’s Thesis, University of Ordu, (2016).
  • B. Uzunoğlu, I. Gök and Y. Yaylı, A New Approach on Curves of Constant Precession, Appl. Math. Comput. 275, 317-323, (2016).
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Şenay Alıç 0000-0001-9375-3746

Beyhan Yılmaz 0000-0002-5091-3487

Publication Date July 31, 2021
Submission Date June 24, 2021
Acceptance Date July 27, 2021
Published in Issue Year 2021 Volume: 4 Issue: 2

Cite

APA Alıç, Ş., & Yılmaz, B. (2021). SMARANDACHE CURVES ACCORDING TO ALTERNATIVE FRAME IN E^3. Journal of Universal Mathematics, 4(2), 140-156. https://doi.org/10.33773/jum.956862
AMA Alıç Ş, Yılmaz B. SMARANDACHE CURVES ACCORDING TO ALTERNATIVE FRAME IN E^3. JUM. July 2021;4(2):140-156. doi:10.33773/jum.956862
Chicago Alıç, Şenay, and Beyhan Yılmaz. “SMARANDACHE CURVES ACCORDING TO ALTERNATIVE FRAME IN E^3”. Journal of Universal Mathematics 4, no. 2 (July 2021): 140-56. https://doi.org/10.33773/jum.956862.
EndNote Alıç Ş, Yılmaz B (July 1, 2021) SMARANDACHE CURVES ACCORDING TO ALTERNATIVE FRAME IN E^3. Journal of Universal Mathematics 4 2 140–156.
IEEE Ş. Alıç and B. Yılmaz, “SMARANDACHE CURVES ACCORDING TO ALTERNATIVE FRAME IN E^3”, JUM, vol. 4, no. 2, pp. 140–156, 2021, doi: 10.33773/jum.956862.
ISNAD Alıç, Şenay - Yılmaz, Beyhan. “SMARANDACHE CURVES ACCORDING TO ALTERNATIVE FRAME IN E^3”. Journal of Universal Mathematics 4/2 (July 2021), 140-156. https://doi.org/10.33773/jum.956862.
JAMA Alıç Ş, Yılmaz B. SMARANDACHE CURVES ACCORDING TO ALTERNATIVE FRAME IN E^3. JUM. 2021;4:140–156.
MLA Alıç, Şenay and Beyhan Yılmaz. “SMARANDACHE CURVES ACCORDING TO ALTERNATIVE FRAME IN E^3”. Journal of Universal Mathematics, vol. 4, no. 2, 2021, pp. 140-56, doi:10.33773/jum.956862.
Vancouver Alıç Ş, Yılmaz B. SMARANDACHE CURVES ACCORDING TO ALTERNATIVE FRAME IN E^3. JUM. 2021;4(2):140-56.