Research Article
BibTex RIS Cite

SOME CLASSES OF RICCATI EQUATIONS INTEGRABLE IN QUADRATURES

Year 2023, Volume: 6 Issue: 1, 81 - 88, 31.01.2023
https://doi.org/10.33773/jum.1140210

Abstract

As it is known, the second-order ordinary linear differential equation with variable coefficients is solvable in case if related Riccati equation can be integrated by quadratures. This paper considers establishment of correspondence between such equations by the authors’ method which means the second-order equation representation by a chain of the first-order equations. The algorithm of special Riccati equation solving is demonstrated (coefficients of these Riccati equations satisfy special conditions). One more peculiarity of this paper stands in consideration of exact applicational example – the Riccati equation which describes the magnetotellurics impedance behavior in geological media.

Supporting Institution

American University of Central Asia AND Kyrgyz-Turkish Manas University AND Research Station of RAS in Bishkek city

References

  • Reference1 S.K. Kydyraliev, A.B. Urdaletova Solving Linear Differential Equations by Operator Factorization. The College Mathematics Journal, USA, 27(3), pp. 199-204, (1996).
  • Reference2 S.K. Kydyraliev, A.B. Urdaletova, E.S. Burova Advantages of the chain method for solving linear differential and difference equations. Bulletin of the Kyrgyz-Russian Slavic University, 20(8), pp. 16-20, (2020).
  • Reference3 S.K. Kydyraliev, A.B. Urdaletova The linear ordinary differential equations’ solution formula. Bulletin of the Kyrgyz-Russian Slavic University, 20(8), pp. 11-15, (2020).
  • Reference4 A. D. Polyanin, V. F. Zaitsev Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems. Chapman & Hall/CRC Press, Boca Raton, 1496 p., (2017)
  • Reference5 M.N. Berdichevskii, V.I. Dmitriev Magnetotelluric Sounding of Horizontally Homogeneous Media. Мoscow, Nedra, 250 p. (1992)
Year 2023, Volume: 6 Issue: 1, 81 - 88, 31.01.2023
https://doi.org/10.33773/jum.1140210

Abstract

References

  • Reference1 S.K. Kydyraliev, A.B. Urdaletova Solving Linear Differential Equations by Operator Factorization. The College Mathematics Journal, USA, 27(3), pp. 199-204, (1996).
  • Reference2 S.K. Kydyraliev, A.B. Urdaletova, E.S. Burova Advantages of the chain method for solving linear differential and difference equations. Bulletin of the Kyrgyz-Russian Slavic University, 20(8), pp. 16-20, (2020).
  • Reference3 S.K. Kydyraliev, A.B. Urdaletova The linear ordinary differential equations’ solution formula. Bulletin of the Kyrgyz-Russian Slavic University, 20(8), pp. 11-15, (2020).
  • Reference4 A. D. Polyanin, V. F. Zaitsev Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems. Chapman & Hall/CRC Press, Boca Raton, 1496 p., (2017)
  • Reference5 M.N. Berdichevskii, V.I. Dmitriev Magnetotelluric Sounding of Horizontally Homogeneous Media. Мoscow, Nedra, 250 p. (1992)
There are 5 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Anarkul Urdaletova 0000-0003-4420-3961

Olga Zabinyakova 0000-0002-6675-4265

Syrgak Kydyraliev 0000-0001-6305-9251

Publication Date January 31, 2023
Submission Date July 4, 2022
Acceptance Date January 30, 2023
Published in Issue Year 2023 Volume: 6 Issue: 1

Cite

APA Urdaletova, A., Zabinyakova, O., & Kydyraliev, S. (2023). SOME CLASSES OF RICCATI EQUATIONS INTEGRABLE IN QUADRATURES. Journal of Universal Mathematics, 6(1), 81-88. https://doi.org/10.33773/jum.1140210
AMA Urdaletova A, Zabinyakova O, Kydyraliev S. SOME CLASSES OF RICCATI EQUATIONS INTEGRABLE IN QUADRATURES. JUM. January 2023;6(1):81-88. doi:10.33773/jum.1140210
Chicago Urdaletova, Anarkul, Olga Zabinyakova, and Syrgak Kydyraliev. “SOME CLASSES OF RICCATI EQUATIONS INTEGRABLE IN QUADRATURES”. Journal of Universal Mathematics 6, no. 1 (January 2023): 81-88. https://doi.org/10.33773/jum.1140210.
EndNote Urdaletova A, Zabinyakova O, Kydyraliev S (January 1, 2023) SOME CLASSES OF RICCATI EQUATIONS INTEGRABLE IN QUADRATURES. Journal of Universal Mathematics 6 1 81–88.
IEEE A. Urdaletova, O. Zabinyakova, and S. Kydyraliev, “SOME CLASSES OF RICCATI EQUATIONS INTEGRABLE IN QUADRATURES”, JUM, vol. 6, no. 1, pp. 81–88, 2023, doi: 10.33773/jum.1140210.
ISNAD Urdaletova, Anarkul et al. “SOME CLASSES OF RICCATI EQUATIONS INTEGRABLE IN QUADRATURES”. Journal of Universal Mathematics 6/1 (January 2023), 81-88. https://doi.org/10.33773/jum.1140210.
JAMA Urdaletova A, Zabinyakova O, Kydyraliev S. SOME CLASSES OF RICCATI EQUATIONS INTEGRABLE IN QUADRATURES. JUM. 2023;6:81–88.
MLA Urdaletova, Anarkul et al. “SOME CLASSES OF RICCATI EQUATIONS INTEGRABLE IN QUADRATURES”. Journal of Universal Mathematics, vol. 6, no. 1, 2023, pp. 81-88, doi:10.33773/jum.1140210.
Vancouver Urdaletova A, Zabinyakova O, Kydyraliev S. SOME CLASSES OF RICCATI EQUATIONS INTEGRABLE IN QUADRATURES. JUM. 2023;6(1):81-8.