Araştırma Makalesi
BibTex RIS Kaynak Göster

Kritik Başarı Faktörlerine Göre Çevik Yazılım Geliştirme Yöntemlerini Değerlendirmek için Entegre SWARA-DEMATEL-ARAS Metodolojisi: SCRUM, XP veya KANBAN?

Yıl 2025, Cilt: 20 Sayı: 79, 376 - 406, 31.07.2025
https://doi.org/10.19168/jyasar.1529910

Öz

Agile Manifesto, yazılım mühendisliği alanında çeviklik, uyarlanabilirlik ve esneklik teşvik ederek devrim yaratmıştır. Müşteri memnuniyetini, iş birliğini ve zamanında yüksek kaliteli yazılım teslimini vurgulamaktadır. Agile Manifesto’nun ilkelerine bağlı kalarak ortaya çıkan çevik metodolojiler, uygulamalarında, süreçlerinde ve temel prensiplerinde farklılıklar göstermektedir. Çevik yazılım geliştirme yöntemlerinin değerlendirilmesi, yazılım projelerinin başarılı bir şekilde tamamlanması için proje paydaşları açısından kritik öneme sahiptir. Bu çalışma, çevik yazılım geliştirme metodolojilerini iki aşamalı bir yaklaşımla değerlendirmeyi amaçlamaktadır. İlk aşama, SWARA ve DEMATEL yöntemleri kullanılarak kritik başarı faktörlerinin ağırlıklarının belirlenmesini, ikinci aşama ise belirlenen kritik başarı faktörlerine dayanarak çevik yöntemlerin etkinliğini değerlendirmek ve sıralamak için ARAS yönteminin kullanılmasını içermektedir. Çalışmanın özgünlüğü, çevik yazılım geliştirme yöntemlerini değerlendirmek için SWARA, DEMATEL ve ARAS yöntemlerinin uygulanmasında yatmaktadır ki bu yöntemler genellikle endüstride kullanılmamaktadır.

Kaynakça

  • Abdulwareth, A. J., & Al-Shargabi, A. A. (2021). Toward a multi-criteria framework for selecting software testing tools. IEEE Access, 9, 158872–158891. https://doi.org/10.1109/ACCESS.2021.3128071
  • Abrahamson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile software development methods: Review and analysis. VTT Publications, 112. http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf
  • Abusaeed, S., Khan, S. U. R., & Mashkoor, A. (2023). A fuzzy AHP-based approach for prioritization of cost overhead factors in agile software development. Applied Soft Computing, 133, 109977. https://doi.org/10.1016/j.asoc.2022.109977
  • Ahimbisibwe, A., Cavana, R. Y., & Daellenbach, U. (2015). A contingency fit model of critical success factors for software development projects: A comparison of agile and traditional plan-based methodologies. Journal of Enterprise Information Management, 28(1), 7–33. https://doi.org/10.1108/JEIM-08-2013-0060
  • Ahmad, M. O., Dennehy, D., Conboy, K., & Oivo, M. (2018). Kanban in software engineering: A systematic mapping study. Journal of Systems and Software, 137, 96–113. https://doi.org/10.1016/J.JSS.2017.11.045
  • Akbar, M. A., Sang, J., Nasrullah, Khan, A. A., Mahmood, S., Qadri, S. F., Hu, H., & Xiang, H. (2019). Success factors influencing requirements change management process in global software development. Journal of Computer Languages, 51, 112–130. https://doi.org/10.1016/J.COLA.2018.12.005
  • Ali, F., Usman, M., Abrar, M. F., Rahman, S. U., Khan, I., & Niazi, B. (2023). Practices of de-motivators in adopting agile software development methods at large scale development teams from management perspective. IEEE Access, 11, 130368–130390. https://doi.org/10.1109/ACCESS.2023.3331759
  • Badi, I., Pamucar, D., Gigović, L., & Tatomirović, S. (2021). Optimal site selection for sitting a solar park using a novel GIS-SWA’TEL model: A case study in Libya. International Journal of Green Energy, 18(4), 336–350. https://doi.org/10.1080/15435075.2020.1854264
  • Barry, E. J., Mukhopadhyay, T., & Slaughter, S. A. (2002). Software project duration and effort: An empirical study. Information Technology and Management, 3(1–2), 113–136. http://link.springer.com/article/10.1023/A%3A1013168927238
  • Beggar, O. E. (2024). IFEJM: New intuitionistic fuzzy expert judgment method for effort estimation in agile software development. Arabian Journal for Science and Engineering, 49(3), 2887–2908. https://doi.org/10.1007/s13369-023-07711-1
  • Boehm, B. (2002). Get ready for agile methods, with care. Computer, 35(1), 64–69. https://doi.org/10.1109/2.976920
  • Brhel, M., Meth, H., Maedche, A., & Werder, K. (2015). Exploring principles of user-centered agile software development: A literature review. Information and Software Technology, 61, 163–181. https://doi.org/10.1016/J.INFSOF.2015.01.004
  • Cano, E. L., García-Camús, J. M., Garzás, J., Moguerza, J. M., & Sánchez, N. N. (2021). A scrum-based framework for new product development in the non-software industry. Journal of Engineering and Technology Management, 61, 101634. https://doi.org/10.1016/J.JENGTECMAN.2021.101634
  • Chow, T., & Cao, D. B. (2008). A survey study of critical success factors in agile software projects. Journal of Systems and Software, 81(6), 961–971. https://doi.org/10.1016/J.JSS.2007.08.020
  • Cui, Y., Liu, W., Rani, P., & Alrasheedi, M. (2021). Internet of Things (IoT) adoption barriers for the circular economy using Pythagorean fuzzy SWARA-CoCoSo decision-making approach in the manufacturing sector. Technological Forecasting and Social Change, 171, 120951. https://doi.org/10.1016/J.TECHFORE.2021.120951
  • Dikert, K., Paasivaara, M., & Lassenius, C. (2016). Challenges and success factors for large-scale agile transformations: A systematic literature review. Journal of Systems and Software, 119, 87–108. https://doi.org/10.1016/J.JSS.2016.06.013
  • Ecer, F. (2021). A consolidated MCDM framework for performance assessment of battery electric vehicles based on ranking strategies. Renewable and Sustainable Energy Reviews, 143, 110916. https://doi.org/10.1016/J.RSER.2021.110916
  • Estrada-Esponda, R. D., López-Benítez, M., Matturro, G., & Osorio-Gómez, J. C. (2024). Selection of software agile practices using analytic hierarchy process. Heliyon, 10(1). https://doi.org/10.1016/j.heliyon.2023.e22948
  • Fowler, M., & Highsmith, J. (2001). The Agile Manifesto. http://www.agilemanifesto.org/
  • Ghenai, C., Albawab, M., & Bettayeb, M. (2020). Sustainability indicators for renewable energy systems using multi-criteria decision-making model and extended SWARA/ARAS hybrid method. Renewable Energy, 146, 580–597. https://doi.org/10.1016/j.renene.2019.06.157
  • Govil, N., & Sharma, A. (2022). Validation of agile methodology as ideal software development process using fuzzy-TOPSIS method. Advances in Engineering Software, 168, 103125. https://doi.org/10.1016/j.advengsoft.2022.103125
  • Hoda, R., Salleh, N., Grundy, J., & Tee, H. M. (2017). Systematic literature reviews in agile software development: A tertiary study. Information and Software Technology, 85, 60–70. https://doi.org/10.1016/J.INFSOF.2017.01.007
  • Hron, M., & Obwegeser, N. (2022). Why and how is Scrum being adapted in practice: A systematic review. Journal of Systems and Software, 183, 111110. https://doi.org/10.1016/J.JSS.2021.111110
  • Kausar, M., Mazhar, N., Ishtiaq, M., & Alabrah, A. (2023). Decision making of agile patterns in offshore software development outsourcing: A fuzzy logic-based analysis. Axioms, 12(3), 1–19. https://doi.org/10.3390/axioms12030307
  • Kaviani, M. A., Yazdi, A. K., Ocampo, L., & Kusi-Sarpong, S. (2020). An integrated grey-based multi-criteria decision-making approach for supplier evaluation and selection in the oil and gas industry. Kybernetes, 49(2), 406–441. https://doi.org/10.1108/K-05-2018-0265
  • Keršulienė, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management, 11(2), 243–258. https://doi.org/10.3846/jbem.2010.12
  • Khan, A. A., Shameem, M., Kumar, R. R., Hussain, S., & Yan, X. (2019). Fuzzy AHP based prioritization and taxonomy of software process improvement success factors in global software development. Applied Soft Computing, 83, 105648. https://doi.org/10.1016/J.ASOC.2019.105648
  • Khan, A. A., Shameem, M., Nadeem, M., & Akbar, M. A. (2021). Agile trends in Chinese global software development industry: Fuzzy AHP based conceptual mapping. Applied Soft Computing, 102, 107090. https://doi.org/10.1016/J.ASOC.2021.107090
  • Magabaleh, A. A., Ghraibeh, L. L., Audeh, A. Y., Albahri, A. S., Deveci, M., & Antucheviciene, J. (2024). Systematic review of software engineering uses of multi-criteria decision-making methods: Trends, bibliographic analysis, challenges, recommendations, and future directions. Applied Soft Computing, 163, 111859. https://doi.org/10.1016/j.asoc.2024.111859
  • Misra, S. C., Kumar, V., & Kumar, U. (2009a). Identifying some important success factors in adopting agile software development practices. Journal of Systems and Software, 82(11), 1869–1890. https://doi.org/10.1016/J.JSS.2009.05.052
  • Misra, S. C., Kumar, V., & Kumar, U. (2009b). Identifying some important success factors in adopting agile software development practices. Journal of Systems and Software, 82(11), 1869–1890. https://doi.org/10.1016/j.jss.2009.05.052
  • Nasir, M. H. N., & Sahibuddin, S. (2011). Critical success factors for software projects: A comparative study. Scientific Research and Essays, 6(10), 2174–2186. https://doi.org/10.5897/sre10.1171
  • Niazi, M. (2015). A comparative study of software process improvement implementation success factors. Journal of Software: Evolution and Process, 27, 700–722. https://doi.org/10.1002/smr.1704
  • Pandey, P., & Litoriya, R. (2020a). Fuzzy AHP based identification model for efficient application development. Journal of Intelligent & Fuzzy Systems, 38(3). https://doi.org/10.3233/JIFS-190508
  • Pandey, P., & Litoriya, R. (2020b). Software process selection system based on multicriteria decision making. Journal of Software: Evolution and Process, 33(2). https://doi.org/10.1002/smr.2305
  • Pinto, J. K., & Slevin, D. P. (1988). Critical success factors across the project life cycle: Definitions and measurement techniques. Project Management Journal, 19(3), 67–75. https://www.pmi.org/learning/library/critical-success-factors-project-life-cycle-2131
  • Pinto, J. K., & Prescott, J. E. (1988). Variations in critical success factors over the stages in the project life cycle. Journal of Management, 14(1), 5–18. https://doi.org/10.1177/014920638801400102
  • Rekik, S., & El Alimi, S. (2023). Unlocking renewable energy potential: A case study of solar and wind site selection in the Kasserine region, Central-Western Tunisia. Energy Science and Engineering. https://doi.org/10.1002/ese3.1650
  • Royce, W. W. (1970). Managing the development of large software systems. In IEEE WISCON (pp. 1–9). https://doi.org/10.7551/mitpress/12274.003.0035
  • Saaty, T. L., & Ozdemir, M. S. (2003). Why the magic number seven plus or minus two. Mathematical and Computer Modelling, 38(3–4), 233–244. https://doi.org/10.1016/S0895-7177(03)90083-5
  • Schwaber, K. (1997). SCRUM development process. In Business Object Design and Implementation (pp. 117–134). https://doi.org/10.1007/978-1-4471-0947-1_11
  • Schwaber, K., & Beedle, M. (n.d.). Agile software development with Scrum. Prentice Hall PTR.
  • Shameem, M., Kumar, R. R., Nadeem, M., & Khan, A. A. (2020). Taxonomical classification of barriers for scaling agile methods in global software development environment using fuzzy analytic hierarchy process. Applied Soft Computing Journal, 90, 106122. https://doi.org/10.1016/j.asoc.2020.106122
  • Sharma, A., & Bawa, R. K. (2017). A multilevel hybrid approach for selection of agile development method using AHP, PROMETHEE and fuzzy logic. Structural Integrity and Life, 17(1), 49–54.
  • Si, S. L., You, X. Y., Liu, H. C., & Zhang, P. (2018). DEMATEL technique: A systematic review of the state-of-the-art literature on methodologies and applications. Mathematical Problems in Engineering, 2018(1). https://doi.org/10.1155/2018/3696457
  • Silva, V. B. S., Schramm, F., & Damasceno, A. C. (n.d.). A multicriteria approach for selection of agile methodologies in software development projects. In 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE.
  • Sivalingam, V., Kumar, P. G., Prabakaran, R., Sun, J., Velraj, R., & Kim, S. C. (2022). An automotive radiator with multi-walled carbon-based nanofluids: A study on heat transfer optimization using MCDM techniques. Case Studies in Thermal Engineering, 29, 101724. https://doi.org/10.1016/J.CSITE.2021.101724
  • Slevin, D. P., & Pinto, J. K. (1987). Balancing strategy and tactics in project implementation. Sloan Management Review, 29(1), 33–41.
  • Srivastava, A., Mehrotra, D., Kapur, P. K., & Aggarwal, A. G. (2020). Analytical evaluation of agile success factors influencing quality in software industry. International Journal of System Assurance Engineering and Management, 11(s2), 247–257. https://doi.org/10.1007/s13198-020-00966-z
  • Stankovic, D., Nikolic, V., Djordjevic, M., & Cao, D. B. (2013). A survey study of critical success factors in agile software projects in former Yugoslavia IT companies. Journal of Systems and Software, 86(6), 1663–1678. https://doi.org/10.1016/J.JSS.2013.02.027
  • Sulayman, M., Urquhart, C., Mendes, E., & Seidel, S. (2012). Software process improvement success factors for small and medium web companies: A qualitative study. Information and Software Technology, 54(5), 479–500. https://doi.org/10.1016/J.INFSOF.2011.12.007
  • Unterkalmsteiner, M., Gorschek, T., Islam, A. K. M. M., Cheng, C. K., Permadi, R. B., & Feldt, R. (2012). Evaluation and measurement of software process improvement: A systematic literature review. IEEE Transactions on Software Engineering, 38(2), 398–424. https://doi.org/10.1109/TSE.2011.26
  • Weflen, E., MacKenzie, C. A., & Rivero, I. V. (2022). An influence diagram approach to automating lead time estimation in agile kanban project management. Expert Systems with Applications, 187, 115866. https://doi.org/10.1016/J.ESWA.2021.115866
  • Yaghoobi, T. (2018). Prioritizing key success factors of software projects using fuzzy AHP. Journal of Software: Evolution and Process, 30(1), 1–11. https://doi.org/10.1002/smr.1891
  • Yegen, N., & Gül, S. (2023). Çevik proje yönetiminde Scrum takımlarının başarı sınıflandırmasına yönelik bir ÇKKV modeli: AHS bütünleşik TOPSIS-Sort-B. Journal of Polytechnic, 0900. https://doi.org/10.2339/politeknik.1172615
  • Yel, İ., & Baysal, M. E. (2023). An application on the use of fuzzy multi criteria decision making methods for software project development process selection. Journal of the Faculty of Engineering and Architecture of Gazi University, 38(4), 2325–2337. https://doi.org/10.17341/gazimmfd.1132638
  • Zorzetti, M., Signoretti, I., Salerno, L., Marczak, S., & Bastos, R. (2022). Improving agile software development using user-centered design and lean startup. Information and Software Technology, 141, 106718. https://doi.org/10.1016/J.INFSOF.2021.106718

An Integrated SWARA-DEMATEL-ARAS Methodology to Evaluate Agile Software Development Methods by Critical Success Factors: SCRUM, XP or KANBAN?

Yıl 2025, Cilt: 20 Sayı: 79, 376 - 406, 31.07.2025
https://doi.org/10.19168/jyasar.1529910

Öz

Agile Manifesto has revolutionized the field of software engineering by promoting agility, adaptability, and flexibility during the development process. It emphasizes customer satisfaction, collaboration, and delivering high-quality software in a timely manner. Agile methodologies have emerged, varying in adherence to the Agile Manifesto's principles. Despite shared features, these methodologies exhibit variations in their practices, processes, and fundamental principles. The evaluation of agile software development methods is crucial for project stakeholders to achieve successful completion of software projects. This study aims to evaluate agile software development methodologies through a two-stage approach. The first stage involves determining the critical success factors weights using the SWARA and DEMATEL methods, and the second stage employs the ARAS method to evaluate and rank the effectiveness of the agile methods based on the identified CSFs. The study's originality lies in its application of the SWARA, DEMATEL, and ARAS methods to evaluate agile software development methods, which are not typically employed in the industry.

Kaynakça

  • Abdulwareth, A. J., & Al-Shargabi, A. A. (2021). Toward a multi-criteria framework for selecting software testing tools. IEEE Access, 9, 158872–158891. https://doi.org/10.1109/ACCESS.2021.3128071
  • Abrahamson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile software development methods: Review and analysis. VTT Publications, 112. http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf
  • Abusaeed, S., Khan, S. U. R., & Mashkoor, A. (2023). A fuzzy AHP-based approach for prioritization of cost overhead factors in agile software development. Applied Soft Computing, 133, 109977. https://doi.org/10.1016/j.asoc.2022.109977
  • Ahimbisibwe, A., Cavana, R. Y., & Daellenbach, U. (2015). A contingency fit model of critical success factors for software development projects: A comparison of agile and traditional plan-based methodologies. Journal of Enterprise Information Management, 28(1), 7–33. https://doi.org/10.1108/JEIM-08-2013-0060
  • Ahmad, M. O., Dennehy, D., Conboy, K., & Oivo, M. (2018). Kanban in software engineering: A systematic mapping study. Journal of Systems and Software, 137, 96–113. https://doi.org/10.1016/J.JSS.2017.11.045
  • Akbar, M. A., Sang, J., Nasrullah, Khan, A. A., Mahmood, S., Qadri, S. F., Hu, H., & Xiang, H. (2019). Success factors influencing requirements change management process in global software development. Journal of Computer Languages, 51, 112–130. https://doi.org/10.1016/J.COLA.2018.12.005
  • Ali, F., Usman, M., Abrar, M. F., Rahman, S. U., Khan, I., & Niazi, B. (2023). Practices of de-motivators in adopting agile software development methods at large scale development teams from management perspective. IEEE Access, 11, 130368–130390. https://doi.org/10.1109/ACCESS.2023.3331759
  • Badi, I., Pamucar, D., Gigović, L., & Tatomirović, S. (2021). Optimal site selection for sitting a solar park using a novel GIS-SWA’TEL model: A case study in Libya. International Journal of Green Energy, 18(4), 336–350. https://doi.org/10.1080/15435075.2020.1854264
  • Barry, E. J., Mukhopadhyay, T., & Slaughter, S. A. (2002). Software project duration and effort: An empirical study. Information Technology and Management, 3(1–2), 113–136. http://link.springer.com/article/10.1023/A%3A1013168927238
  • Beggar, O. E. (2024). IFEJM: New intuitionistic fuzzy expert judgment method for effort estimation in agile software development. Arabian Journal for Science and Engineering, 49(3), 2887–2908. https://doi.org/10.1007/s13369-023-07711-1
  • Boehm, B. (2002). Get ready for agile methods, with care. Computer, 35(1), 64–69. https://doi.org/10.1109/2.976920
  • Brhel, M., Meth, H., Maedche, A., & Werder, K. (2015). Exploring principles of user-centered agile software development: A literature review. Information and Software Technology, 61, 163–181. https://doi.org/10.1016/J.INFSOF.2015.01.004
  • Cano, E. L., García-Camús, J. M., Garzás, J., Moguerza, J. M., & Sánchez, N. N. (2021). A scrum-based framework for new product development in the non-software industry. Journal of Engineering and Technology Management, 61, 101634. https://doi.org/10.1016/J.JENGTECMAN.2021.101634
  • Chow, T., & Cao, D. B. (2008). A survey study of critical success factors in agile software projects. Journal of Systems and Software, 81(6), 961–971. https://doi.org/10.1016/J.JSS.2007.08.020
  • Cui, Y., Liu, W., Rani, P., & Alrasheedi, M. (2021). Internet of Things (IoT) adoption barriers for the circular economy using Pythagorean fuzzy SWARA-CoCoSo decision-making approach in the manufacturing sector. Technological Forecasting and Social Change, 171, 120951. https://doi.org/10.1016/J.TECHFORE.2021.120951
  • Dikert, K., Paasivaara, M., & Lassenius, C. (2016). Challenges and success factors for large-scale agile transformations: A systematic literature review. Journal of Systems and Software, 119, 87–108. https://doi.org/10.1016/J.JSS.2016.06.013
  • Ecer, F. (2021). A consolidated MCDM framework for performance assessment of battery electric vehicles based on ranking strategies. Renewable and Sustainable Energy Reviews, 143, 110916. https://doi.org/10.1016/J.RSER.2021.110916
  • Estrada-Esponda, R. D., López-Benítez, M., Matturro, G., & Osorio-Gómez, J. C. (2024). Selection of software agile practices using analytic hierarchy process. Heliyon, 10(1). https://doi.org/10.1016/j.heliyon.2023.e22948
  • Fowler, M., & Highsmith, J. (2001). The Agile Manifesto. http://www.agilemanifesto.org/
  • Ghenai, C., Albawab, M., & Bettayeb, M. (2020). Sustainability indicators for renewable energy systems using multi-criteria decision-making model and extended SWARA/ARAS hybrid method. Renewable Energy, 146, 580–597. https://doi.org/10.1016/j.renene.2019.06.157
  • Govil, N., & Sharma, A. (2022). Validation of agile methodology as ideal software development process using fuzzy-TOPSIS method. Advances in Engineering Software, 168, 103125. https://doi.org/10.1016/j.advengsoft.2022.103125
  • Hoda, R., Salleh, N., Grundy, J., & Tee, H. M. (2017). Systematic literature reviews in agile software development: A tertiary study. Information and Software Technology, 85, 60–70. https://doi.org/10.1016/J.INFSOF.2017.01.007
  • Hron, M., & Obwegeser, N. (2022). Why and how is Scrum being adapted in practice: A systematic review. Journal of Systems and Software, 183, 111110. https://doi.org/10.1016/J.JSS.2021.111110
  • Kausar, M., Mazhar, N., Ishtiaq, M., & Alabrah, A. (2023). Decision making of agile patterns in offshore software development outsourcing: A fuzzy logic-based analysis. Axioms, 12(3), 1–19. https://doi.org/10.3390/axioms12030307
  • Kaviani, M. A., Yazdi, A. K., Ocampo, L., & Kusi-Sarpong, S. (2020). An integrated grey-based multi-criteria decision-making approach for supplier evaluation and selection in the oil and gas industry. Kybernetes, 49(2), 406–441. https://doi.org/10.1108/K-05-2018-0265
  • Keršulienė, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management, 11(2), 243–258. https://doi.org/10.3846/jbem.2010.12
  • Khan, A. A., Shameem, M., Kumar, R. R., Hussain, S., & Yan, X. (2019). Fuzzy AHP based prioritization and taxonomy of software process improvement success factors in global software development. Applied Soft Computing, 83, 105648. https://doi.org/10.1016/J.ASOC.2019.105648
  • Khan, A. A., Shameem, M., Nadeem, M., & Akbar, M. A. (2021). Agile trends in Chinese global software development industry: Fuzzy AHP based conceptual mapping. Applied Soft Computing, 102, 107090. https://doi.org/10.1016/J.ASOC.2021.107090
  • Magabaleh, A. A., Ghraibeh, L. L., Audeh, A. Y., Albahri, A. S., Deveci, M., & Antucheviciene, J. (2024). Systematic review of software engineering uses of multi-criteria decision-making methods: Trends, bibliographic analysis, challenges, recommendations, and future directions. Applied Soft Computing, 163, 111859. https://doi.org/10.1016/j.asoc.2024.111859
  • Misra, S. C., Kumar, V., & Kumar, U. (2009a). Identifying some important success factors in adopting agile software development practices. Journal of Systems and Software, 82(11), 1869–1890. https://doi.org/10.1016/J.JSS.2009.05.052
  • Misra, S. C., Kumar, V., & Kumar, U. (2009b). Identifying some important success factors in adopting agile software development practices. Journal of Systems and Software, 82(11), 1869–1890. https://doi.org/10.1016/j.jss.2009.05.052
  • Nasir, M. H. N., & Sahibuddin, S. (2011). Critical success factors for software projects: A comparative study. Scientific Research and Essays, 6(10), 2174–2186. https://doi.org/10.5897/sre10.1171
  • Niazi, M. (2015). A comparative study of software process improvement implementation success factors. Journal of Software: Evolution and Process, 27, 700–722. https://doi.org/10.1002/smr.1704
  • Pandey, P., & Litoriya, R. (2020a). Fuzzy AHP based identification model for efficient application development. Journal of Intelligent & Fuzzy Systems, 38(3). https://doi.org/10.3233/JIFS-190508
  • Pandey, P., & Litoriya, R. (2020b). Software process selection system based on multicriteria decision making. Journal of Software: Evolution and Process, 33(2). https://doi.org/10.1002/smr.2305
  • Pinto, J. K., & Slevin, D. P. (1988). Critical success factors across the project life cycle: Definitions and measurement techniques. Project Management Journal, 19(3), 67–75. https://www.pmi.org/learning/library/critical-success-factors-project-life-cycle-2131
  • Pinto, J. K., & Prescott, J. E. (1988). Variations in critical success factors over the stages in the project life cycle. Journal of Management, 14(1), 5–18. https://doi.org/10.1177/014920638801400102
  • Rekik, S., & El Alimi, S. (2023). Unlocking renewable energy potential: A case study of solar and wind site selection in the Kasserine region, Central-Western Tunisia. Energy Science and Engineering. https://doi.org/10.1002/ese3.1650
  • Royce, W. W. (1970). Managing the development of large software systems. In IEEE WISCON (pp. 1–9). https://doi.org/10.7551/mitpress/12274.003.0035
  • Saaty, T. L., & Ozdemir, M. S. (2003). Why the magic number seven plus or minus two. Mathematical and Computer Modelling, 38(3–4), 233–244. https://doi.org/10.1016/S0895-7177(03)90083-5
  • Schwaber, K. (1997). SCRUM development process. In Business Object Design and Implementation (pp. 117–134). https://doi.org/10.1007/978-1-4471-0947-1_11
  • Schwaber, K., & Beedle, M. (n.d.). Agile software development with Scrum. Prentice Hall PTR.
  • Shameem, M., Kumar, R. R., Nadeem, M., & Khan, A. A. (2020). Taxonomical classification of barriers for scaling agile methods in global software development environment using fuzzy analytic hierarchy process. Applied Soft Computing Journal, 90, 106122. https://doi.org/10.1016/j.asoc.2020.106122
  • Sharma, A., & Bawa, R. K. (2017). A multilevel hybrid approach for selection of agile development method using AHP, PROMETHEE and fuzzy logic. Structural Integrity and Life, 17(1), 49–54.
  • Si, S. L., You, X. Y., Liu, H. C., & Zhang, P. (2018). DEMATEL technique: A systematic review of the state-of-the-art literature on methodologies and applications. Mathematical Problems in Engineering, 2018(1). https://doi.org/10.1155/2018/3696457
  • Silva, V. B. S., Schramm, F., & Damasceno, A. C. (n.d.). A multicriteria approach for selection of agile methodologies in software development projects. In 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE.
  • Sivalingam, V., Kumar, P. G., Prabakaran, R., Sun, J., Velraj, R., & Kim, S. C. (2022). An automotive radiator with multi-walled carbon-based nanofluids: A study on heat transfer optimization using MCDM techniques. Case Studies in Thermal Engineering, 29, 101724. https://doi.org/10.1016/J.CSITE.2021.101724
  • Slevin, D. P., & Pinto, J. K. (1987). Balancing strategy and tactics in project implementation. Sloan Management Review, 29(1), 33–41.
  • Srivastava, A., Mehrotra, D., Kapur, P. K., & Aggarwal, A. G. (2020). Analytical evaluation of agile success factors influencing quality in software industry. International Journal of System Assurance Engineering and Management, 11(s2), 247–257. https://doi.org/10.1007/s13198-020-00966-z
  • Stankovic, D., Nikolic, V., Djordjevic, M., & Cao, D. B. (2013). A survey study of critical success factors in agile software projects in former Yugoslavia IT companies. Journal of Systems and Software, 86(6), 1663–1678. https://doi.org/10.1016/J.JSS.2013.02.027
  • Sulayman, M., Urquhart, C., Mendes, E., & Seidel, S. (2012). Software process improvement success factors for small and medium web companies: A qualitative study. Information and Software Technology, 54(5), 479–500. https://doi.org/10.1016/J.INFSOF.2011.12.007
  • Unterkalmsteiner, M., Gorschek, T., Islam, A. K. M. M., Cheng, C. K., Permadi, R. B., & Feldt, R. (2012). Evaluation and measurement of software process improvement: A systematic literature review. IEEE Transactions on Software Engineering, 38(2), 398–424. https://doi.org/10.1109/TSE.2011.26
  • Weflen, E., MacKenzie, C. A., & Rivero, I. V. (2022). An influence diagram approach to automating lead time estimation in agile kanban project management. Expert Systems with Applications, 187, 115866. https://doi.org/10.1016/J.ESWA.2021.115866
  • Yaghoobi, T. (2018). Prioritizing key success factors of software projects using fuzzy AHP. Journal of Software: Evolution and Process, 30(1), 1–11. https://doi.org/10.1002/smr.1891
  • Yegen, N., & Gül, S. (2023). Çevik proje yönetiminde Scrum takımlarının başarı sınıflandırmasına yönelik bir ÇKKV modeli: AHS bütünleşik TOPSIS-Sort-B. Journal of Polytechnic, 0900. https://doi.org/10.2339/politeknik.1172615
  • Yel, İ., & Baysal, M. E. (2023). An application on the use of fuzzy multi criteria decision making methods for software project development process selection. Journal of the Faculty of Engineering and Architecture of Gazi University, 38(4), 2325–2337. https://doi.org/10.17341/gazimmfd.1132638
  • Zorzetti, M., Signoretti, I., Salerno, L., Marczak, S., & Bastos, R. (2022). Improving agile software development using user-centered design and lean startup. Information and Software Technology, 141, 106718. https://doi.org/10.1016/J.INFSOF.2021.106718
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İşletme
Bölüm Makaleler
Yazarlar

Ayça Maden 0000-0002-8239-3084

G.nilay Yücenur 0000-0002-2670-6277

Yayımlanma Tarihi 31 Temmuz 2025
Gönderilme Tarihi 7 Ağustos 2024
Kabul Tarihi 25 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 20 Sayı: 79

Kaynak Göster

APA Maden, A., & Yücenur, G. (2025). An Integrated SWARA-DEMATEL-ARAS Methodology to Evaluate Agile Software Development Methods by Critical Success Factors: SCRUM, XP or KANBAN? Yaşar Üniversitesi E-Dergisi, 20(79), 376-406. https://doi.org/10.19168/jyasar.1529910
AMA Maden A, Yücenur G. An Integrated SWARA-DEMATEL-ARAS Methodology to Evaluate Agile Software Development Methods by Critical Success Factors: SCRUM, XP or KANBAN? Yaşar Üniversitesi E-Dergisi. Temmuz 2025;20(79):376-406. doi:10.19168/jyasar.1529910
Chicago Maden, Ayça, ve G.nilay Yücenur. “An Integrated SWARA-DEMATEL-ARAS Methodology to Evaluate Agile Software Development Methods by Critical Success Factors: SCRUM, XP or KANBAN?”. Yaşar Üniversitesi E-Dergisi 20, sy. 79 (Temmuz 2025): 376-406. https://doi.org/10.19168/jyasar.1529910.
EndNote Maden A, Yücenur G (01 Temmuz 2025) An Integrated SWARA-DEMATEL-ARAS Methodology to Evaluate Agile Software Development Methods by Critical Success Factors: SCRUM, XP or KANBAN? Yaşar Üniversitesi E-Dergisi 20 79 376–406.
IEEE A. Maden ve G. Yücenur, “An Integrated SWARA-DEMATEL-ARAS Methodology to Evaluate Agile Software Development Methods by Critical Success Factors: SCRUM, XP or KANBAN?”, Yaşar Üniversitesi E-Dergisi, c. 20, sy. 79, ss. 376–406, 2025, doi: 10.19168/jyasar.1529910.
ISNAD Maden, Ayça - Yücenur, G.nilay. “An Integrated SWARA-DEMATEL-ARAS Methodology to Evaluate Agile Software Development Methods by Critical Success Factors: SCRUM, XP or KANBAN?”. Yaşar Üniversitesi E-Dergisi 20/79 (Temmuz2025), 376-406. https://doi.org/10.19168/jyasar.1529910.
JAMA Maden A, Yücenur G. An Integrated SWARA-DEMATEL-ARAS Methodology to Evaluate Agile Software Development Methods by Critical Success Factors: SCRUM, XP or KANBAN? Yaşar Üniversitesi E-Dergisi. 2025;20:376–406.
MLA Maden, Ayça ve G.nilay Yücenur. “An Integrated SWARA-DEMATEL-ARAS Methodology to Evaluate Agile Software Development Methods by Critical Success Factors: SCRUM, XP or KANBAN?”. Yaşar Üniversitesi E-Dergisi, c. 20, sy. 79, 2025, ss. 376-0, doi:10.19168/jyasar.1529910.
Vancouver Maden A, Yücenur G. An Integrated SWARA-DEMATEL-ARAS Methodology to Evaluate Agile Software Development Methods by Critical Success Factors: SCRUM, XP or KANBAN? Yaşar Üniversitesi E-Dergisi. 2025;20(79):376-40.