Research Article
BibTex RIS Cite

Tiroidin Benign ve Malign Epitelyal Tümörleri ile Nonneoplastik Lezyonlarında Sitokeratin-19 ve Galektin-3 Ekspresyonu

Year 2020, Volume: 10 Issue: 2, 122 - 130, 01.08.2020

Abstract

Amaç: Tiroidin benign ve malign epitelyal tümörlerinde ve nonneoplastik lezyonlarında sitokeratin-19 ve galektin-3 ekspresyonunu değerlendirmek, bu belirteçlerin tanısal doğruluğu geliştirip geliştirmeyeceğini saptamaktır.
Materyal ve Metot: Çalışmaya 40 papiller karsinom, 16 folliküler karsinom, beş medüller karsinom, 10 folliküler adenom, 10 nodüler hiperplazi ve 10 Hashimoto tiroiditi olgusu dahil edilmiştir. İmmünreaksiyon, boyanan folliküler hücrelerin boyanma yoğunluğuna göre semikantitatif olarak değerlendirilmiştir. İstatiksel analiz için ki-kare ve kappa testleri kullanılmıştır.
Bulgular: Sitokeratin-19 ile tüm gruplarda immünpozitivite izlenmiş olmakla birlikte kuvvetli ve yaygın boyanmanın izlendiği olguların büyük bir kısmının (32/40) papiller karsinom grubunda yer aldığı görülmüştür. Çalışmamızda sitokeratin-19’un papiller karsinomu saptama duyarlılığı %90 olarak bulunmuştur. Ancak papiller karsinom dışındaki lezyonlarda da ekspresyonun görülmesi sitokeratin-19’un papiller karsinom için özgüllüğünü %39,2’ye düşürmüştür. Galektin-3 ile papiller karsinomlu olguların %92,5’inde (37/40), folliküler karsinomlu olguların %37,5’inde (6/16) immünpozitivite izlenmiş, medüller karsinomlu olguların hiçbirinde boyanma görülmemiştir. Galektin-3’ün malign lezyonları saptama duyarlılığı %70,4, özgüllüğü %70 olarak bulunmuştur.
Sonuç: Bu çalışmada sitokeratin-19’un papiller karsinom için duyarlılığının yüksek olduğu ancak bu tümöre spesifik olmadığı sonucuna ulaşılmıştır. Galektin-3’ün folliküler karsinomlu olguların büyük bir kısmında, özellikle yaygın invaziv folliküler karsinomda eksprese olmaması ve medüller karsinomda boyanma göstermemesi, bu markırın malign tümörleri saptamada çok güvenilir olmadığını düşündürmüştür. Bununla birlikte daha çok papiller karsinomlu olguların galektin-3’ü eksprese etmesi, bu markırın papiller karsinoma yönelik bir markır olduğunu göstermiştir. Sitokeratin-19 ve galektin-3’ü içeren bir immünhistokimyasal panelin özellikle papiller karsinom açısından şüphe uyandıran lezyonlarda faydalı olacağı düşünülmüştür

References

  • 1. Baloch ZW, Livolsi VA. The quest for a magic tumor marker. Continuing saga in the diagnosis of the follicular lesions of the thyroid. Am J Clin Pathol 2002;118:165–6.
  • 2. Arcolia V, Journe F, Renaud F, Leteurtre E, Gabius HJ, Remmelink M, et al. Combination of galectin-3, CK19 and HBME-1 immunostaining improves the diagnosis of thyroid cancer. Oncol Lett 2017;14(4):4183–9.
  • 3. Sumana BS, Shashidhar S, Shivarudrappa AS. Galectin-3 immunohistochemical expression in thyroid neoplasms. J Clin Diagn Res 2015;9:EC07–11.
  • 4. Abd-El Raouf SM, Ibrahim TR. Immunohistochemical expression of HBME-1 and galectin-3 in the differential diagnosis of follicular-derived thyroid nodules. Pathol Res Pract 2014;210(12):971–8.
  • 5. Lam KY, Lui MC, Lo CY. Cytokeratin expression profiles in thyroid carcinomas. EJSO 2001;27:631–5.
  • 6. Wa Kammal WS, Yahaya A, Shah SA, Abdullah Suhaimi SN, Mahasin M, Mustangin M, et al. The diagnostic utility of cytokeratin 19 in differentiating malignant from benign thyroid lesions. Malays J Pathol 2019;41(3):293–301.
  • 7. Sanuvada R, Nandyala R, Chowhan AK, Bobbidi P, Yootla M, Hulikal N, et al. Value of cytokeratin-19, Hector Battifora mesothelial-1 and galectin-3 immunostaining in the diagnosis of thyroid neoplasms. J Lab Physicians 2018;10(2):200–7.
  • 8. Dencic TS, Cvejic D, Paunovic I, Tatic S, Havelka M, Savin S. Cytokeratin 19 expression discriminates papillary thyroid carcinoma from other thyroid lesions and predicts its aggressiveness behaviour. Med Oncol 2013;30:362.
  • 9. LiVolsi VA, Baloch ZW. Follicular neoplasms of the thyroid. View, Biases, and Experiences. Adv Anat Pathol 2004;11:279–87.
  • 10. de Matos LL, Del Giglio AB, Matsubayashi CO, de Lima Farah M, Del Giglio A, da Silva Pinhal MA. Expression of CK19, galectin-3 and HBME-1 in the differentiation of thyroid lesions: systematic review and diagnostic meta-analysis. Diagn Pathol 2012;13(7):97.
  • 11. Wu G, Wang J, Zhou Z, Li T, Tang F. Combined staining for immunohistochemical markers in the diagnosis of papillary thyroid carcinoma: improvement in the sensitivity or specificity? J Int Med Res 2013;41(4):975–83.
  • 12. Nasr MR, Mukhopadhyay S, Zhang S, Katzenstein AL. Absence of the BRAF Mutation in HBME1+ and CK19+ Atypical Cell Clusters in Hashimoto Thyroiditis: upportive Evidence Against Preneoplastic Change. Am J Clin Pathol 2009;132(6):906–12.
  • 13. Ma H, Yan J, Zhang C, Qin S, Qin L, Liu L, et al. Expression of papillary thyroid carcinoma-associated molecular markers and their significance in follicular epithelial dysplasia with papillary thyroid carcinoma-like nuclear alterations in Hashimoto’s thyroiditis. Int J Clin Exp Pathol 2014;7(11):7999–8000.
  • 14. Prasad ML, Huang Y, Pellegata NS, de la Chapelle A, Kloos RT. Hashimoto’s thyroiditis with papillary thyroid carcinoma (PTC)-like nuclear alterations express molecular markers of PTC. Histopathol 2004;45:39–46.
  • 15. Mai KT, Bokhary R, Yazdi HM, Thomas J. Hybrid thyroid carcinoma with a coarse chromatin pattern and nuclear features of papillary thyroid carcinoma. Pathol Res Pract 2002;198:253–60.
  • 16. Daniels GH. Follicular Variant of Papillary Thyroid Carcinoma:Hybrid or Mixture? Thyroid 2016;26(7):872–4.
  • 17. Sobrinho-Simões M, Eloy C, Magalhães J, Lobo C, Amaro T. Follicular thyroid carcinoma. Mod Pathol 2011;24(2):10–8.
  • 18. Castro P, Fonseca E, Magalhães J, Sobrinho-Simões M. Follicular, papillary, and “hybrid” carcinomas of the thyroid. Endocr Pathol 2002;13(4):313–20.
  • 19. Kim H, Kim BH, Kim YK, Kim JM, Oh SY, Kim EH et al. Prevalence of BRAFV600E Mutation in Follicular Variant of Papillary Thyroid Carcinoma and Non-Invasive Follicular Tumor with Papillary-Like Nuclear Features (NIFTP) in a BRAFV600E Prevalent Area. J Korean Med Sci 2018;33(27):e75.
  • 20. Chiu CG, Strugnell SS, Griffith OL, Jones SJ, Gown AM, Walker B, et al. Diagnostic Utility of Galectin-3 in Thyroid Cancer. Am J Pathol 2010;176(5):2067–81.
  • 21. Zhao Q, Barclay M, Hilkens J, Guo X, Barrow H, Rhodes JM, et al. Interaction between circulating galectin-3 and cancerassociated MUC1 enhances tumour cell homotypic aggregation and prevents anoikis. Mol Cancer 2010;9:154.
  • 22. Li J, Vasilyeva E, Wiseman SM. Beyond immunohistochemistry and immunocytochemistry: a current perspective on galectin-3 and thyroid cancer. Expert Rev Anticancer Ther 2019;19(12):1017–27.
  • 23. Tastekin E, Keskin E, Can N, Canberk S, Mut A, Erdogan E, et al. CD56, CD57, HBME1, CK19, Galectin-3 and p63 immunohistochemical stains in differentiating diagnosis of thyroid benign/malign lesions and NIFTP. Pol J Pathol 2019;70(4):286–94.
  • 24. Bartolazzi A, Sciacchitano S, D’Alessandria C. The Impact on the Clinical Management of Patients with Thyroid Nodules and Future Perspectives. Int J Mol Sci 2018;19(2):445.
  • 25. Dong S, Xie XJ, Xia Q, Wu YJ. Indicators of multifocality in papillary thyroid carcinoma concurrent with Hashimoto’s thyroiditis. Am J Cancer Res 2019;9(8):1786–95. 26. Papotti M, Rodriguez J, De Pompa R, Bartolazzi A, Rosai J. Galectin-3 and HBME-1 expression in well-differentiated thyroid tumors with follicular architecture of uncertain malignant potential. Mod Pathol 2005;18(4):541–6.
  • 27. Bernet VJ, Anderson J, Vaishnav Y, Solomon B, Adair CF, Saji M, et al. Determination of galectin-3 messenger ribonucleic acid overexpression in papillary thyroid cancer by quantitative reverse transcription-polymerase chain reaction. J Clin Endocrinol Metab 2002;87:4792–6.
  • 28. de Oliveira FL, Gatto M, Bassi N, Luisetto R, Ghirardello A, Punzi L, et al. Galectin-3 in autoimmunity and autoimmune diseases. Exp Biol Med (Maywood) 2015;240(8):1019–28.
  • 29. Hara A, Niwa M, Noguchi K, Kanayama T, Niwa A, Matsuo M, et al. Galectin-3 as a Next-Generation Biomarker for Detecting Early Stage of Various Diseases. Biomolecules2020;10(3):E389.
Year 2020, Volume: 10 Issue: 2, 122 - 130, 01.08.2020

Abstract

References

  • 1. Baloch ZW, Livolsi VA. The quest for a magic tumor marker. Continuing saga in the diagnosis of the follicular lesions of the thyroid. Am J Clin Pathol 2002;118:165–6.
  • 2. Arcolia V, Journe F, Renaud F, Leteurtre E, Gabius HJ, Remmelink M, et al. Combination of galectin-3, CK19 and HBME-1 immunostaining improves the diagnosis of thyroid cancer. Oncol Lett 2017;14(4):4183–9.
  • 3. Sumana BS, Shashidhar S, Shivarudrappa AS. Galectin-3 immunohistochemical expression in thyroid neoplasms. J Clin Diagn Res 2015;9:EC07–11.
  • 4. Abd-El Raouf SM, Ibrahim TR. Immunohistochemical expression of HBME-1 and galectin-3 in the differential diagnosis of follicular-derived thyroid nodules. Pathol Res Pract 2014;210(12):971–8.
  • 5. Lam KY, Lui MC, Lo CY. Cytokeratin expression profiles in thyroid carcinomas. EJSO 2001;27:631–5.
  • 6. Wa Kammal WS, Yahaya A, Shah SA, Abdullah Suhaimi SN, Mahasin M, Mustangin M, et al. The diagnostic utility of cytokeratin 19 in differentiating malignant from benign thyroid lesions. Malays J Pathol 2019;41(3):293–301.
  • 7. Sanuvada R, Nandyala R, Chowhan AK, Bobbidi P, Yootla M, Hulikal N, et al. Value of cytokeratin-19, Hector Battifora mesothelial-1 and galectin-3 immunostaining in the diagnosis of thyroid neoplasms. J Lab Physicians 2018;10(2):200–7.
  • 8. Dencic TS, Cvejic D, Paunovic I, Tatic S, Havelka M, Savin S. Cytokeratin 19 expression discriminates papillary thyroid carcinoma from other thyroid lesions and predicts its aggressiveness behaviour. Med Oncol 2013;30:362.
  • 9. LiVolsi VA, Baloch ZW. Follicular neoplasms of the thyroid. View, Biases, and Experiences. Adv Anat Pathol 2004;11:279–87.
  • 10. de Matos LL, Del Giglio AB, Matsubayashi CO, de Lima Farah M, Del Giglio A, da Silva Pinhal MA. Expression of CK19, galectin-3 and HBME-1 in the differentiation of thyroid lesions: systematic review and diagnostic meta-analysis. Diagn Pathol 2012;13(7):97.
  • 11. Wu G, Wang J, Zhou Z, Li T, Tang F. Combined staining for immunohistochemical markers in the diagnosis of papillary thyroid carcinoma: improvement in the sensitivity or specificity? J Int Med Res 2013;41(4):975–83.
  • 12. Nasr MR, Mukhopadhyay S, Zhang S, Katzenstein AL. Absence of the BRAF Mutation in HBME1+ and CK19+ Atypical Cell Clusters in Hashimoto Thyroiditis: upportive Evidence Against Preneoplastic Change. Am J Clin Pathol 2009;132(6):906–12.
  • 13. Ma H, Yan J, Zhang C, Qin S, Qin L, Liu L, et al. Expression of papillary thyroid carcinoma-associated molecular markers and their significance in follicular epithelial dysplasia with papillary thyroid carcinoma-like nuclear alterations in Hashimoto’s thyroiditis. Int J Clin Exp Pathol 2014;7(11):7999–8000.
  • 14. Prasad ML, Huang Y, Pellegata NS, de la Chapelle A, Kloos RT. Hashimoto’s thyroiditis with papillary thyroid carcinoma (PTC)-like nuclear alterations express molecular markers of PTC. Histopathol 2004;45:39–46.
  • 15. Mai KT, Bokhary R, Yazdi HM, Thomas J. Hybrid thyroid carcinoma with a coarse chromatin pattern and nuclear features of papillary thyroid carcinoma. Pathol Res Pract 2002;198:253–60.
  • 16. Daniels GH. Follicular Variant of Papillary Thyroid Carcinoma:Hybrid or Mixture? Thyroid 2016;26(7):872–4.
  • 17. Sobrinho-Simões M, Eloy C, Magalhães J, Lobo C, Amaro T. Follicular thyroid carcinoma. Mod Pathol 2011;24(2):10–8.
  • 18. Castro P, Fonseca E, Magalhães J, Sobrinho-Simões M. Follicular, papillary, and “hybrid” carcinomas of the thyroid. Endocr Pathol 2002;13(4):313–20.
  • 19. Kim H, Kim BH, Kim YK, Kim JM, Oh SY, Kim EH et al. Prevalence of BRAFV600E Mutation in Follicular Variant of Papillary Thyroid Carcinoma and Non-Invasive Follicular Tumor with Papillary-Like Nuclear Features (NIFTP) in a BRAFV600E Prevalent Area. J Korean Med Sci 2018;33(27):e75.
  • 20. Chiu CG, Strugnell SS, Griffith OL, Jones SJ, Gown AM, Walker B, et al. Diagnostic Utility of Galectin-3 in Thyroid Cancer. Am J Pathol 2010;176(5):2067–81.
  • 21. Zhao Q, Barclay M, Hilkens J, Guo X, Barrow H, Rhodes JM, et al. Interaction between circulating galectin-3 and cancerassociated MUC1 enhances tumour cell homotypic aggregation and prevents anoikis. Mol Cancer 2010;9:154.
  • 22. Li J, Vasilyeva E, Wiseman SM. Beyond immunohistochemistry and immunocytochemistry: a current perspective on galectin-3 and thyroid cancer. Expert Rev Anticancer Ther 2019;19(12):1017–27.
  • 23. Tastekin E, Keskin E, Can N, Canberk S, Mut A, Erdogan E, et al. CD56, CD57, HBME1, CK19, Galectin-3 and p63 immunohistochemical stains in differentiating diagnosis of thyroid benign/malign lesions and NIFTP. Pol J Pathol 2019;70(4):286–94.
  • 24. Bartolazzi A, Sciacchitano S, D’Alessandria C. The Impact on the Clinical Management of Patients with Thyroid Nodules and Future Perspectives. Int J Mol Sci 2018;19(2):445.
  • 25. Dong S, Xie XJ, Xia Q, Wu YJ. Indicators of multifocality in papillary thyroid carcinoma concurrent with Hashimoto’s thyroiditis. Am J Cancer Res 2019;9(8):1786–95. 26. Papotti M, Rodriguez J, De Pompa R, Bartolazzi A, Rosai J. Galectin-3 and HBME-1 expression in well-differentiated thyroid tumors with follicular architecture of uncertain malignant potential. Mod Pathol 2005;18(4):541–6.
  • 27. Bernet VJ, Anderson J, Vaishnav Y, Solomon B, Adair CF, Saji M, et al. Determination of galectin-3 messenger ribonucleic acid overexpression in papillary thyroid cancer by quantitative reverse transcription-polymerase chain reaction. J Clin Endocrinol Metab 2002;87:4792–6.
  • 28. de Oliveira FL, Gatto M, Bassi N, Luisetto R, Ghirardello A, Punzi L, et al. Galectin-3 in autoimmunity and autoimmune diseases. Exp Biol Med (Maywood) 2015;240(8):1019–28.
  • 29. Hara A, Niwa M, Noguchi K, Kanayama T, Niwa A, Matsuo M, et al. Galectin-3 as a Next-Generation Biomarker for Detecting Early Stage of Various Diseases. Biomolecules2020;10(3):E389.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Research Article
Authors

Mahi Balcı This is me

Selda Seçkin This is me

Publication Date August 1, 2020
Published in Issue Year 2020 Volume: 10 Issue: 2

Cite

APA Balcı, M., & Seçkin, S. (2020). Tiroidin Benign ve Malign Epitelyal Tümörleri ile Nonneoplastik Lezyonlarında Sitokeratin-19 ve Galektin-3 Ekspresyonu. Kafkas Journal of Medical Sciences, 10(2), 122-130.
AMA Balcı M, Seçkin S. Tiroidin Benign ve Malign Epitelyal Tümörleri ile Nonneoplastik Lezyonlarında Sitokeratin-19 ve Galektin-3 Ekspresyonu. KAFKAS TIP BİL DERG. August 2020;10(2):122-130.
Chicago Balcı, Mahi, and Selda Seçkin. “Tiroidin Benign Ve Malign Epitelyal Tümörleri Ile Nonneoplastik Lezyonlarında Sitokeratin-19 Ve Galektin-3 Ekspresyonu”. Kafkas Journal of Medical Sciences 10, no. 2 (August 2020): 122-30.
EndNote Balcı M, Seçkin S (August 1, 2020) Tiroidin Benign ve Malign Epitelyal Tümörleri ile Nonneoplastik Lezyonlarında Sitokeratin-19 ve Galektin-3 Ekspresyonu. Kafkas Journal of Medical Sciences 10 2 122–130.
IEEE M. Balcı and S. Seçkin, “Tiroidin Benign ve Malign Epitelyal Tümörleri ile Nonneoplastik Lezyonlarında Sitokeratin-19 ve Galektin-3 Ekspresyonu”, KAFKAS TIP BİL DERG, vol. 10, no. 2, pp. 122–130, 2020.
ISNAD Balcı, Mahi - Seçkin, Selda. “Tiroidin Benign Ve Malign Epitelyal Tümörleri Ile Nonneoplastik Lezyonlarında Sitokeratin-19 Ve Galektin-3 Ekspresyonu”. Kafkas Journal of Medical Sciences 10/2 (August 2020), 122-130.
JAMA Balcı M, Seçkin S. Tiroidin Benign ve Malign Epitelyal Tümörleri ile Nonneoplastik Lezyonlarında Sitokeratin-19 ve Galektin-3 Ekspresyonu. KAFKAS TIP BİL DERG. 2020;10:122–130.
MLA Balcı, Mahi and Selda Seçkin. “Tiroidin Benign Ve Malign Epitelyal Tümörleri Ile Nonneoplastik Lezyonlarında Sitokeratin-19 Ve Galektin-3 Ekspresyonu”. Kafkas Journal of Medical Sciences, vol. 10, no. 2, 2020, pp. 122-30.
Vancouver Balcı M, Seçkin S. Tiroidin Benign ve Malign Epitelyal Tümörleri ile Nonneoplastik Lezyonlarında Sitokeratin-19 ve Galektin-3 Ekspresyonu. KAFKAS TIP BİL DERG. 2020;10(2):122-30.