BibTex RIS Cite

Hayvansal Atıklardan Biyogaz Üretimi İçin Küçük Ölçekli Reaktör Modeli Geliştirilmesi

Year 2018, Volume: 8 Issue: 1, 138 - 146, 01.01.2018

Abstract

Bu çalışmada, büyük baş hayvan gübresinden biyogaz üretimine uygun, çiftlik tipi, gerçek ölçekli bir biyogaz reaktörü tasarlanmış ve biyogaz üretimi yapılmıştır. Reaktörün tasarlanması ve inşasında temel kriter olarak, kırsal koşullara uygunluğu, maliyet avantajı, kolay işletilebilir olması baz alınmıştır. Reaktörün taşıyıcı elamanları betonarme, duvarları ise gaz beton olarak inşa edilmiştir. Isı kaybını önlemek için dış cepheleri membran ve cam elyafı ile sarılmıştır. Üretilen biyogazı depolamak, sabit basınç sağlamak ve gaz sıkışması emniyeti amacı ile bir su kapanı içinde yüzen hareketli gaz deposu tasarlanmıştır. Kurulan sistemde hidrolik bekleme süresi 30 gün, günlük besleme miktarı 0,6 m3’dür. Kullanılan gübre 1:1 oranında 45 oC sıcaklıkta su ile karıştırılıp sisteme beslenmektedir. Reaktöre giren ve çıkan büyük baş hayvan gübresinin karakterizasyonu yapılmış ve OM, TOC, TN, C/N, pH, EC, KOI ve KOI giderim verimleri biyogaz üretimi için uygun bulunmuştur. Ayrıca üretilen biyogazın birleşimi incelenmiş ve biyogazın %59.26 CH4, %32.45 CO2, %2.92 O2 ve %2.06 H2S’den oluştuğu tespit edilmiştir. Çalışma kapsamında elde edilen sonuçlar birlikte değerlendirildiğinde, büyük baş hayvan gübrelerinin biyogaz üretiminde kullanılmasının önemli bir bertaraf ve enerji üretim alternatifi olduğu ve önerilen küçük ölçekli biyogaz reaktör modelinin bu amaç doğrultusunda başarı ile kullanılabileceği görülmüştür

References

  • Abad, M., Noguera, P., Puchades, R., Maquıeıra, A., Noguera, V. 2003. Physico-chemical and chemical properties of some coconut soir dusts for use as a peat substitute for containerised ornamental plants. Bioresource Technol., 8: 241-245.
  • Acaroglu, M., Aksoy, AS., Ogut, H. 2010. The potential of biomass and animal waste of Turkey and the possibilities of these as fuel in thermal generating stations. Energ Source Part A, 21(4): 339-345.
  • APHA, 1989. Standard Methods for the Examination of Water and Wastewater. American Health Association, Washington, DC.
  • APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, American Water Works Association (AWWA), Water Environment Federation (WEF).
  • Alvarez, R., Liden, G. 2009. Low temperature anaerobic digestion of mixtures of llama, cow and sheep manure for improved methane production. Biomass Bioenerg., 33: 527-533.
  • Benito, M., Masaguer, A., Moliner, A., De Antonio, R. 2006. Chemical and physical properties of prunig waste compost and their seasonal variability. Bioresource Technol., 97: 2071-2076.
  • Bremmer, J. M., Mulvaney, C. S., 1982. Nitrogen-Total. In:Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, Ed-s A. L. Page, R. H. Miller and D. R. Keeney, Am. Soc. Argon. Madison Wis. 595-624.
  • US EPA, 1993. Method 365.1 Determination of Phosphorus by Semi-Automated Colorimetry, Revision 2; Environmental Monitoring Systems Laboratory Office of Research and Development US Environmental Protection Agency, Cincinnati, OH 45268 (EPA/600/R-93/100).
  • Yadvika, S., Sreekrishnan, TR., Kohli, S., Rana, V. 2004. Enhancemof biogas production from solid substrates using different techniques a review. Bioresource Technol., 95: 1-10.
  • Zaher, U., Frear, C., Pandey, P., Chen, S. 2008. Evaluation of a new fixed-bed digester design utilizing large media for flush dairy manure treatment. Bioresource Technol., 99: 8619-8625.
  • Ullman, JL., Mukhtar, S. 2007. Impact of dairy housing practices on lagoon effluent characteristics: implications for nitrogen dynamics and salt accumulation. Bioresource Technol., 98: 745- 752.
  • US EPA, 1993. Method 365.1 Determination of Phosphorus by Semi-Automated Colorimetry, Revision 2; Environmental Monitoring Systems Laboratory Office of Research and Development US Environmental Protection Agency, Cincinnati, OH 45268 (EPA/600/R-93/100).
  • Yadvika, S., Sreekrishnan, TR., Kohli, S., Rana, V. 2004. Enhancemof biogas production from solid substrates using different techniques a review. Bioresource Technol., 95: 1-10.
  • Zaher, U., Frear, C., Pandey, P., Chen, S. 2008. Evaluation of a new fixed-bed digester design utilizing large media for flush dairy manure treatment. Bioresource Technol., 99: 8619-8625.

Development of a Small Scale Reactor Model for Biogas Production from Animal Wastes

Year 2018, Volume: 8 Issue: 1, 138 - 146, 01.01.2018

Abstract

In this study, a family type-real-scale biogas reactor suitable for biogas production from cattle manure was designed and biogas production was carried out. The basic criteria for the design and construction of the reactor is based on its suitability for rural conditions, cost advantage, and ease of operation. The conveyor elements of the reactor were constructed as reinforced concrete and the walls were constructed as aerated concrete. It was wrapped with membrane and glass fiber to prevent heat loss. A mobile gas reservoir floating in a water trap was designed to store the produced biogas, provide a constant pressure and gas jamming safety. In the installed system, hydraulic retention time is 30 days and daily feeding amount is 0.6 m3 . The manure that used is mixed with water at a temperature of 45° C in a 1: 1 ratio and fed to the system. Characterization of cattle manure entering and exiting the reactor was performed and OM, TOC, TN, C/N, pH, EC, COD and COD removal efficiency were found suitable for biogas production. In addition, the composition of the produced biogas was examined and it was determined that the biogas is composed of 59.26 % CH4 , 32.45 % CO2 , 2.92 % O2 and 2.06% H2 S. When the results obtained in the study are evaluated together, it was seen that the use of cattle manure in biogas production is an important disposal alternative and the proposed small scale biogas reactor model can be successfully used for this purpose.

References

  • Abad, M., Noguera, P., Puchades, R., Maquıeıra, A., Noguera, V. 2003. Physico-chemical and chemical properties of some coconut soir dusts for use as a peat substitute for containerised ornamental plants. Bioresource Technol., 8: 241-245.
  • Acaroglu, M., Aksoy, AS., Ogut, H. 2010. The potential of biomass and animal waste of Turkey and the possibilities of these as fuel in thermal generating stations. Energ Source Part A, 21(4): 339-345.
  • APHA, 1989. Standard Methods for the Examination of Water and Wastewater. American Health Association, Washington, DC.
  • APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, American Water Works Association (AWWA), Water Environment Federation (WEF).
  • Alvarez, R., Liden, G. 2009. Low temperature anaerobic digestion of mixtures of llama, cow and sheep manure for improved methane production. Biomass Bioenerg., 33: 527-533.
  • Benito, M., Masaguer, A., Moliner, A., De Antonio, R. 2006. Chemical and physical properties of prunig waste compost and their seasonal variability. Bioresource Technol., 97: 2071-2076.
  • Bremmer, J. M., Mulvaney, C. S., 1982. Nitrogen-Total. In:Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, Ed-s A. L. Page, R. H. Miller and D. R. Keeney, Am. Soc. Argon. Madison Wis. 595-624.
  • US EPA, 1993. Method 365.1 Determination of Phosphorus by Semi-Automated Colorimetry, Revision 2; Environmental Monitoring Systems Laboratory Office of Research and Development US Environmental Protection Agency, Cincinnati, OH 45268 (EPA/600/R-93/100).
  • Yadvika, S., Sreekrishnan, TR., Kohli, S., Rana, V. 2004. Enhancemof biogas production from solid substrates using different techniques a review. Bioresource Technol., 95: 1-10.
  • Zaher, U., Frear, C., Pandey, P., Chen, S. 2008. Evaluation of a new fixed-bed digester design utilizing large media for flush dairy manure treatment. Bioresource Technol., 99: 8619-8625.
  • Ullman, JL., Mukhtar, S. 2007. Impact of dairy housing practices on lagoon effluent characteristics: implications for nitrogen dynamics and salt accumulation. Bioresource Technol., 98: 745- 752.
  • US EPA, 1993. Method 365.1 Determination of Phosphorus by Semi-Automated Colorimetry, Revision 2; Environmental Monitoring Systems Laboratory Office of Research and Development US Environmental Protection Agency, Cincinnati, OH 45268 (EPA/600/R-93/100).
  • Yadvika, S., Sreekrishnan, TR., Kohli, S., Rana, V. 2004. Enhancemof biogas production from solid substrates using different techniques a review. Bioresource Technol., 95: 1-10.
  • Zaher, U., Frear, C., Pandey, P., Chen, S. 2008. Evaluation of a new fixed-bed digester design utilizing large media for flush dairy manure treatment. Bioresource Technol., 99: 8619-8625.
There are 14 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Ömer Hulusi Dede This is me

Gülgün Dede This is me

Cemile Dede This is me

Saim Özdemir This is me

Publication Date January 1, 2018
Published in Issue Year 2018 Volume: 8 Issue: 1

Cite

APA Dede, Ö. H., Dede, G., Dede, C., Özdemir, S. (2018). Hayvansal Atıklardan Biyogaz Üretimi İçin Küçük Ölçekli Reaktör Modeli Geliştirilmesi. Karaelmas Fen Ve Mühendislik Dergisi, 8(1), 138-146.
AMA Dede ÖH, Dede G, Dede C, Özdemir S. Hayvansal Atıklardan Biyogaz Üretimi İçin Küçük Ölçekli Reaktör Modeli Geliştirilmesi. Karaelmas Fen ve Mühendislik Dergisi. January 2018;8(1):138-146.
Chicago Dede, Ömer Hulusi, Gülgün Dede, Cemile Dede, and Saim Özdemir. “Hayvansal Atıklardan Biyogaz Üretimi İçin Küçük Ölçekli Reaktör Modeli Geliştirilmesi”. Karaelmas Fen Ve Mühendislik Dergisi 8, no. 1 (January 2018): 138-46.
EndNote Dede ÖH, Dede G, Dede C, Özdemir S (January 1, 2018) Hayvansal Atıklardan Biyogaz Üretimi İçin Küçük Ölçekli Reaktör Modeli Geliştirilmesi. Karaelmas Fen ve Mühendislik Dergisi 8 1 138–146.
IEEE Ö. H. Dede, G. Dede, C. Dede, and S. Özdemir, “Hayvansal Atıklardan Biyogaz Üretimi İçin Küçük Ölçekli Reaktör Modeli Geliştirilmesi”, Karaelmas Fen ve Mühendislik Dergisi, vol. 8, no. 1, pp. 138–146, 2018.
ISNAD Dede, Ömer Hulusi et al. “Hayvansal Atıklardan Biyogaz Üretimi İçin Küçük Ölçekli Reaktör Modeli Geliştirilmesi”. Karaelmas Fen ve Mühendislik Dergisi 8/1 (January 2018), 138-146.
JAMA Dede ÖH, Dede G, Dede C, Özdemir S. Hayvansal Atıklardan Biyogaz Üretimi İçin Küçük Ölçekli Reaktör Modeli Geliştirilmesi. Karaelmas Fen ve Mühendislik Dergisi. 2018;8:138–146.
MLA Dede, Ömer Hulusi et al. “Hayvansal Atıklardan Biyogaz Üretimi İçin Küçük Ölçekli Reaktör Modeli Geliştirilmesi”. Karaelmas Fen Ve Mühendislik Dergisi, vol. 8, no. 1, 2018, pp. 138-46.
Vancouver Dede ÖH, Dede G, Dede C, Özdemir S. Hayvansal Atıklardan Biyogaz Üretimi İçin Küçük Ölçekli Reaktör Modeli Geliştirilmesi. Karaelmas Fen ve Mühendislik Dergisi. 2018;8(1):138-46.